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SUMMARY

Resilience and vulnerability to neuropsychiatric disorders are linked to molecular changes 

underlying excitability that are still poorly understood. Here, we identify glycogen-synthase kinase 

3β (GSK3β) and voltage-gated Na+ channel Nav1.6 as regulators of neuroplasticity induced by 

environmentally enriched (EC) or isolated (IC) conditions—models for resilience and 

vulnerability. Transcriptomic studies in the nucleus accumbens from EC and IC rats predicted low 

levels of GSK3β and SCN8A mRNA as a protective phenotype associated with reduced 

excitability in medium spiny neurons (MSNs). In vivo genetic manipulations demonstrate that 

GSK3β and Nav1.6 are molecular determinants of MSN excitability and that silencing of GSK3β 
prevents maladaptive plasticity of IC MSNs. In vitro studies reveal direct interaction of GSK3β 
with Nav1.6 and phosphorylation at Nav1.6T1936 by GSK3β. A GSK3β-Nav1.6T1936 competing 

peptide reduces MSNs excitability in IC, but not EC rats. These results identify GSK3β regulation 

of Nav1.6 as a biosignature of MSNs maladaptive plasticity.

In Brief

Scala et al. show how vulnerability to reward-related behaviors associates with maladaptive 

plasticity of medium spiny neurons through phosphorylation of the voltage-gated Na+ channel 

Nav1.6 by the enzyme GSK3β.
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INTRODUCTION

The ability of a neuron to fire action potentials is an intrinsic property of the cell that 

depends on the configuration of ion channels. Neurons adapt their firing by activating or 

inhibiting specific signaling mechanisms in response to the environment, setting cellular 

landscapes that can ultimately protect against or predispose to a disease state (Beck and 

Yaari, 2008; Camp, 2012). Medium spiny neurons (MSNs) in the nucleus accumbens (NAc) 

are a highly vulnerable population of cells whose number, morphology, and pattern of firing 

have been associated with depression-like behaviors, addiction, and neurodegeneration 

(Bessa et al., 2013; Francis et al., 2015; Kourrich et al., 2015; Roselli and Caroni, 2015; 

Wallace et al., 2009). However, how maladaptive changes of neuronal firing in these cells 

are mechanistically linked to modifications of ion channels is poorly understood.

We are investigating differential rearing that promotes either resilience (enriched condition) 

or vulnerability (isolated condition) to reward-related neuropsychiatric disorders as a way to 

identify mechanisms underlying ion channel plasticity of MSNs and provide targets for 

preventive or disease modifying therapies. Environmental enrichment is a non-drug, non-

genetic, and non-surgical manipulation that produces resilience to addiction-related and 

depression-like behaviors in rodents (Green et al., 2002, 2010; Lehmann and Herkenham, 

2011; Russo et al., 2012). Compared to rats reared in an isolated condition (IC), rats reared 

during a critical developmental period (P; 21–50) in an enriched condition (EC), with 

constant access to novelty, social contact, and exercise, show a protective behavioral 

phenotype for addiction and depression largely encoded by coordinated changes in gene 

expression of CREB signaling, ΔFosB, and the retinoic acid pathway (Green et al., 2002, 

2003, 2010; Lichti et al., 2014; Zhang et al., 2014, 2016a, 2016b) in the NAc shell.

Recent proteomic and transcriptomic studies (Fan et al., 2013a, 2013b; Lichti et al., 2014; 

Zhang et al., 2016b) have pointed to other targets previously associated with synaptic wealth 

and neuroplasticity, such as Wnt/β-catenin (Ataman et al., 2008; Chen et al., 2006), brain-

derived neurotrophic factor (BDNF) (Graham et al., 2007; Namekata et al., 2012), and D1, 

D2, and D3 dopamine receptors (Dunleavy et al., 2013; Lebel et al., 2009; Salles et al., 

2013; Urs et al., 2012), as targets of behavioral resilience to addiction and depression-like 

disorders, indicating that the rearing environment might directly affect electrical properties 

of neurons. The objective of the present work is to identify molecular mechanisms 

underlying adaptation of neuronal firing in response to resilience and vulnerable states of 

MSNs in the NAc. Here, we investigated the role of GSK3β, a center stage kinase in the 

biology and pharmacology of mood disorders (Jope and Roh, 2006; Li and Jope, 2010), in 

regulating intrinsic firing of MSNs in the NAc and report a molecular mechanism responsive 

to the EC/IC paradigm that depends upon GSK3β and the voltage-gated Na+ channel Nav1.6 

in MSNs. Premise for this mechanism is supported by in vitro evidence of protein:protein 

interaction, phosphorylation and functional regulation of Nav1.6 by GSK3β. In native 

conditions, a peptide that uncouples GSK3β from the Nav1.6 target and prevents Nav1.6 

T1936 phosphorylation restores maladaptive firing of MSNs in IC rats (i.e., vulnerable 

condition) while sparing effects of firing in EC rats (i.e., protected condition). These results 

might provide insights into the mechanisms of cell vulnerability in the context of reward-

related neuropsychiatric disorders.
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RESULTS

The Effect of Environmental Enrichment and Social Isolation on NAc Transcriptome and 
MSNs Neuronal Excitability

To uncover molecular mechanisms controlling intrinsic excitability in the reward circuit, we 

interrogated a previous large-scale differential transcriptomic dataset derived from the NAc 

of EC or IC rats (Zhang et al., 2016b). An IPA (ingenuity pathway analysis) bioinformatic 

analysis revealed a significant decrease of the canonical PI3K/Akt/GSK3β signaling 

pathway in EC compared to IC rats (Figure 1A, -log (p value) = 4.01). Furthermore, SCN8A 

mRNA, which codes for the Nav1.6 α subunit, was found to be decreased in the 

aforementioned pathway (Figure 1A). The degree of mRNA regulation is shown in the inset 

of Figure 1A. A GSEA (gene set enrichment analysis) also identified regulation of the 

Reactome_PI3K_AKT_Activation pathway in EC versus IC rats (Figure 1B, normalized 

enrichment score [NES] = −1.59, p = 0.038). Significant changes in GSK3β, but not 

SCN8A, mRNA level in EC compared to IC rats were also found with RT-PCR (Figure S1). 

