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Abstract

The advent of sophisticated molecular biology techniques allows to deduce the structure of complex biological networks.
However, networks tend to be huge and impose computational challenges on traditional mathematical analysis due to their
high dimension and lack of reliable kinetic data. To overcome this problem, complex biological networks are decomposed
into modules that are assumed to capture essential aspects of the full network’s dynamics. The question that begs for an
answer is how to identify the core that is representative of a network’s dynamics, its function and robustness. One of the
powerful methods to probe into the structure of a network is Petri net analysis. Petri nets support network visualization and
execution. They are also equipped with sound mathematical and formal reasoning based on which a network can be
decomposed into modules. The structural analysis provides insight into the robustness and facilitates the identification of
fragile nodes. The application of these techniques to a previously proposed hypoxia control network reveals three
functional modules responsible for degrading the hypoxia-inducible factor (HIF). Interestingly, the structural analysis
identifies superfluous network parts and suggests that the reversibility of the reactions are not important for the essential
functionality. The core network is determined to be the union of the three reduced individual modules. The structural
analysis results are confirmed by numerical integration of the differential equations induced by the individual modules as
well as their composition. The structural analysis leads also to a coarse network structure highlighting the structural
principles inherent in the three functional modules. Importantly, our analysis identifies the fragile node in this robust
network without which the switch-like behavior is shown to be completely absent.
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Introduction

Biological networks tend to be huge and too complex to directly

undergo mathematical analyses. However, networks are often also

inherently modular. Thus, prior to mathematical analysis, they are

decomposed into functional modules to better understand the

dynamics [1]. Even after the decomposition of the network into

modules, quantitative analysis may be a challenge due to lack of

reliable kinetic data. Therefore, the problems that require

immediate attention to understand the dynamics of a network

are (a) to develop formal tools to decompose a network into

modules and to determine the core network, (b) to understand the

functional role of each of these modules in a network without

subjecting to any quantitative analysis, and finally the challenging

part is (c) to identify both the molecular pathways (modules) that

contribute to robustness and the fragile molecular nodes which –

when knocked off – paralyze the total function of a network.

Importantly, all the above questions are related to the structure of

a network. Thus, there is a need for adequate mathematical tools

to acquire insights into the properties of a network without having

to resort to quantitative analysis.

Petri nets are known to be a powerful tool to perform structural

analysis of a network in general [2–4]. They can be used to probe

any type of biological networks, be it a metabolic, signalling, or

transcriptional network – or even a combination of them. Petri

nets provide a flexible modeling language. Mass flow and

biochemical or genetic regulation mechanisms can be equally

represented at arbitrary abstraction level, ranging from molecular

via cellular level [5–7] to multi-cellular level, describing, e.g.,

developmental processes in multi-cellular pattern formation [8,9].

A Petri net framework may support a family of related Petri net

models, sharing structure, but being specialized by their kinetic

information [10]: qualitative (time-free) place/transition Petri nets

as well as various types of quantitative (time-dependent) Petri nets

such as time, stochastic, continuous, or hybrid Petri nets.

Structural Petri net techniques infer properties of complex

biological networks independent of any kinetic parameters. Thus,

they can be applied in any case, even if no or little kinetic

parameters are known. Many Petri net software comes with built-

in features for analysis, animation and discrete (stochastic) as well

as continuous (deterministic) simulation, which allow to investigate

a model in various complementary ways [11]. For case studies

demonstrating a unifying framework integrating qualitative,

stochastic and continuous Petri nets and related analysis and

simulation techniques see [10,12,13]. On that account, Petri nets

have nowadays been widely used within the systems biology

community; for review papers see [14,15], for a short introduction

see Section Methods.
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In this paper we show how structural analysis techniques of the

Petri net theory can be effectively employed to decompose a

network into modules, to determine the core network, and to

identify fragile parts of the network. We do so by using a well-

studied biological example – the hypoxia response control. This

network is well documented and thoroughly studied both from

experimental and simulation point of view. We have choosen this

network to compare with the results of Yu et al. [16], who used the

same network to explain pathway switching in hypoxia by extreme

pathway analysis [17].

Starting from the two earlier works [16,18] we begin by

exploring the network’s subsystem responsible for HIF-1a
degradation using invariant analysis of Petri net theory. The

invariant analysis reveals three modules that are capable of

degrading HIF-1a. More importantly, it is found that the removal

of those network parts not contributing to the I/O behavior and of

the reversibility of the remaining reactions has no affect on the

qualitative switch-like response of the network. Therefore, we have

hypothesized that under certain conditions, reversible reactions

are not necessary to achieve the required dynamics of the system.

