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Abstract

Experimental design focuses on describing or explaining the multifactorial interactions that

are hypothesized to reflect the variation. The design introduces conditions that may directly

affect the variation, where particular conditions are purposely selected for observation.

Combinatorial design theory deals with the existence, construction and properties of sys-

tems of finite sets whose arrangements satisfy generalized concepts of balance and/or sym-

metry. In this work, borrowing the concept of “balance” in combinatorial design theory, a

novel method for multifactorial bio-chemical experiments design is proposed, where bal-

anced templates in combinational design are used to select the conditions for observation.

Balanced experimental data that covers all the influencing factors of experiments can be

obtianed for further processing, such as training set for machine learning models. Finally, a

software based on the proposed method is developed for designing experiments with cover-

ing influencing factors a certain number of times.

Introduction

The design of experiments, also known as experimental designs, deal with the task of finding

relationship among the influencing factors of multifactorial experiments as well as the con-

tribution of each factors to the outcome [1–3]. Experimental design refers to how partici-

pants are allocated to the different conditions in an experiment. It involves not only the

selection of suitable predictors and outcomes, but planning the delivery of the experiment

under statistically optimal conditions given the constraints of available resources [4, 5]. The

aim is to design a number of experiments for predicting the outcome by introducing a

change of the preconditions. With the experimental data, mathematical models might be

built to calculate the outcome from variables or experimental conditions. The three main

concerns in experimental design are validity, reliability, and replicability [6, 7]. The mostly

PLOS ONE | https://doi.org/10.1371/journal.pone.0186853 November 2, 2017 1 / 10

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wang X, Sun B, Liu B, Fu Y, Zheng P

(2017) A novel method for multifactorial bio-

chemical experiments design based on

combinational design theory. PLoS ONE 12(11):

e0186853. https://doi.org/10.1371/journal.

pone.0186853

Editor: Xiangxiang Zeng, Xiamen University, CHINA

Received: July 20, 2017

Accepted: October 9, 2017

Published: November 2, 2017

Copyright: © 2017 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work was supported by National

Natural Science Foundation of China (61402187,

61502535, 61572522, 61572523, 61672033 and

61672248) to XW, China Postdoctoral Science

Foundation funded project (2016M592267) to XW,

PetroChina Innovation Foundation (2016D-5007-

0305) to PZ, Fundamental Research Funds for the

Central Universities (R1607005A) to BL, Natural

Science Foundation of Shandong Province

(ZR2015FM022) to XW, Key Research and

https://doi.org/10.1371/journal.pone.0186853
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186853&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186853&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186853&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186853&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186853&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186853&domain=pdf&date_stamp=2017-11-02
https://doi.org/10.1371/journal.pone.0186853
https://doi.org/10.1371/journal.pone.0186853
http://creativecommons.org/licenses/by/4.0/


used experimental design methods include Plackett-Burman designs [8], frequentist and

Bayesian based approaches [9], response surface methodology [10], central composite design

[11] and so on.

In recent years, machine learning methods are used to modelling the bio-chemical experi-

ments with a set of experimental data, see e.g. deep neural network [12], spiking neural P sys-

tems [13–17]. Recently, many significant artificial intelligent algorithms and data processing

strategies has been applied on data mining, such as a self-adaptive artificial bee colony algo-

rithm based on global best for global optimization [18], the public auditing protocol with

novel dynamic structure for cloud data [19], privacy-preserving smart semantic search

method for conceptual graphs over encrypted outsourced data [20], a privacy-preserving

and copy-deterrence content for image data processing with retrieval scheme in cloud com-

puting [21], and machine learning method have been applied for experimental condition

design, see. e.g. a secure and dynamic multi-keyword ranked search scheme over encrypted

cloud data [22].

The general idea is to learn from the experimental data, and then achieving a prediction

model of the experiment, which matches the known data in a acceptable level. With the model,

some optimal conditions for maximizing the outcome or minimizing the cost can be obtained

[23–26]. However, the experimental data obtained or collected by classical experimental design

methods, such as Plackett-Burman designs, response surface methodology, central composite

design, the data is quite unbalanced, are not balanced well, such that we cannot get well fitting

models by using machine learning methods.

Combinatorial design theory belongs the field of combinatorial mathematics, which deals

with the existence [27–29], construction and properties of systems of finite sets with general-

ized concepts of balance and/or symmetry [30–32]. It is formulated in [33] that combinatorial

designs can provide potential tools in the area of design of experiments, particularly for the

design of biological experiments.

In this work, borrowing the concept of “balance” in combinatorial design theory, we pro-

pose a novel method for multifactorial bio-chemical experiments design. In the method, bal-

anced templates from the existence and construction in combinational design theory are used

to select the experiments which should be done for conditions observation. We can get bal-

anced experimental data from the experiments selected that covers all the influencing factors

of experiments for further processing, particularly for machine learning based modelling.