Because GSK3β regulates neuronal excitability (Hsu et al., 2015) and has direct effects on 

Nav channels (James et al., 2015), we postulated that GSK3β and Nav1.6 might be part of a 

pathway that controls plasticity of MSNs in response to vulnerability and resilience. To test 

this, we characterized intrinsic firing and persistent sodium current (INaP, a functional 

signature of NAc MSNs that controls intrinsic excitability) in MSNs from IC and EC rats. 

Whole-cell patch-clamp recordings in acute NAc slices revealed that MSNs from EC rats 

exhibited a marked decrease in neuronal excitability (Figures 1D and 1E) when compared to 

MSNs from IC rats (Figures 1C and 1E). Input-output curves showed a dramatic reduction 

in intrinsic firing across all stimulating current steps, resulting in 17.6 ± 1.8 evoked action 

potentials (APs; at 180 pA current step) in IC (n = 20) versus 9.7 ± 1.2 evoked APs (n = 27) 

in EC MSNs (p < 0.005 with Student’s t test; Figure 1E). Voltage-clamp recordings showed 

a decrease in the amplitude of ramp-induced INaP in EC (Figure 1G) compared to that of IC 

(Figure 1F) rats. Normalized INaP for EC MSNs was −2.7 ± 0.4 pA/pF, n = 17 versus −4.7 

± 0.9 pA/pF, n = 11 in IC MSNs (p < 0.05, Mann-Whitney test, Figure 1H). Thus, isolation 

and enrichment differ with respect to intrinsic firing and INaP of MSNs.

MSNs Intrinsic Firing and Persistent Na+ Current Are Regulated by GSK3 Level and 
Activity

To investigate a possible mechanistic link between the GSK3β signaling pathway and 

Nav1.6, we utilized a recently designed and validated AAV-shGSK3β-GFP vector (Crofton 

et al., 2017) and a previously validated AAV-shControl-GFP vector that does not target any 

known rat transcript (Benzon et al., 2014; Crofton et al., 2017; Hommel et al., 2003; Zhang 

et al., 2016b) in order to knock down GSK3β in the NAc of rats in standard pair-housing 

conditions. After stereotaxic injection of the AAV-shGSK3β-GFP or AAV-shControl-GFP 

vectors, intrinsic firing and INaP in MSNs were studied between the two groups using whole-

cell patch-clamp recordings. We found a significant decrease in the number of evoked APs 

in AAV-shGSK3β-GFP-positive NAc MSNs compared to AAV-shControl (Figures 2A–2C). 

The effect was consistent across almost the entire input-output curve (Figure 2C) with an 

average number of APs of 19.2 ± 1.6 in AAV-shControl (n = 24) compared to 10.8 ± 1.2 APs 

(n = 31) in AAV-shGSK3β-GFP positive NAc MSNs at a representative 180 pA current step 
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(p < 0.01 with Student’s t test, Figure 2C). This reduction in intrinsic firing was 

accompanied by a significant decrease in INaP amplitude in AAV-shGSK3β MSNs (Figure 

2E) compared to AAV-shControl MSNs (Figure 2D). The normalized INaP in AAV-shControl 

MSNs was −4.4 ± 0.6 pA/pF (n = 9) versus −2.3 ± 0.2 pA/pF (n = 8) in AAV-shGSK3β 
MSNs (p < 0.05, Student’s t test; Figure 2F). We then postulated that if silencing of GSK3β 
reduced MSN activity, then increased expression of GSK3 might lead to opposing 

phenotypes. To test this hypothesis, we conducted parallel current and voltage clamp studies 

in the GSK3α21A/21A/β/9A/9A knockin mouse (GSK3-KI), in which GSK3 lacks inhibitory 

phosphorylation by Akt, resulting in a constitutively high level of GSK3 enzyme activity. 

This animal model has been used to recapitulate behavioral traits of mood disorders 

including depression (McManus et al., 2005; Polter et al., 2010). In MSNs of GSK3-KI 

mice, both firing and INaP were significantly increased compared to wild-type control 

animals (Figures 2G–2L). The number of APs at current step of 180 pA in wild-type MSNs 

was 21.6 ± 1.2 (n = 9) versus 31.8 ± 2.1 APs (n = 8) in GSK3-KI MSNs (p < 0.005; 

Student’s t test, Figure 2I); normalized INaP in wild-type MSNs was −2.5 ± 0.5 pA/pF (n = 

6) versus −5.4 ± 0.6 pA/pF (n = 8) in GSK3-KI MSNs (p < 0.01; Student’s t test; Figure 

2L). Thus, changes in the levels of GSK3 activity in MSNs leads to coupled, bidirectional 

modulation of intrinsic firing and INaP. We then posited whether in vivo silencing of GSK3β 
would be sufficient to prevent maladaptive firing and increase in INaP of MSNs from IC rats. 

