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Abstract
Sedimentation that leads to periodic, and often prolonged, burial events is becoming more

common on the world’s coastlines as human populations expand and create urbanised

marine environments. Different seagrass species react differently to sediment burial but

many species in the southern hemisphere are yet to be examined. How seagrasses react to

burial has restoration implications. There is a need to critically assess seagrass transplant

propagule responses to periodic (pulse) and prolonged (press) burial events before selecting

the most appropriate species, transplant propagule, and transplant site. In my study, meso-

cosm experiments, coupled with field measurements were used to assess how sexual (seed-

lings) and vegetative (sprigs) propagules of Posidonia australis responded to pulse and press

burial events. Seedlings were highly susceptible to burial (both pulse and press), with no sur-

vival at the end of the experimental period. In contrast, rhizome growth in vegetative propa-

gules was stimulated by pulse burial, although press burial events resulted in mortality. The

implication for Posidonia australis restoration efforts in areas where burial is periodic, was that

vegetative propagules are optimal transplant units, in comparison to seedlings. Press burial

however, renders a transplant site sub-optimal for both seedling and sprig transplants.

Introduction
Success in seagrass restoration has proven to be highly variable (e.g., [1–3]) and influenced by a
number of stressors (e.g., [4]). Successful transplantation and restoration (or rehabilitation) of
seagrass rely upon knowledge of the target species’ autecological requirements to determine the
appropriate transplant unit type [5,6] and appropriate recipient site [5], including understand-
ing if site specific stressors that led to seagrass decline have been ameliorated or removed.
Equally important is the knowledge of how the species responds to disturbance events such as
sediment burial, intensity of herbivory, and changing nutrient levels (e.g., [7–14]). Conse-
quently, restoration and rehabilitation success may be heavily influenced by disturbance at a
proposed transplant site. Knowing how different seagrass propagules (sexual or vegetative)
respond to stressors, particularly site specific disturbances, should drive decisions on the selec-
tion of both suitable transplant sites and transplant units.

PLOSONE | DOI:10.1371/journal.pone.0161309 August 15, 2016 1 / 11

a11111

OPEN ACCESS

Citation: Campbell ML (2016) Burial Duration and
Frequency Influences Resilience of Differing
Propagule Types in a Subtidal Seagrass, Posidonia
australis. PLoS ONE 11(8): e0161309. doi:10.1371/
journal.pone.0161309

Editor: Carlo Nike Bianchi, Universita degli Studi di
Genova, ITALY

Received: March 6, 2016

Accepted: August 3, 2016

Published: August 15, 2016

Copyright: © 2016 Marnie L. Campbell. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: Cockburn Cement Limited and the Great
Barrier Reef Marine Park Authority provided financial
support for this research. These funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The author has declared that
no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0161309&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Sediment deposition through natural means is associated with: normal riverine discharge;
storm associated events such as wave resuspension, enhanced erosion and runoff; and inlet,
sandbar and dune migration. These events typically result in short pulses of sediment load that
is rapidly removed. In contrast, human alteration of land-based inputs [15, 16] has created
enhanced sediment loads associated with watershed scale soil erosion, and alteration of sedi-
ment transport through diversion and reservoir retention schemes, resulting in global alter-
ations of sediment delivery to coastal habitats [17]. Similarly, human activities such as coastal
trawl fishing, dredging, dumping and construction alter sediment loads. Both natural and
human generated activities result in short-term “pulse” events (which may be periodic) and
prolonged “press” events (sensu [18]; but see [19]). Pulse and press events fall along a contin-
uum; differentiation between these categories must be made relative to the observed organism
or community or, as is used here, from the observed environment.

Studies have illustrated that burial triggers photomorphogenic responses in seagrasses that
result in the relocation of the meristem to the surface (where possible; e.g., [20–21]). Typically,
seagrass burial studies have examined depth of burial as the determinant of disturbance (e.g.,
[8, 11, 22–27]) but few have focussed on the duration or frequency of burial (except see
[14,28]) or examined the resilience to burial between propagule types. These few studies have
suggested that pulse versus press burial events may produce differing outcomes for seagrass
resilience [11, 29–30]. For example, press burial events can cause seagrass declines (e.g., [31,
32]) and, contrary to ecological theory that pulse events would result in temporary effects,
there is empirical evidence that some seagrasses are more likely to succumb to rapid pulse
burial events [11, 14] and persist or thrive in press burial events [28, 29]. How seagrasses
respond to pulse vs. press burial events remains largely unexplored, yet is critically needed to
help select an appropriate seagrass transplant site and propagule type.