Finally, a software with the proposed method is developed, which provides a simulation tool

for designing multifactorial experiments, by which the designed experiments can cover influ-

encing factors a pre-designed number of times.

Methods

In this section, we introduce the method proposed for experimental design based on combina-

tional design theory.

Before introducing the method, we clarify the meaning of some involved symbols. Let m be

the number of influencing factors for an experiment. These factors are denoted by f1, f2, . . ., fm.

By nj with j = 1, 2, . . ., m, we denote the possible values of factor fj. Parameter s is set to be cov-

ering times of all the factors. Among the nj values of any factor fj, it is not necessary to select all

the values, but t values is sufficient to cover all the cases of factors. The number of experiments

needed to cover all the cases of factors and all the values is denoted by r. In other word, we

need design r experiments to cover all the factors s times with each time considering t values of

any factor.
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The mathematical model of experimental design

Let P be a m × n matrix recording the m influencing factors, where n = max{n1, n2, . . ., nm}.

Mathematically, matrix Pm×n = (pij)m×n is denoted as follows

P ¼

p11 p12 p13 � � � p1n

p21 p22 p23 � � � p2n

..

. ..
. ..

. . .
. ..

.

pm1 pm2 pm3 � � � pmn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

:

By pij, we denote the the jth possible value of the ith influencing factor to the experiment.

The problem of experimental design is to find suitable values of r,s and t, with which we can

obtain an experiment design, i.e., a group of experiments, γ = {γ1, γ2, . . ., γg}. Each experiment

γk 2 γ is of the form γk = {p1k1
, p2k2

, . . ., pmkm
}. The experimental design to be found should sat-

isfy the following items:

•
Sg
k¼1 gk ¼ fpij j i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; ng;

• for any γk = {p1k1
, p2k2

, . . ., pmkm
}, its elements are from matrix P, where pjkj

is elected from

the jth row of matrix P with j = 1, 2, . . ., m.

• in total g × m, that is, r experiments in the design;

• given t elemental elements (crucial to the experiment) from matrix P, and these elements

present in γ for s times.

When given the t elemental elements, the object is to finding certain experiment design γ,

which has minimal value of r and maximal value of s.

Theoretical support from combinational design theory

With the notations defined above, the experimental design can be transferred as finding a suit-

able values and combination of parameters t, s and λ. In combinational design theory, the con-

cept of difference set have some common features with parameters t, s and λ. This provides a

way to design experiments by the way of finding difference set developed in combinational

design theory. Let’s briefly recall some basic concepts of difference set.

Let G be an Abelian group in modern algebra theory. A (v, k, λ) difference set is a subset D
of a group G such that the order of G is v, the size of D is k, and every nonidentity element of G
can be expressed as a product d1d� 1

2
of elements of D in exactly λ ways (when G can be written

with a multiplicative operation) [34]. For any element g in G, if subset D is a difference set,

then it holds g � D = {g � d: d 2 D} is also a difference set, which is named as a translate of D. It

is known that the set of all translates of a difference set D can achieve a symmetric block

design. In such a design there are v elements and v blocks. In each block of the design, it has k
points, and each point is contained in k blocks [30].

In combinational design theory, there are some theorems on designing difference sets

with distinguished values of parameters v, k and λ). With the concepts of difference set in

combinational design theory, it is not hard to find that finding suitable and reasonable values

of s, t and r is similar of designing a different set. The strategy used in constructing different

sets can be used to determine values of r, s, and t, thus achieving a way for experimental

design.
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The algorithm for experimental design

In this subsection, we propose an algorithm for finding suitable values of parameters r, s, and t,
like finding different sets in combinational design theory. The flowchart of the algorithm is

shown in Fig 1.

The general process of the algorithm is as follows.

Step 1. Initialize parameters m, n and set s = n, γ = ;;

Step 2. Generating matrix Pm×n with the n values of each of the m influencing factors.

Step 3. Selecting the t elemental elements from matrix P.

Step 4. Generating γi by randomly select one element from each row of matrix P.

Step 5. Updating γ = γ [ γi.

Step 6. If there exits some other γi that can be generated, then go to Step 4.; otherwise go to

Step 7.

Step 7. Check if the generated γ covers all the t pro-defined elemental elements of matrix P. If

so, go to Step 8.; otherwise, updating s = n − 1 and go to Step 1. to repeat the process.

Step 8. Check if the generated γ matches the request of similarly by comparing any two

groups of experiments. If so, go to Step 9.; otherwise, go to Step 4. to re-design the

experiments.

Step 9. Check if the generated γmatches the request of balance, which is calculated by the rate

between the minimal times and maximal times of the pairs of two influencing factors in the

designed experiments. If so, halt the algorithm and output the designed experiments γ; oth-

erwise, go to Step 4. to re-design the experiments.