To test this hypothesis, AAV-shGSK3β-GFP or AAV-shControl-GFP vectors were 

stereotaxically injected in rats at the beginning of the IC protocol. We found a significant 

decrease in the number of evoked APs in MSNs of IC rats injected with AAV-shGSK3β 
compared to AAV-shControl (Figures 3A–3C). The effect was consistent and significant 

across the input-output curve starting from 100 pA current step (Figure 3C) with an average 

number of APs of 24.4 ± 1.6 in IC AAV-shControl MSNs (n = 22) compared to 16.1 ± 2.2 

APs (n = 18) in IC AAV-shGSK3β-GFP positive MSNs at a representative 180 pA current 

step (p < 0.01 with Student’s t test, Figure 3C). Along with reduction in intrinsic firing, we 

also found a significant decrease in INaP amplitude in IC AAV-shGSK3β MSNs (Figure 3E) 

compared to IC AAV-shControl MSNs (Figure 3D). The normalized INaP in IC AAV-

shControl MSNs was −2.5 ± 0.1 pA/pF (n = 4) versus −1.3 ± 0.2 pA/pF (n = 5) in IC AAV-

shGSK3β MSNs (p < 0.01, Student’s t test; Figure 3F). We concluded that GSK3β is a key 

determinant of plasticity of intrinsic firing in MSNs of the NAc.

Nav1.6 Is a Molecular Determinant of MSNs Intrinsic Firing and INaP

If GSK3 and Nav1.6 are part of a converging molecular mechanism, then silencing SCN8A 

in MSNs should mimic the effects of AAV-shGSK3β. Confocal imaging confirmed 

expression of Nav1.6 in the NAc and its localization at the axon initial segment of neurons 

that visually corresponded to MSNs (Figures 4A and 4B) (Ali et al., 2018). Nav1.6 co-

localized with Ankirin G (Ank)—a marker of the axon initial segment with a high degree of 

green/red channel correlation (Manders’ overlap coefficient = 0.8030 ± 0.0466, n = 20 

axonal initial segments, Figure 4C). Nav1.6 silencing in NAc was achieved using a newly 

designed and validated AAV-shSCN8A-GFP vector. As hypothesized, a significant decrease 

in intrinsic firing and INaP amplitude was found in MSNs expressing AAV-shSCN8A 

compared to AAV-shControl (Figures 4D–4I). At a representative 180 pA current step, the 

number of APs in AAV-shControl expressing MSNs was 19.2 ± 1.6 (n = 24) versus 10.9 
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± 2.4 APs (n = 19) in AAV-shSCN8A-GFP (p < 0.01; Student’s t test; Figure 4F), while 

normalized INaP was −4.4 ± 0.6 pA/pF (n = 9) in AAV-shControl versus −1.9 ± 0.1 pA/pF (n 

= 7) in AAV-shSCN8A expressing MSNs (p < 0.05; Student’s t test; Figure 4I).

We showed that INaP current is significantly reduced upon silencing of GSK3β, but these 

changes may be occurring indirectly as a result of long-term homeostatic remodeling of the 

NAc circuitry (AAV-shGSK3β and AAV-shControl were injected 2.5–3 weeks prior to 

recordings to allow for maximal transduction and knock down in neurons) rather than a 

direct functional modulation of Nav1.6 by GSK3β. To address this, we tested whether a 

brief (1–2 hr) pharmacological treatment of wild-type NAc slices with specific inhibitors of 

the Akt-GSK3 signaling pathway, such as Akt inhibitor, triciribine (30 μM) or GSK3 

inhibitor, CHIR99021 (2 μM), could mimic the effect of GSK3-KI or in vivo GSK3β genetic 

silencing in MSNs. We found that the triciribine-treated group showed a significant increase 

in MSNs firing compared to DMSO control group (Figures S2A and S2B) with 16.2 ± 0.6 (n 

= 23) APs in control versus 21.5 ± 0.9 APs (n = 12) in triciribine-treated cells (p < 0.005; 

ANOVA followed by Dunnett’s multiple comparisons test at injected current step 125 pA; 

Figure S2D). Accordingly, normalized INaP for DMSO-treated MSNs was −2.9 ± 0.3 pA/pF 

(n = 13) versus −4.3 ± 0.7 pA/pF (n = 9) for triciribine-treated MSNs (p < 0.05; ANOVA 

followed by Dunnett’s multiple comparisons test; Figures S2E, S2F, and S2H). As expected, 

a marked decrease in evoked neuronal firing was found in MSNs in the CHIR99021-treated 

group compared to DMSO (Figures S2A and S2C) with 16.2 ± 0.6 (n = 23) APs in control 

versus 12.2 ± 1.0 APs (n = 17) in CHIR99021-treated MSNs (p < 0.01 with ANOVA 

followed by Dunnett’s multiple comparisons test at injected current step 125 pA; Figure 

S2D). Similarly, normalized INaP for DMSO-treated MSNs was −2.9 ± 0.3 pA/pF (n = 13) 

versus −2.0 ± 0.3 pA/pF (n = 10) for CHIR99021-treated MSNs (p < 0.05; Kruskal-Wallis 

with uncorrected Dunn test; Figures S2E, S2G, and S2H).

In Vitro Studies of Functional Interaction between Nav1.6 and GSK3

Combined, the aforementioned results provide strong evidence for GSK3β and Nav1.6 as 

essential determinants of intrinsic firing and neuronal excitability in MSNs but do not 

provide a mechanistic model for how the two proteins might functionally interact. In western 

blot analyses, we found that the total level of GSK3β and Nav1.6 in the NAc were not 

significantly different in EC compared to IC rats (Figure S3), suggesting that functional 

changes in the activity of the two proteins might contribute to the observed phenotypes. To 

test this hypothesis, we isolated Nav1.6-encoded transient currents from HEK293 cells 

stably expressing the Nav1.6 channel α subunit using whole-cell patch clamp techniques. 

We found that cells treated for 1–2 hr with either GSK3 inhibitor XIII (30 μM) or 

CHIR-99021 (20 μM) exhibited a significantly reduced peak transient current (INa
+) density 

compared to DMSO controls (Figures 5A–5D). At −10 mV, DMSO control cells exhibited a 

peak INa
+ density of −72.6 ± 6.5 pA/pF (n = 18) that was significantly reduced (p < 0.01; 

one-way ANOVA post hoc Bonferroni test) to −44.9 ± 5.5 pA/pF (n = 12) and −34.7 ± 4.8 

pA/pF (n = 12) with GSK3 inhibitor XIII or CHIR99021 treatment, respectively (Figure 5E). 