Exposure to burial events and the duration and frequency of repeating events are particularly
important considerations for seagrass restoration ecologists. Transplant site selection is often
driven by non-biological drivers such as economics, socio-political constraints and/or logistics,
and may be physically sub-optimal based on the likelihood of burial disturbance. As a result,
there is a need to critically assess species and transplant unit responses to pulse and press burial
before selecting the preferred transplant site, the most appropriate species or transplant method.

In Western Australia, seagrass transplant efforts frequently fail (38% success rate; [2]),
which has resulted in significant efforts to overcome problems associated with site specific
stressors such as surge and wave exposure (e.g., [33–35]) through technical solutions (e.g. use
of mats, anchors, barriers etc.). However, these technical solutions are resource intensive and
rarely correct the long-term impacts. Here, I propose that instead of looking to technology to
solve an issue, understanding the relationship between the impacts of pulse vs. press burial
events and various transplant unit types (vegetative or sexual propagules) can inform future
transplant efforts to improve success.

The current study investigated the resilience of Posidonia australis sexual (seedlings) and
asexual (sprigs) propagules when exposed to varying burial durations. My hypothesis success-
fully tested if pulse and press burial events would limit horizontal rhizome growth. I have
focussed on P. australis as it is a dominant seagrass across southern Australia, it is known to be
susceptible to disturbance [36], and research groups are working to develop seagrass nurseries
as restoration banks that include P. australis [37].

Materials and Methods
Burial experiments were conducted in mesocosms to remove confounding factors that may
have influenced the results if the study occurred in the field. Field control and mesocosm
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control measurements of rhizome growth were recorded to ensure that differences were due to
treatment and were not mesocosm artefacts. All sampling occurred under a general permit
(Western Australian Fisheries) that was issued to Murdoch University.

A total of 324 sprigs (vegetative propagules) and 540 fruits (sexual propagules) of Posidonia
australis were collected from depths of 5 to 9 m on Success Bank (Perth, Western Australia; 32°
05’94’ S; 115°43’94’ E). Vegetative propagules were sourced from an area that was later
dredged. Upon collection, all vegetative propagules were tagged (using methods of [35]) and
labelled (to maintain individual identification), washed in a disinfectant solution (1:80 chlorox:
seawater) to reduce potential infection and then randomly allocated to outdoor, independent
flowing seawater mesocosms (n = 18). Mesocosms had a capacity of 180L and an average flow
rate of 240L h-1. The mesocosm laboratory was shaded to reduce light levels to within statisti-
cally similar levels (average 407.35 μmol m-2s-1) to those found at depths where the seagrasses
were collected (5m on Success Bank; t[36] = 1.26; p> 0.05). Each mesocosm received six vegeta-
tive propagules and 10 sexual propagules. Fruits were also washed in the disinfectant solution.

Vegetative (sprigs) propagules consisted of an apical meristem (to ensure potential rhizome
growth) and at least five shoots. These were planted within the sediment to the depth observed
in the field (e.g., meristems at the sediment surface). Fruits were allowed to dehisce and release
seedlings. Posidonia australis seedlings are relatively large compared to seedlings of species
such as Halophila ovalis and Zostera tasmanica. On average, the seedlings in this experiment
were 3–4 cm in length when the experiment began. Once released, the seedlings were tagged
(using a very small plastic cable tie on the radicle), labelled (using an alpha numeric code
scratched into the cable tie) and planted as described above. After planting, a 30-day acclima-
tion period occurred before the experimental treatments begun. Mesocosm irradiance averaged
407 μmol photons m-2s-1 and water temperature averaged 20°C throughout the experimental
period. Photoperiod matched the natural, spring environment (12L: 12D). Mesocosms were
randomly allocated to treatments and controls (seven pulse, seven press, and four controls)
which are described further below.

Horizontal rhizome growth (extension) was measured, noting that P. australis does not pro-
duce vertical rhizomes, by tagging the last shoot on the rhizome prior to the apical meristem.
An increase in net rhizome length beyond the tagged area indicated growth, while a reduction
indicated necrosis. This method has been successfully employed on the congener Posidonia
oceanica [38, 39], and on P. australis and P. coriacea in the field [1, 40].