This in turn helps to reduce the number of dynamic variables and

kinetic parameters in the system. Finally, we hypothesize that from

invariant analysis it is possible to get a different perspective on the

robustness of the network and the fragile element of the robust

hypoxia response network. We will confirm these hypotheses by

numerical simulations of the ordinary differential equations

(ODEs) induced by reading the analysed qualitative Petri nets as

continuous Petri nets with mass action kinetics. Importantly, we

provide a different way of looking at robustness from the results of

invariant analysis, which may be a promising and potential tool

worth being further developed for a general theory of robustness.

The main contributions of our paper are:

N determination of the core module of the hypoxia response

network, responsible for the switch-like behavior, which is

shown to be behaviorally equivalent to the original network,

N deriving a coarse network structure of the core module,

contributing to a better understanding of the network

behavior,

N identification of the network redundancy, allowing for

robustness, and of the network’s fragile node, without which

the switch-like behavior is shown to be completely absent,

N provision of a general approach for structural analyses, which

can be equally applied to other networks, represented by any

Petri net class (qualitative, time, stochastic, continuous, hybrid

Petri nets). Remarkably, all steps are algorithmically defined.

Results

In the following we give a short description of the hypoxia

response network and related earlier modeling work. Afterwards

we apply our structural analysis techniques to reduce the network

structure. The reduced structure will be shown to be behaviorally

equivalent to the original, full structure. The structural analysis

techniques applied belong to the standard body of Petri net theory

[2,10,19], recently supplemented by an algorithmically defined

approach for network coarsening [20]. They are summarized in

the Method section.

Hypoxia Response Network
Oxygen is an essential and vital element for the survival of

organisms. Lower oxygen content, termed hypoxia, arises under

pathophysiological conditions like cancer due to low diffusion of

oxygen to the tissue affected by tumor [21], while higher levels of

oxygen, termed hyperoxia, leads to retinopathy of prematurity

[22]. A well-studied molecular pathway activated under hypoxia

condition is the Hypoxia Induced Factor (HIF) pathway. Key

element of this network is the HIF transcription factor (TF) that

exists in three forms, namely HIF-1a, -2a, and -3a. Under normal

oxygenation, termed normoxia, HIF-1a is constitutively degraded

by 26S proteosomal system, whereas under hypoxia, HIF-1a
escapes proteosomal target and binds to Hypoxia Response

Elements (HRE) which results in the activation of multiple target

genes. In experiments it has been found that there is a critical

concentration of oxygen below which HIF is present in large

amounts, whereas above the critical concentration HIF is

completely absent due to rapid degradation. Importantly, there

is an inverse relationship between the level of oxygen content and

HIF-1a as observed in Hela [23] and Hep 3B cells [24].

The schematic diagram in Figure 1 shows HIF-1a degradation

by both oxygen-dependent and oxygen-independent mechanisms.

Under the conditions of normoxia, the predominant pathway is

binding of HIF-1a to prolyl hydroxylases (PHDs) which hydrox-

ylates HIF-1a in the presence of oxygen followed by degradation

by the von Hippel-Landau (VHL) protein. Degradation of HIF-1a
also takes place in an oxygen-independent manner, but with less

efficiency. Under the conditions of hypoxia, HIF-1a first saturates

PHDs due to high binding affinity of PHD forming complex HIF-

1a-PHD, but cannot be hydroxylated due to low oxygen content

and therefore cannot be degraded. The excess of HIF-1a then

binds to ARNT subunit and forms a complex HIF-1a-ARNT,

which activates HREs. The complex also binds to PHD forming

HIF-ARNT-PHD complex, and this also cannot be hydroxylated

due to low oxygen content. The predominant form under hypoxia

is HIF-ARNT that induces HREs. In summary, the switching

behavior observed between normoxia and hypoxia is due to

differential binding of HIF-1a to PHD and ARNT subunit.

Notations and Assumptions
We denote HIF-a and HIF-b as HIF and ARNT, respectively.

Even though we have not distinguished three different PHDs, it

can be taken as PHD2 as in vitro studies have assigned the three

PHD activities as PHD2wwPHD3wPHD1 [25] and in vivo

studies have shown that PHD2 has a dominant role [26]. Further,

PHD2 is mostly present in the cytoplasm even though it is capable

of nucleocyctoplasmic shuttling. But in our work nuclear and

cytosol compartments are not separately distinguished since (a) the

core switching process, especially the reactions involving HIF-a,

PHD and VHL, are known to take place in cytoplasm in many

tissues [27], (b) even though the complex binding process of

ARNT by HIF-a-PHD complex takes place in the nucleus, the

degradation by VHL is assumed to occur in the cytoplasm, and (c)

no transcriptional regulation involving HRE is considered.