Treatments had no effect on V½ of INa
+ activation but significantly shifted V½ of steady-

state inactivation leftward, indicating effects of the inhibitors on Nav1.6 channel availability 

(Table S1). To further validate our in vitro studies, HEK293-Nav1.6 cells were transfected 
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with either scrambled small interfering RNA (siRNA) or GSK3-siRNA (Figures 5F–5H). 

This treatment confirmed a reduced peak INa
+ density and leftward shift in V½ of steady-

state inactivation in the treated group compared to scrambled siRNA control (Figure 5I; 

Table S1). We then posited that overexpression of GSK3β in these cells could exert an effect 

on Nav1.6 function leading to opposite phenotypes to the ones observed upon silencing of 

the kinase. Transient overexpression of a GSK3β-IRES-GFP construct (James et al., 2015) 

increased peak INa
+ density compared to cells transfected with IRES-GFP control (Figures 

S4A–S4D). At −10 mV, IRES-GFP cells exhibited a peak INa
+ density of −40.6 ± 8.3 pA/pF 

(n = 15) that was significantly increased in GSK3β-IRES-GFP cells to −97.1 ± 11.4 pA/pF 

(n = 13, p < 0.01; Student’s t test; Figure S4D). Overexpression of GSK3β-IRES-GFP also 

led to a significant shift in the V½ of INa
+ of activation leftward and changes in the slope of 

steady-state inactivation that could be attributed to increased channel activity and availability 

(Table S1).

The intracellular C-terminal tail of Nav channels is rich in predicted and validated 

phosphorylation sites and is a well-known region for protein:protein interactions (Berendt et 

al., 2010; Onwuli and Beltran-Alvarez, 2016). Thus, we posited that the Nav1.6 C-terminal 

tail might include a substrate of GSK3β and that the two molecules might be part of a 

protein complex. Direct binding of these two proteins as well as phosphorylation of the 

Nav1.6 C-terminal tail by GSK3 could mediate the functional interaction between GSK3β 
and the Nav1.6 channel. The premise for direct phosphorylation was based on our previous 

work showing that the amino acid residue T1966 of the similar Nav1.2 C-tail is a GSK3 

target (James et al., 2015) and that the same putative GSK3 phosphorylation site residue is 

conserved in the Nav1.6 C-tail sequence at T1936. To assess direct binding, we used surface 

plasmon resonance (SPR) of purified proteins and found that GSK3β binds to the C-terminal 

region of Nav1.6 at a nanomolar range (Figure 5J) with an estimated binding affinity (KD) of 

165.4 nM (Figure 5K). To verify phosphorylation, a 19-mer Nav1.6 C-tail peptide fragment 

1932-KKESTPSTASLPSYDSVTK-1950 surrounding T1936 was used for in vitro 
phosphorylation studies and post hoc LC-MS/MS validation. Acquired MS2 spectra 

unambiguously demonstrated phosphorylation of the trypsinized fragment 1934-

ESTPSTASLPSYDSVTK-1950 at T1936 (Figure 5L), confirming the C-tail of Nav1.6 as a 

GSK3 phosphorylation site.

Nav1.6-Based Peptide Modulates Neuronal Excitability in IC and GSK3 KI MSNs with No 
Effect in EC MSNs

We next sought to determine whether the T1936 phosphorylation at Nav1.6 C-tail by 

GSK3β is the mechanism by which MSNs differentially responded to the IC and EC 

paradigms. To address this, NAc slices from EC or IC rats were treated for 1–2 hr with 10 

μM 19-mer wild-type (WT-pep) or T1938A mutant (Mut-pep) Nav1.6 C-tail peptides 

conjugated with rhodamine at their C termini. We found that the WT-pep (Figure 6B), but 

not its Mut-pep (Figure 6A), reduces neuronal excitability and persistent INaP in IC MSNs. 

Specifically, the number of evoked action potentials at 180 pA current step in IC MSNs 

treated with WT-pep was 13.3 ± 1.9, n = 11 versus 19.5 ± 1.3 APs, n = 12 in IC MSNs 

treated with Mut-pep (p < 0.05 with Student’s t test, Figure 6C). Similarly, INaP amplitude 

was also significantly reduced in IC MSNs treated with WT-pep (Figure 6E) compared to IC 
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MSNs treated with Mut-pep (Figure 6D). Normalized INaP in IC MSNs treated with WT-pep 

was −1.6 ± 0.2 pA/pF, n = 8 versus −3.6 ± 0.8 pA/pF, n = 7, in IC MSNs treated with Mut-

pep (p < 0.05 with Student’s t test, Figure 6F). As additional validation of the peptides’ 

efficacy both WT-pep and Mut-pep were compared to a scrambled peptide (Scrmb-pep), and 

MSNs excitability and INaP were measured. Experiments with Scrmbpep further validated 

the capability of WT-pep to effectively reduce both MSN firing and INaP, and validated the 

ineffectiveness of the Mut-pep in modulating neuronal excitability (Figures S5A–S5H).