Experiments were performed over three consecutive spring/summer periods between 1993
and 1995. No significant differences between the results in each of the replicates were detected,
therefore all subsequent data is a mean of all experiments. Fresh propagule material was col-
lected at the beginning of each experimental occasion.

Control
Four mesocosms were established as controls, where propagules were planted during the accli-
mation period and remained undisturbed except for rhizome measurements at t = 0 (after the
acclimation period), at day 43 (due to logistic constraints the day following the end of Treat-
ment 2) and at day 63 (the end of Treatment 1). At day 43, 32 randomly selected propagules
(12 vegetative and 20 sexual) from within all of the control mesocosms were removed and rhi-
zome extension was measured. The remaining 32 propagules had rhizome growth measured at
day 63.

A field control on Success Bank was established in a depth of 5 m for comparative purposes
with 60 Posidonia australis in situmeadow rhizomes tagged and measured every three-months
for 23 months (see [41]). Field light levels ranged from 321 μmol photons m-2 s-1 in summer to
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144 μmol photons m-2s-1 during winter [1]. During the period of study, naturally recruiting
vegetative fragments were observed at the field control site [40]. These naturally recruited vege-
tative fragments were tagged and measured in situ, in similar fashion to the field control.

Treatment 1: Pulse Burial
Seven mesocosms were randomly selected for Treatment 1, which simulated periods of burial
observed in the field (average burial duration of 21 days; [1, 41]). This treatment represented a
pulse event where the burial effect was cyclical. Propagules within these mesocosms were cov-
ered with acid-washed sand so that no leaves were left exposed (~ 4 cm depth). This depth was
selected as it reflected the average deposition levels observed in the natural environment of this
region (discussed in [1, 41]). Sediment deposition in this region is driven by the physical envi-
ronment (storm and wind driven waves) [1, 41]. After 21 days burial, sand was gently fanned
away to uncover the propagules allowing leaf exposure to light. Rhizome extension was mea-
sured at this time and propagules were left uncovered for a further 21 days, simulating a ‘recov-
ery’ period. Rhizome extension was then measured and the propagules re-covered with sand
for a further 21 days resulting in a total burial duration of 42 days (roughly equivalent to
Treatment 2 duration). The treatment was then terminated and final rhizome lengths were
measured.

Treatment 2: Press Burial
Seven mesocosms were established for Treatment 2, which simulated a prolonged, or press,
burial event at durations similar to those that occurred in the field [1, 41]. Burial of propagules
so that no leaves were left exposed (~ 4 cm depth) occurred in the same manner as in Treat-
ment 1, with the exception that propagules were left covered for the entire period of 43 days.
The treatment was then terminated without any ‘recovery’ period and final rhizome lengths
were measured.

Statistical Analyses
A one-way ANOVA (p = 0.05) was used to detect differences in propagule response (rhizome
growth) to experimental burial duration (pulse and press). If a statistically significant difference
was detected, post-hoc all-pairwise analyses were used to further elucidate the statistical differ-
ences. Treatment controls were compared against field controls in order to demonstrate similar
conditions. Subsequently, all mesocosm treatments (pulse and press experiments) were com-
pared against the mesocosm control. Naturally recruiting vegetative fragments were compared
against field controls.

Results

Sexual propagules (seedlings)
Control and field outcomes. Extensive flowering was observed in the field. However,

seedling recruits were not detected over the three years that the experiments ran, although
widespread searches were undertaken. Consequently, no seedling growth data in the field was
collected. Failure of P. australis seedling recruitment and establishment in the field has been
demonstrated previously despite the seed’s high viability and production [40].

In general, 89% of mesocosm seedlings produced a small rhizome, however these did not
grow appreciably (<1 mm over the entire experimental period) or only produced root hairs.
Fewer than three leaves were present on 98% of the seedlings at the end of the acclimation
period. All seedlings in the control mesocosms survived but no rhizome extension occurred
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during the experimental periods. No seedlings survived either beyond the first burial period in
Treatment 1 or at the end of Treatment 2, suggesting a high vulnerability to both pulse and
press burial disturbance.