In summary, the transitional switching from hypoxia at low

oxygen level to normoxia at high oxygen level is captured, and the

intricate molecular mechanisms like transcriptional regulation

during hypoxia or negative regulation during hyperoxia are not

considered. Further, we have only considered the pathways that

involve hydroxylation of proline residues and not asparagine

residues. Therefore, new pathways like factor inhibiting HIF (FIH)

that include the hydroxylation of aspargine residues or the

occurrence of graded response mechanism involving reactions of

Iron and prolyl hydroxylase are not considered [28], as a primary

objective is to compare with the existing models of Yu et al. and

Kohn et al. Detailed models including FIH can be found in the

recently published article where the coarse grained molecular

mechanisms of hypoxia ‘‘gene’’ regulation are considered [29].

Hypoxia Response Core Network

PLoS ONE | www.plosone.org 2 January 2010 | Volume 5 | Issue 1 | e8600



Finally, as this is a first cautious step to use Petri nets as a tool to

understand robustness and fragility through structural analysis, a

rather simple network has been deliberately taken for illustration,

even though the ultimate goal is to analyze complex networks.

Therefore, the hypoxia network according to [16] is an illustrative

example to study the viability of using Petri nets as tool for network

analysis. Further work is needed to get insight about the role of

other pathways in the hypoxia mechanism.

Model Description
A theoretical model based on ordinary differential equations

(ODEs) was first proposed by Kohn et al. [18] meant to capture the

core subsystem responsible for the switch-like behavior of the

hypoxia response network. Detailed analysis were later carried out

by Yu et al. [16], who decomposed the network into several

underlying pathways by extreme pathway analysis [17]. Analytical

solutions for the decomposed network matched well with the

solutions found by numerical integration (simulation). They

concluded that pathway switching or pathway branching effect

appears to be responsible for the sharp response to oxygen

concentration.

We take the ODEs model by Yu et al. and go one step further by

demonstrating how to determine the core and the fragile node of

the hypoxia response network by structural analysis. As the very

first step, the network of Yu et al. [16] as given in Figure 1 is

transformed into a Petri net, compare Figure 2. A closer look on

Figure 1 reveals that the schematic diagram is already almost a

bipartite graph (with a few exceptions), whereby rectangles

(transitions) denote species, and small circles (places) reactions.

So the transformation is straightforward and basically means

swapping of places and transitions to adapt to the standard of

biochemically interpreted Petri nets. Following the discussion in

[16] we neglect the lower part of the schematic diagram.

To validate the transformation we generate the ODEs by

reading the net in Figure 2 as a continuous Petri net [10,30].

Applying mass action kinetics we get the equations (1–13), which

exactly correspond to the equations given in [16]. The meaning of

the dynamic variables is specified in Table 1. We keep all variable

names as introduced in [16] to support comparison.

Please note, there is no equation for O2. It only appears within

the ODEs as side condition; so its concentration never changes for

a given set of initial concentrations. The places S3 (HIF) and S18

(HIFOH:VHL) model the input and output species.

We begin our analysis with the complete original network,

consisting of 14 molecular species and 19 reactions and defining

equations (1–13). The numerical simulations are carried out using

the initial concentrations specified in Table 1. All three parameter

sets as given in [16] yield the same qualitative results (see also

Figure 1. Schematic diagram of hypoxia response network. This scheme is based on references [16] and [18]. Three pathways, given in green
(oxygen-independent pathway), blue and red (oxygen-dependent pathways) can degrade HIF transcription factor. The HRE activation pathway,
shown in brown dotted lines, is – following the discussion in [16] – not considered in our analysis.
doi:10.1371/journal.pone.0008600.g001

Hypoxia Response Core Network
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Experiment 1). Our simulation results mirror exactly the results

given in [16], which concludes the validation of the model

transformation.