Consistently, we found a significant decrease in firing of GSK3-KI mice NAc MSN treated 

with WT-pep (Figure 6H) compared to Mut-pep (Figure 6G). For instance, the number of 

APs at a current step of 180 pA in GSK3-KI MSNs treated with WT-pep was 18.7 ± 2, n = 7 

versus 27.5 ± 1.6 APs, n = 6 in GSK3-KI MSNs treated with Mut pep (p < 0.01 with 

Student’s t test, Figure 6I). Furthermore, we found a significant decrease in normalized INaP 

in GSK3-KI MSNs treated with WT-pep (Figure 6K) compared to GSK3-KI MSNs treated 

with Mut-pep (Figure 6J). Normalized INaP for GSK3-KI MSNs treated with WT-pep was 

−2.4 ± 0.3 pA/pF, n = 6 versus −3.9 ± 0.5 pA/pF, n = 4 for GSK3-KI MSNs treated with 

Mut-pep (p < 0.05 with Student’s t test, Figure 6L). We next tested whether the same 

treatment with the C-tail Nav1.6 19-mer mimetic peptide would be effective in modifying 

adaptive firing observed in EC MSNs (Figures 1D and 1E). Notably, we found that neither 

Mut-pep (Figure 6M) nor WT-pep (Figure 6N) were able to modify neuronal excitability and 

persistent INaP in EC MSNs. Specifically, the number of evoked action potentials at 180 pA 

current step in EC MSNs treated with WT-pep was 7.3 ± 1.2, n = 10 versus 5.4 ± 1.4 APs, n 

= 11 in EC MSNs treated with Mut-pep (p = 0.3 with Student’s t test, Figure 6O). Similarly, 

INaP amplitude was also not significantly affected in EC MSNs treated with WT-pep (Figure 

6Q) compared to EC MSNs treated with Mut-pep (Figure 6P). Normalized INaP in EC MSNs 

treated with WT-pep was −2.3 ± 0.2 pA/pF, n = 8 versus −2.5 ± 0.6 pA/pF, n = 7, in EC 

MSNs treated with Mut-pep (p = 0.72; Student’s t test, Figure 6R).

DISCUSSION

Previous studies have established the validity of the EC/IC paradigm as a model of resilience 

or vulnerability toward depression-and addiction-related behavior (Green et al., 2002, 2010; 

Zhang et al., 2014). Here, we used the EC/IC paradigm to investigate mechanisms 

underlying neuroadaptive changes at the cellular level, focusing specifically on molecular 

mechanisms that could account for adaptive and maladaptive plasticity of intrinsic firing of 

MSNs in the NAc. Transcriptomic analysis of NAc in EC and IC rats revealed that resilient 

rats (ECs) had lower levels of mRNA coding for GSK3β and Nav1.6 channel compared to 

the vulnerable rats (ICs). Using a combination of in vitro and ex vivo studies and in vivo 
genetic silencing we show a form of neuroadaptation of intrinsic firing in NAc MSNs that 

develops in response to the EC/IC manipulation and can be prevented by GSK3β silencing. 

Under these behavioral paradigms, we observed a significant decrease in NAc MSNs 

intrinsic excitability in EC compared to IC animals that we linked to GSK3β-dependent 

functional modulation of firing through the Nav1.6 channel. This is supported by our 

mechanistic studies that uncovered a direct interaction between GSK3β and the Nav1.6 C-

tail, GSK3β-dependent phosphorylation of Nav1.6 at T1936, and GSK3β-dependent 

modulation of Nav1.6-mediated currents and channel availability.
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Phosphorylation has been implicated as a key regulator of Nav channels activity (Berendt et 

al., 2010; Scheuer, 2011). For example, cyclic AMP (cAMP)-dependent kinase (PKA), 

protein kinase C (PKC) and casein kinase 2 (CK2) all modulate Nav channel gating, 

availability, and trafficking through direct interaction or via binding to specific signaling 

complexes (Bréchet et al., 2008; Hien et al., 2014; Liu et al., 2010; Scheuer and Catterall, 

2006; Tan et al., 2014; Wu et al., 2012). Specifically in striatal MSNs, phosphorylation via 

cAMP-PKA regulates Nav currents with opposite outcomes in D1-versus D2-type MSNs 

(Hu et al., 2005; Nishi et al., 1997; Schiffmann et al., 1995, 1998). The vast majority of 

these functionally relevant phosphorylation sites are present within the intracellular loops of 

Nav channels (Baek et al., 2011; Cantrell and Catterall, 2001; Cantrell et al., 2002). Here, 

we discovered a GSK3β phosphorylation site of Nav1.6 at the C-tail highlighting the 

importance of this intracellular domain in regulating channel function. Furthermore, we 

present biophysical evidence that GSK3β directly binds to Nav1.6 C-tail that is a new 

finding in light of no previously described direct interactions between GSK3β and CNS ion 

channels.

We hypothesize that GSK3β is a part of a signaling complex critical for Nav1.6 channel 

internalization and function. GSK3β binds to Nav1.6 C-tail and phosphorylates it at the 

T1936 residue—a site upstream of the PPxY recognition motif that allows Nav1.6 to be 

internalized through the NEDD4-2 ubiquitin-system (Gasser et al., 2010). It is possible that 

the reduction in Na+ current amplitudes we observed following silencing or pharmacological 

inhibition of GSK3 in Nav1.6-HEK293 cells and MSNs results from a cross-talk between 

GSK3β phosphorylation and NEDD4-dependent ubiquitination. In addition to Na+ current 

amplitudes, we show that inhibition of GSK3 (by pharmacological or siRNA means) impacts 

channel availability shifting the V1/2 of steady-state inactivation to more hyperpolarized 

values. This phenotype might also result from signaling cross-talk between GSK3β and 

other interactors at the channel C-tail such as calmodulin or intracellular fibroblast growth 

factor 14 (FGF14), which are both constituents of the Nav channel interactome in the brain 

(Wildburger et al., 2015), bind to the Nav1.6 C-tail (Reddy Chichili et al., 2013; Shavkunov 

et al., 2013), and regulate steady-state inactivation of the channel (Herzog et al., 2003; 

Laezza et al., 2007, 2009; Shavkunov et al., 2013; Yan et al., 2017). In the case of FGF14, 

cross-talk is supported by recent data demonstrating that GSK3β phosphorylates FGF14 at 

S226 (Hsu et al., 2017), corroborating the idea that GSK3β might be part of a multilayer 

signaling complex that controls Nav1.6 channel function directly and through 

protein:protein interactions.