Vegetative propagules (sprigs)
Control and field outcomes. In the field, control vegetative propagules grew at a rate of

1.0 ± 0.09 mm d-1, while vegetative propagules within the mesocosm controls grew at an aver-
age of 1.7 ± 0.41 mm d-1 (Fig 1). Comparison of rhizome growth rates between field and meso-
cosm controls were not statistically different (t[20] = 1.66, p = 0.113). Naturally recruiting
vegetative fragments in the field grew at a rate of 0.78 ± 0.02 mm d-1 [40] and exhibited signifi-
cantly lower rhizome extension rates than the field control (t[20] = 2.43, p = 0.025; Fig 1).

Treatment 1: Pulse burial. Vegetative propagules grew an average of 16.7 ± 0.84 mm d-1

throughout the 63 day experimental period (Fig 1). Rhizome growth significantly differed
between the pulse treatment and the mesocosm control (t[9] = 16.04, p = 6.27�10−8), with rhi-
zome growth being greater in the pulse burial treatment (Fig 1).

Treatment 2: Press burial. Vegetative propagules exposed to press burial exhibited low
rhizome extension rates (0.13 ± 1.0 mm d-1, Fig 1). In general however, exposing rhizomes to
press burial resulted in necrosis of all vegetative rhizomes. Rhizome growth was significantly
lower under press burial than in the mesocosm control (t[15] = 1.45, p = 0.169) and also signifi-
cantly lower than those exposed to cyclical pulse burial (t[17] = 12.62, p = 4.62�10−10; Fig 1).

Discussion
Global seagrass loss has created significant alterations of coastal ecosystems leading to numerous
calls for management through restoration (e.g., [42, 43]). Many available sites for restoration
efforts are in exposed and typically high sediment load, and therefore accreting, environments
(e.g., [35, 44–45]); concomitantly, seagrasses create an accreting ecosystem (e.g., [46]). Therefore,

Fig 1. Box plot of Posidonia australis net rhizome extension rates (mm d-1) by treatment. The central
solid line represents the median (50%Quartile); the top and bottom of the box represent the 25% and 75%
Quartiles, respectively; and the vertical bar represents the observed range of maximum and minimum values.

doi:10.1371/journal.pone.0161309.g001
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the rate and duration of burial is potentially a significant determinant of restoration success, par-
ticularly if the resilience to burial varies between species or transplant unit types (e.g., [14, 28,
47]). This study found that resilience to burial duration for Posidonia australis varied between
transplant unit types. Seedlings (< 93 days old) are highly susceptible to both pulse and press
burial events. Growth of P. australis rhizomes in sprigs were stimulated by pulse burial events,
but succumbed to press burial events of up to 43 days (burial periods emulated field conditions;
[1, 41]). These findings clearly demonstrate that P. australis sprigs should be the preferred trans-
plant unit type in sites where cyclical pulse burial events occur, but noting that longer-term press
burial events are detrimental to both seedlings and sprigs. The specific trade-off between cyclical
pulse, versus press events remains a critical area of research.

The increasing anthropogenic influences in expanding urbanised coastal systems [48], such
as coastal dredging and land run off, often result in sedimentation pulses (e.g., [32]) leading to
an increased frequency and duration of burial events [49]. These sediment pulses may also
bring catchment pollutants (e.g., [50]). Furthermore, frequency of sedimentation is likely to
increase with climatic changes in some regions (e.g., [51, 52]), again resulting in increased
burial risk for seagrasses (e.g., [53]) and potential cumulative effects from catchment pollutants
(e.g., [50]).

The finding of increased rhizome growth under pulse burial conditions is not unusual.
Experimental studies of species with vertical rhizomes have demonstrated the relocation of the
apical meristem towards light and increased vertical shoot growth when moderately buried
(e.g., [8, 24–26, 54]). This study however, has demonstrated that P. australis plants which do
not have vertical shoots, still exhibited a significant stress response by investing in rhizome
growth as a mechanism to relocate the meristem to the surface. Photomorphogenic responses
in seagrasses have been reported or hypothesised in relation to self-thinning [55], rhizome
internode elongation and branching [56, 57], burial [20] and carbohydrate stores [14]. Simi-
larly, Marbà and colleague [58] identified variability in rhizome growth due to variations in
space availability between patch edges and centres.