For further use we pick randomly the parameter set 1 from

Kohn et al. [18], which is given in Table 2. The choice of

parameter set does not have an influence on the reasoning, which

we persuade in this paper.

d½S3�
dt

~k1{k2½S3�{k3½S3�½S4�zk4½S5�

{k12½S3�½S12�zk13½S13�
ð1Þ

d½S4�
dt

~{k3½S3�½S4�zk4½S5�{k21½S4�½S14�zk22½S16� ð2Þ

d½S5�
dt

~k3½S3�½S4�{k4½S5�{k5½S5�½S6�zk6½S7�

{k15½S5�½S12�zk16½S15�
ð3Þ

d½S6�
dt

~{k5½S5�½S6�zk6½S7�{k29½S6�½S16�zk30½S22� ð4Þ

d½S7�
dt

~k5½S5�½S6�{k6½S7� ð5Þ

d½S12�
dt

~{k12½S3�½S12�zk13½S13�zk14½O2�½S13�

{k15½S5�½S12�zk16½S15�zk17½O2�½S15�
ð6Þ

d½S13�
dt

~k12½S3�½S12�{k13½S13�zk14½O2�½S13� ð7Þ

d½S14�
dt

~k14½O2�½S13�{k18½S14�½S17�zk19½S18�

{k21½S4�½S14�zk22½S16�
ð8Þ

d½S15�
dt

~k15½S5�½S12�{k16½S15�zk17½O2�½S15� ð9Þ

d½S16�
dt

~k17½O2�½S15�zk21½S4�½S14�{k22½S16�

{k29½S6�½S16�zk30½S22�
ð10Þ

d½S17�
dt

~{k18½S14�½S17�zk19½S18�zk20½S18� ð11Þ

Figure 2. Petri net representation of the hypoxia response network. It defines equations (1–13), when read as continuous Petri net with
mass action kinetics. The labels ki are taken as transition identifiers in the structural analysis of the qualitative Petri net, and as kinetic parameters (see
Table 2) in the simulative analysis of the continuous Petri net. There are two logical places for O2, connected to the remaining net by read arcs. See
Table 1 for the biological meaning of the other place identifiers (dynamic variables). Each color characterizes an ADT set, compare Table 5. Reduction
candidates, as revealed by invariant analysis, are uncolored.
doi:10.1371/journal.pone.0008600.g002

Hypoxia Response Core Network
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d½S18�
dt

~k18½S14�½S17�{k19½S18�zk20½S18� ð12Þ

d½S22�
dt

~k29½S6�½S16�{k30½S22� ð13Þ

Structural Analysis to Understand and Reduce Hypoxia
Network

We start off with a biological interpretation of the network’s P-

and T-invariants as a complementary network validation step [31],

before determining the core network.

Biological interpretation of P-invariants. It is good

practice to validate a given network for expected properties

before raising questions with unknown outcome. P-invariants

belong to these established consistency checks. A P-invariant

defines a mass-conserving subnetwork, i.e., a network in which the

total mass is constant and therefore bounded. Each minimal P-

invariant should enjoy a biological meaning, and – vice versa –

there should not be an expected conservation law without

corresponding P-invariant. See the Method section for more

details, e.g. how to compute P-invariants.

The Petri net given in Figure 2 is not covered by P-invariants.

However, it contains five P-invariants, which are listed in Table 3.

Each of these P-invariants corresponds to a conservation law

enjoying biologically sound interpretation.

The P-invariants in the hypoxia regulatory network arise due to

the complexation of HIF with four important protein regulators:

PHD (S12), ARNT (S4), HRE (S6), and the degradative protein

VHL (S17), each of which results in a conservation relationship.

Oxygen which plays a crucial role for our network under

investigation is another obvious P-invariant on its own. Each P-

invariant plays a vital role in the network and is therefore closely

examined below. The order in which the P-invariants are

examined is in accordance with the importance they play in the

hypoxia regulatory network. The P-invariants found in the

network can be broadly classified according to their role in

normoxia and hypoxia. The following P-invariants (1–4) play a

role in normoxia (where oxygen is involved), while the last one, (5),

plays a role in hypoxia (oxygen-independent).

1. Oxygen (shown in green in Figure 1) is an important

independent P-invariant in regulating HIF. The whole network

dynamics depends on its critical concentration that switches the

system from hypoxia to normoxia and vice versa. Therefore,

maintaining critical concentration of oxygen is important for

normoxia as shown in the numerical simulations of our

computational experiments.

2. PHDtotal = PHD (S12) + HIF:PHD (S13) + HIF:PHD:ARNT

(S15)

Oxygen cannot per se directly interact with HIF for

degradation, but takes the help of other auxiliary proteins like

PHD, ARNT and VHL. Among these three, PHD is important

in complexing with HIF under the conditions of normoxia. In

Table 2. Kinetic parameters.

Kinetic parameters
Values
(dimensionless)

k1 0.2321

k2 0.0017

k3 , k21 0.0121

k4 , k22 0.6163

k5 , k29 0.1693

k6 , k30 0.0566

k12 , k15 0.8326

k13 , k16 0.0196

k14 , k17 0.0361

k18 0.5722

k19 0.2667

k20 0.4591

Kinetic parameters as used in the simulation. This set corresponds to parameter
set 1 in [18].
doi:10.1371/journal.pone.0008600.t002

Table 1. Biological interpretation of places (dynamic
variables) and initial concentrations.