We have previously reported that GSK3β phosphorylates Nav1.2 at T1966, which 

corresponds to the T1936 residue of Nav1.6 (James et al., 2015). While GSK3β inhibition 

enhances Nav1.2 current density and channel availability (James et al., 2015), it has the 

opposite effects on Nav1.6 currents (Figure 5). Previous studies have shown that Nav1.6 and 

Nav1.2 channels are differentially distributed in the brain and functionally specialized at the 

subcellular level (Chen et al., 2008). Nav1.2 is enriched at the proximal region of the AIS 

and throughout dendrites contributing to action potential backpropagation (Hu et al., 2009) 

that is critical for spike-time-dependent plasticity, while Nav1.6 is expressed more distally at 

the AIS, mediating forward propagation of action potentials and repetitive firing (Osorio et 

al., 2010; Royeck et al., 2008). Therefore, it is conceivable that GSK3β could promote 
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sustained forward firing through Nav1.6 stimulation, while changing the rules of induction 

of spike-time-dependent plasticity triggered by Nav1.2-mediated back-propagating action 

potentials. This bi-directional and isoform-specific modulation of Na+ currents could be part 

of a global regulation of neuronal homeostasis that builds on known roles of GSK3 in 

maintaining neuronal polarity and modulating synaptic transmission and turnover of 

synaptic spines (Hur and Zhou, 2010; Kim et al., 2011; Ochs et al., 2015).

In this study, we demonstrate that Nav1.6 and GSK3β are determinants of neuronal 

excitability in MSNs. Nav channels were among the first discovered downstream targets of 

different G-protein coupled receptors involved in the regulation of MSN excitability 

including dopaminergic D1- and D2-receptors (Carrillo-Reid et al., 2009; D’Ascenzo et al., 

2009; Hu et al., 2005; Schiffmann et al., 1995; Surmeier and Kitai, 1993). These receptors 

modulate fast transient and persistent Na+ currents that control neuronal excitability by 

altering action potential threshold, repetitive firing, bistable properties, and synchronous 

network activity of striatal MSNs (Carrillo-Reid et al., 2009; D’Ascenzo et al., 2009; 

Schiffmann et al., 1995). It is conceivable that functional modulation of Nav1.6 by GSK3β 
would directly impact these MSNs properties exerting powerful control over the entire NAc 

circuit.

Our studies show that in vivo genetic silencing of either Nav1.6 or GSK3β leads to 

suppression of INaP, a signature of the Nav1.6 channel, and intrinsic excitability in MSNs. 

These phenotypes were consistent with short exposure of MSNs to GSK3 inhibitors, 

suggesting that the effects induced by inhibition of the kinase are short-term and mediated 

by direct regulation at the protein level (as opposed to long-term indirect homeostatic 

changes). Opposite phenotypes (increased INaP and intrinsic firing) were observed in MSNs 

treated with the Akt inhibitor triciribine or MSNs from the GSK3 KI animal model that 

constitutively expresses an active form of GSK3. These bi-directional changes seen in AAV-

sh-GSK3β and in the knock in animal model as well as by means of pharmacological 

inhibition of Akt-GSK3 signaling pathway are evidence of pathway specificity conserved 

across different models. In addition, recent studies show that GSK3β silencing suppresses 

intrinsic firing of tonically active neurons (TAN) in the NAc, presumably driven by loss of 

IHCN currents, and with no phenotypes attributable to Nav channel deficits (Crofton et al., 

2017). Taken together, these findings support the notion that despite being ubiquitously 

expressed, GSK3β exerts a direct, cell-type-specific effect on neuronal firing (Scala et al., 

2015) that could potentially open new avenues for drug discovery efforts targeting this 

enzyme.

Understanding the molecular mechanisms of MSNs resilience and vulnerability is critical for 

early disease intervention and prevention. Intrinsic excitability is an early marker of 

vulnerability in response to alcohol and drug abuse (Marty and Spigelman, 2012; Mu et al., 

2010), chronic stress (Francis et al., 2015), and prolonged social isolation (Green et al., 

2010; Wallace et al., 2009). Previous studies identified signaling pathways that are linked to 

MSNs resilience and vulnerability to social defeat stress (Christoffel et al., 2011; Francis et 

al., 2017; Vialou et al., 2010; Wilkinson et al., 2011). Yet, the understanding of how changes 

in gene expression translate into functional outcomes of MSNs is still limited, especially for 

both social isolation and environmental enrichment paradigms. In this study, we show that 

Scala et al. Page 10

Cell Rep. Author manuscript; available in PMC 2019 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the GSK3-Nav1.6 complex contributes to MSN excitability under normal conditions (in 

pair-housed wild-type rodents) and to mal-adaptive firing that develops in IC conditions and 

can be prevented by in vivo GSK3β silencing. A dominant-negative Nav1.6-T1936 peptide 

restores aberrant activity (INaP and firing) in MSNs from IC and GSK3 KI animals, but had 

no effects in EC conditions, suggesting that high level of phosphorylation at T1936 is a bio-

signature of MSNs vulnerability. Overall, limiting GSK3 phosphorylation of T1936 might 

represent a strategy to prevent maladaptive firing and drive resilience of MSNs at early 

disease stages associated with the dopamine reward pathway (Beaulieu, 2012; Del’Guidice 

and Beaulieu, 2010; Freyberg et al., 2010; Golpich et al., 2015; Li and Gao, 2011).

EXPERIMENTAL PROCEDURES

Detailed experimental procedures for molecular biology, cell culture, in vivo and in vitro 
protein expression knock down, protein biochemistry and biophysics, peptide synthesis, and 

mass spectrometry are provided in the Supplemental Experimental Procedures, as well as 

expanded methods for electrophysiology.