Results from this study indicate that a slower-growing species, such as P. australis, can
respond to pulse burial in a fashion similar to smaller, faster-growing species such as Cymodo-
cea nodosa. Researchers have hypothesised that some dominant, slower-growing species, such
as Phyllospadix scouleri and Posidonia oceanica, can withstand burial because of their rhizoma-
tous root system [23, 59] that provides a carbohydrate buffer to stress. Yet, some dominant,
slow-growing species, such as C. serrulata [8] and Zostera species [60], do not respond rapidly
to sedimentation and hence do not survive press burial events (e.g., [14, 29]). “Slower-growing”
species are not opportunistic in their reaction to burial or disturbance; they can be stress-toler-
ant at first [59], but if burial is prolonged they may succumb [8, 14, 29, 59]. This appears to be
the case for P. australis in this study. Under pulse burial stress, rhizome growth increased to
more than 16 times that observed in the field. However, propagules eventually succumb to
press burial stress (Fig 1).

Posidonia australis seedlings were extremely susceptible to both pulse and press burial, with
complete mortality during the experimental period. This rapid response to burial was unex-
pected, as P. australis seedlings reportedly have a seed cotelydon capable of providing enough
stored carbohydrates to survive for nine months [61, 62]. Mortality would be expected if a
seedling had not grown leaves and replenished carbohydrate stores in that timeframe. The
experimental period used here was one quarter of this timeframe and it is unlikely that carbo-
hydrate stores had been depleted (although this parameter was not measured here), yet mortal-
ity in both pulse and press burial treatments was observed.

Seed coat light interactions may explain the outcome of this study. Light has an integral role
in controlling the growth response in some buried seagrass seedlings [20]; a lack of light will
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stimulate growth and the presence of light deters it. This pattern is evidenced by a reduction in
rhizome growth when plants are in an eroding environment [63–64]. Yet, in my study the lack
of light failed to stimulate growth of P. australis seedlings. Photosynthetic activity in the seed
coat of P. oceanica, P. australis, and P. sinuosa enhances seedling growth [65]. Thus, burial
events may have disrupted the seed photosystem potential and have led to the high mortality of
seedlings in both pulse and press treatments in this study.

Implications to restoration
This study’s findings have a number of explicit implications for P. australis restoration efforts,
and potentially other ‘climax’ seagrass species. The long-standing and currently accepted para-
digm for seagrass transplant efforts considers that previously occupied sites reflect realised
niches (e.g., [66–70]) and will therefore provide the most suitable conditions for transplanta-
tion. This model is counter to conservation biology theory that suggests that once a site deviates
from its original trajectory, returning to this trajectory is unlikely, if not implausible (also
referred to as the ‘Humpty Dumpty’ rule; [71]). This observation has recently entered the sea-
grass literature (e.g., [72]). Furthermore, if previously occupied sites are in high energy condi-
tions (i.e., exposed offshore environments) where seagrass transplant efforts experience high
water movement and frequent burial, then success may be limited (e.g., [34, 44, 45, 73]) regard-
less of whether the changed system could be rehabilitated.

The creation of land-based nurseries to grow transplant propagules (e.g., [37]) should factor
in the rate at which seedlings succumbed to burial stress. Thus, investment in a nursery system
should determine at what age or size (e.g., [36]) seedlings become sufficiently robust to survive
being transplanted into conditions that are subject to sedimentation. If seedlings can be culti-
vated to a large size equivalent to a ‘sprig’, then these transplant units are more likely to survive
pulse burial events but not press burial events (>21 days). The lack of evidence of seedling
establishment in the field, coupled with observations of vegetative fragment recruitment of
P. australis [35] supports the inference that seedlings need to be of a robust size to survive
transplantation.

In conclusion, my results demonstrate that P. australis rhizome extension was stimulated
when burial was pulsed, but decreased under press burial conditions. This indicates that this
species is stress tolerant to a point. Conversely, P. australis seedlings were highly susceptible to
both pulse and press burial. These results suggest that P. australis vegetative propagules are
more resistant to burial than P. australis seedlings and hence, vegetative propagules are an
optimal transplant unit for areas where burial events occur. Understanding how an individual
species and its propagules are influenced by burial in press and pulse situations is a critical con-
sideration when attempting to transplant and restore seagrasses.
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