Simulation tools

A software based on Visual Studio 2010 is developed for the the simulation of the proposed

algorithm. The simulation tool produces a group of experiments with generalized concepts of

balance and/or symmetry in combinational design theory. We set a similarly comparison

mechanism to avoiding similar groups of experiments are designed. The starting page of the

software is shown in Fig 2.

The meaning of the parameters in Fig 2 is as follows.

• The number of influencing factors is represented by m.

• The maximal number of possible values of all the influencing factor is n.

• Input 11 is the value of the minimal similarity between any couple of γi and γj in the designed

γ. If there exists any two groups of designed experiments having similarity less the value of

Input 11, then it repeats the algorithm to generate a new group of experiments.

• Input 12 is the number of total experiments that need be designed.

• Input 13 is the balance measure of the designed experiments, which is calculated by the rate

between the minimal times and maximal times of the pairs of two influencing factors in the

designed experiments.

For example, we can design experiments with m = 6, n = 3, Input 11 be 8, Input 12 be 10

and Input 13 be 0.001. The salutation page is shown in Fig 3.
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The simulation result can be used to design experiment of fungal fermentation experiments.

There are 6 influencing factors: (1) inoculum concentration, (2) the volume of liquid, (3) tem-

perature, (4) PH value, (5) yeast concentration and (6) amylaceum concentration. Each influ-

encing factor has 3 possible values, which is shown in Table 1.

Using the simulation result of γ, we can obtain the designed experiments as follows.

• γ1 = {{5g/L, 75ml, 32.5˚C, 7, 4g/L, 70g/L}, {6g/L, 50ml, 30˚C, 6, 8g/L, 45g/L}, {7g/L, 100ml,
27.5˚C, 8, 6g/L, 85g/L}}.

• γ2 = {{5g/L, 100ml, 30˚C, 8, 6g/L, 45g/L}, {6g/L, 75ml, 27.5˚C, 7, 4g/L, 85g/L}, {7g/L, 50ml,
32.5˚C, 6, 8g/L, 70g/L}}.

• γ3 = {{5g/L, 50ml, 27.5˚C, 6, 8g/L, 85g/L}, {6g/L, 100ml, 32.5˚C, 8, 6g/L, 70g/L}, {7g/L, 75ml,
30˚C, 7, 4g/L, 45g/L}}.

Fig 1. The flowchart of the algorithm.

https://doi.org/10.1371/journal.pone.0186853.g001
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Fig 2. The starting page of the simulation software.

https://doi.org/10.1371/journal.pone.0186853.g002

Fig 3. An example with inputs m = 6, n = 3, Input 11 be 8, Input 12 be 10 and Input 13 be 0.001.

https://doi.org/10.1371/journal.pone.0186853.g003

Table 1. Possible values of the influencing factors.

inoculum concentration the volume of liquid temperature PH value yeast amylaceum

5g/L 50ml 27.5˚C 6 4g/L 45g/L

6g/L 75ml 30˚C 7 6g/L 70g/L

7g/L 100ml 32.5˚C 8 8g/L 85g/L

https://doi.org/10.1371/journal.pone.0186853.t001
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The similarity of each pair of γi and γj with i 6¼ j and i, j 2 {1, 2, 3} is less than 0.001. The bal-

ance measure of the designed experiments is 1/3.

Conclusion

In this work, we propose a novel method for multifactorial experiments design, where the

generated concept of “balance” in combinatorial design theory is considered. In our method,

balance and similarity are both used to select the experiments which should be done for condi-

tions observation, with which we can get balanced experimental data from the experiments

selected that covers all the influencing factors of experiments for further processing.

Since there is theoretical support in combinational design theory to ensure the exists of cer-

tain combination of parameters, our algorithm just starts from a random point and proceeds

to find the possible designed experiments. By checking the similarity and balance designed

experiments, we can choose to repeat the algorithm or output the desired experimental design.

In complexity theory, starting from a random point would bring some extra computation con-

sumption. It is of interest to design intelligent algorithms, such as GA with fitness function

relating the similarity and balance, to improve the performance of our method.

For further research, some newly developed evolution computing models and algorithms,

see e.g. [35–43], can be used to improve the balanced data sampling method. As well learning

and training requests on the data for neural-like computing models and spiking neural net-

works [14, 44] should be considered in design balanced templates. In DNA computing, it

needs to design DNA probes and DNA sequences [45–48], in which balanced template might

provide useful tools. As well, some recently developed data processing and mining methods,

such as the speculative approach to spatial-temporal efficiency for multi-objective optimiza-

tion in cloud data and computing [49], privacy-preserving smart similarity search methods in

simhash over encrypted data in cloud computing [49], k-degree anonymity with vertex and

edge modification algorithm [50], kernel quaternion principal component analysis for object

recognition [51], might be used for optimizing experiment design with intelligent methods.
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