Animals

Rats—Male Sprague-Dawley rats (Harlan Laboratories, Houston), 21 days of age, were 

divided into two conditions (isolated condition and enriched condition), n = 12. For the IC 

group, the rats were separated one rat per cage in standard polycarbonate cages with no 

access to social contact or novelty, whereas EC rats were housed together with novel toys 

changed every day. In addition, some experiments were done in pair-housed rats. The pair-

housing condition was chosen as an intermediate condition (Crofton et al., 2015), thus, 

regulation could be seen in either direction, and to increase relevance beyond the differential 

rearing literature. Food and water were freely available for rats and all rats were maintained 

in a controlled environment (temperature, 22°C; relative humidity, 50%; and 12 hr light/dark 

cycles) for 30 days prior to experiments.

Mice—A colony of GSK3α21A/21A/β/9A/9A (provided by Dr. Dario Alessi, College of Life 

Sciences, University of Dundee, UK) was maintained at the University of Texas Medical 

Branch vivarium; 1- to 3-month-old GSK3α21A/21A/β/9A/9A and age-matched C57/BL6J 

control male mice were used in this study. Most of the experiments involving animals were 

performed at the University of Texas Medical Branch, except for GSK3 inhibitor experiment 

in rat brain slices, which was conducted at the Catholic University in Rome. The University 

of Texas Medical Branch operates in compliance with the United States Department of 

Agriculture Animal Welfare Act, the NIH Guide for the Care and Use of Laboratory 

Animals, and American Association for Laboratory Animal Science, Institutional Animal 

Care and Use Committee-approved protocols. The Ethics Committee of the Catholic 

University complied with Italian and USA Ministry of Health guidelines and national laws, 

and European Union guidelines on animal research. All surgical procedures and experiments 

conformed to the NIH Guide for the Care and Use of Laboratory Animals and approved by 

The University of Texas Medical Branch Institutional Animal Care and Use Committee.
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Electrophysiology

Whole Cell Patch Clamp in Slices—Brain slices were transferred to a submerged 

recording chamber and continuously perfused with regular artificial cerebrospinal fluid 

(aCSF) bubbled with 95% O2 and 5% CO2 (pH 7.4). The flow rate was kept at 1.5 mL/min, 

and bath temperature was maintained at 30°C–32°C by an inline solution heater and 

temperature controller (TC-344B, Warner Instruments, Hamden, CT, USA). Whole-cell 

patch-clamp recordings were performed using Axopatch 200B and Multiclamp 700B 

amplifiers. Somatic recording from visually identified MSNs were performed with pipettes 

(resistance of 3–5 MΩ) filled with internal solution containing (in mM): 145 K-gluconate, 2 

MgCl2, 0.1 EGTA, 2 Na2ATP, and 10 HEPES (pH 7.2 with KOH; 290 mOsm). Access 

resistance (Ra) was monitored throughout the recording and was typically <25 MΩ. Data 

acquisition and stimulation were performed with a Digidata 1322A Series interface and 

pClamp 9 software (Molecular Device). Data were filtered at 2 kHz, digitized at 20 kHz, and 

were analyzed offline with pClamp 10 software. To measure MSN intrinsic firing 20 μM of 

NBQX, 100 μM of DL-AP5, and 20 μM of bicuculline were added to regular aCSF in order 

to prevent glutamatergic and GABAergic synaptic transmissions, respectively.

Whole-Cell Patch Clamp in Nav1.6-HEK293 Cells—Recordings were performed at 

room temperature (20°C–22°C) using an Axo-patch 200A or Axopatch 200B amplifier 

(Molecular Devices, Sunnyvale, CA). Borosilicate glass pipettes with resistance of 3.5–5 

MΩ were made using a Narishige PC-10 vertical Micropipette Puller (Narishige 

International, East Meadow, NY). The recording solutions were as follows: extracellular 

(mM): 140 NaCl, 3 KCl, 1 MgCl2, 1 CaCl2, 10 HEPES, 10 glucose, pH 7.3; and 

intracellular: 130 CH3O3SCs, 1 EGTA, 10 NaCl, 10 HEPES, pH 7.3. Membrane 

capacitance and series resistance were estimated by the dial settings on the amplifier. 

Capacitive transients and series resistances were compensated electronically by 70%–80% 

and cells exhibiting a series resistance of 25 MΩ or higher were excluded from the analysis. 

Data were acquired at 20 kHz and filtered at 5 kHz prior to digitization and storage. All 

experimental parameters were controlled using Clampex 7 or 9 software (Molecular 

Devices) and interfaced to the electrophysiological equipment using a Digidata 1200 or 

1322A analog-digital interface (Molecular Devices).

Quantification and Statistical Analysis

Statistics were calculated in Prism 6 (GraphPad Software, San Diego, CA, USA). For 

comparison of two groups, significance was tested with unpaired, two-sided Student’s t tests. 

For multiple comparisons, two-sided one-way ANOVA with Bonferroni or Dunnett’s post 

hoc tests were used. All data before comparisons were tested for normal distribution. Non-

parametric Mann-Whitney test was used if data did not pass normality testing. Data are 

presented as mean ± SEM. The level of significance is listed in the figure legends for each 

experimental group. Secondary analysis of transcriptomic data was performed using the 

Ingenuity Pathway Analysis Canonical Pathway Analysis (build current for 7-29-2016) 

(Zhang et al., 2016b). Additionally, gene set enrichment analysis (GSEA) was performed on 

transcriptomic expression data from drug-naive EC and IC rats using the C2 curated gene 

sets version 4 (Broad Institute, MA, USA) (Zhang et al., 2016b).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Low GSK3β and Nav1.6 mRNA levels were observed under resilient (EC) 

conditions

• GSK3β and Nav1.6 are molecular determinants of MSNs intrinsic excitability

• GSK3β phosphorylates Nav1.6 C-tail at T1936 and modulates channel 

activity

• There is a direct interaction between GSK3β and the Nav1.6 channel C-tail
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Figure 1. Unbiased Transcriptomic Screening Identifies GSK3β and SCN8A (Nav1.6) as EC-
Sensitive Protecting Genes in the NAc
(A) Custom IPA pathway depicting EC/IC-regulated transcripts; RNA-seq analysis (top right 

inset) of GSK3β and SCN8A mRNA in EC versus IC conditions (Zhang et al., 2016b).

(B) GSEA enrichment plot of PI3K/Akt/GSK3 Reactome pathway and corresponding 

heatmap in EC versus IC conditions (Zhang et al., 2016b).

(C–E) Representative traces of APs in MSNs from IC rats (C), EC rats (D), and input-output 

curves (E).

(F–H) Representative traces of MSN INaP from IC rats (F), EC rats (G), and bar graph (H). 

Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005 with Student’s t 

test. #p < 0.05 with Mann-Whitney test.
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Figure 2. Intrinsic Firing and Na+-Persistent Current of MSNs Are Bi-directionally Controlled 
by the GSK3 Pathway
(A–C) Representative traces of APs in NAc MSNs from shControl rats (A), shGSK3β rats 

(B), and input-output curves (C).

(D–F) Representative traces of MSN INaP from shControl rats (D), shGSK3β rats (E), and 

bar graph (F).

(G–I) Representative traces of APs in NAc MSNs from wild-type mice (G), GSK3 knockin 

mice (H), and input-output curves (I).

(J–L) Representative traces of MSN INaP from wild-type mice (J), GSK3 KI mice (K), and 

bar graph (L). Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005 

with Student’s t test.
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Figure 3. In Vivo Genetic Silencing of GSK3β Prevents Maladaptive Plasticity of MSNs
(A–C) Representative traces of APs MSNs from shControl rats (A), shGSK3β-expressing IC 

rats (B), and corresponding input-output curves (C).

(D–F) Representative traces of MSNs INaP from shControl rats (D), shGSK3β IC rats (E), 

and bar graph (F). Data are represented as mean ± SEM. *p < 0.05, **p < 0.01 with 

Student’s t test.

Scala et al. Page 21

Cell Rep. Author manuscript; available in PMC 2019 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Nav1.6 Is a Molecular Determinant of Intrinsic Firing in MSNs
(A) Confocal imaging of Nav1.6 (green), NeuN (blue), and ankyrin-G (red) at the axonal 

initial segment of neurons in the NAc.

(B) Zoom inset of (A), arrows indicate starting and end points of axon initial segment (AIS). 

Scale bar, 1 μm.

(C) Profile of Nav1.6 (green) channels and Ank (red) immunofluorescence intensity line 

scans along the AIS region in MSN.

(D–F) Representative traces of APs in MSNs from shControl (D), shSCN8A (E), and 

corresponding input-output curves (F).

(G–I) Representative traces of MSNs from shControl (G) and shSCN8A (F), respectively, 

and bar graphs (I). Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 

0.005; Student’s t test.
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Figure 5. In Vitro Studies of Functional Interaction between Nav1.6-Encoded Currents and 
GSK3
(A–C) Representative traces of transient INa recorded from Nav1.6-HEK293 cells treated 

with DMSO (A), CHIR 99021 (B), and GSK3 inhibitor XIII (C).

(D and E) Nav1.6 current-voltage relationship of DMSO or CHIR 99021 or GSK3 inhibitor 

XIII treatment (D), and peak current density at −10 mV voltage step (E).

(F and G) Representative traces of transient INa recorded from Nav1.6-HEK293 cells treated 

with siScramble (F) and siGSK3 (G).

(H and I) Nav1.6 current-voltage relationship of siScramble versus siGSK3 (H), and peak 

current density at −10 mV voltage step (I).

(J) Representative SPR sensorgram of GSK3β binding to Nav1.6 C-tail.

(K) SPR fitting curve of GSK3β binding with Nav1.6 C-tail.

(L) Higher energy collisional dissociation (HCD) fragmentation spectrum of the 

phosphopeptide EStPSTASLPSYDSVTK, encompassing residues 1934–1950 of the Nav1.6 

C terminus. The presence of non-phosphorylated b2 (theoretical m/z of 217.08, observed m/z 

of 217.08) and y14 (theoretical m/z of 1,452.72, observed m/z of 1,452.72) ions along with 

phosphorylated b3 (theoretical m/z of 398.10, observed m/z of 398.10) confirms T1936 as 

the site of phosphorylation. The parent ion was fragmented with a co-eluting peptide within 

the ±2 Da window (inset) resulting in the mixed spectrum shown here. t, phosphothreonine; 

*, fragment with loss of phosphoric acid). Data are represented as mean ± SEM. *p < 0.05, 

**p < 0.01; Student’s t test.
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Figure 6. Nav1.6-Based Peptide Restores Maladaptive Plasticity in IC Rats and GSK3 Knockin 
Mice
(A–C) Representative traces of APs in NAc MSN from IC rats treated with Mut-pep (A), 

WT-pep (B), and input-output curves (C).

(D–F) Representative traces of INaP in NAc MSNs from IC rats treated with Mut-pep (D), 

WT-pep (E), and bar graph (F).

(G–I) Representative traces of APs in NAc MSN from GSK3-KI with Mut-pep (G), WT-pep 

(H), and input-output curves (I).

(J–L) Representative traces of INaP in NAc MSN from GSK3-KI treated with Mut-pep (J) 

and WT-pep (K), respectively, and bar graph (L).

(M–O) Representative traces of APs in NAc MSN from EC rats treated with Mut-pep (M) 

and WT-pep (N), and input-output curves (O).

(P–R) Representative traces of INaP in NAc MSN from EC rats treated with Mut-pep (P), 

WT-pep (Q), and bar graph (R). Data are represented as mean ± SEM.

*p < 0.05, **p < 0.01, ***p < 0.005 with Student’s t test or one-way ANOVA with 

Bonferroni or Dunnett’s post hoc test.
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