Species
Place identifiers
(Dynamic variables)

Initial
concentrations
(dimensionless)

HIF S3 5 (0)

ARNT S4 5

HIF:ARNT S5 0

HRE S6 1

HIF:ARNT:HRE S7 0

PHD S12 10

HIF:PHD S13 0

HIF:OH S14 0

HIF:ARNT:PHD S15 0

HIF:OH-ARNT S16 0

VHL S17 10

HIFOH:VHL S18 0

HIFOH:ARNT:HRE S22 0

This table corresponds to Table 1 in [18]. The initial concentration given in
brackets takes into consideration the results of P-invariant analysis, see Table 3.
The continuous analysis yields the same steady state results for both initial
concentrations. The variables of our core network – as derived by structural
analysis – are given in bold.
doi:10.1371/journal.pone.0008600.t001

Table 3. P-invariants.

index P-invariant name Places

1 Oxygen O2

2 PHDtotal S12 , S13 , S15

3 ARNTtotal S4 , S5 , S7 , S15 , S16 , S22

4 VHLtotal S17 , S18

5 HREtotal S6 , S7 , S22

P-invariants (in set notation) of the Petri net given in Figure 2, each defining a
mass conservation law. The places given first correspond to the non-complexed
molecular species; so they get a non-zero initial concentration, compare Table 1.
doi:10.1371/journal.pone.0008600.t003

Hypoxia Response Core Network
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the absence of PHD, HIF persists, while in its presence, HIF is

degraded by oxygen due to complex formation with PHD (S13).

The higher the concentration of PHD, the efficient is the

degradation of HIF, and as a consequence, critical oxygen

concentration advances with the increase of PHD. This is due

to high binding affinity of PHD to HIF that saturates HIF

faster than ARNT. Even when ARNT (S4) forms complex with

HIF (S3), it is not degradable by oxygen unless the complex

HIF:ARNT (S5) further complexes with PHD to give rise to

HIF:ARNT:PHD (S15) for the initiation of degradation by

oxygen. Thus, PHD and its complexes that form a P-invariant

are absolutely important for the network to maintain normoxia

condition. PHD will indeed turn out to be the crucial node;

knocking it off causes the whole hypoxia network to collapse.

1. ARNTtotal = ARNT (S4) + HIF:ARNT (S5) + HIF:ARNT:HRE

(S7) + HIF:ARNT:PHD (S15) + HIFOH:ARNT (S16) + HIFOH:

ARNT:HRE (S22)

ARNT is another protein that has less binding affinity than

that of PHD, opening a further pathway through which HIF is

degraded. In the presence of PHD, the role of ARNT is very

limited. Varying ARNT to higher concentration in the

presence of PHD should not significantly change the critical

oxygen concentration at which the system switches from

hypoxia to normoxia. On the other hand, under absence of

PHD, ARNT may play a significant role in degradation of

HIF, but less efficiently in comparison to PHD.

1. VHLtotal = VHL (S17) + HIFOH:VHL (S18)

VHL is the protein that ultimately degrades hydroxylated

HIF, which is the final step in the network for efficient

normoxia.

1. HREtotal = HRE (S6) + HIF:ARNT:HRE (S7) + HIFOH:

ARNT:HRE (S22)

All the P-invariants (1–4) described so far are involved in

normoxia for efficient degradation of HIF factors in the presence

of oxygen. In the absence of oxygen, hypoxia response elements

(HRE) play a vital role in invoking a further pathway. This

constitutes the final P-invariant that plays a role in hypoxia.

Due to the conservation law, each P-invariant needs an initial

concentration unequal to zero to bring the network to life, i.e. to

involve all network parts into the game. Please note, this is a

necessary, but not a sufficient condition.

The following places are not covered by a P-invariant, and

consequently only bounded under suitable timing constraints: HIF

(S3), HIF:OH (S14). They are also not involved in a proper

structural deadlock, i.e. in a set of places, which can never get

marked again as soon as it got empty, see Method section for more

explanations. So their initial concentration can be set to zero, see

also capture of Table 1.

The mass conservation laws as determined by P-invariants can

be exploited to automatically reduce the dimension of the ODEs

generated for the continuous simulation experiments of a given

continuous Petri net. This approach is common practice and not

further discussed here.

The reasoning above will be confirmed by numerical simulations.

Biological interpretation of T-invariants. T-invariants are

a further category which belong to the established consistency

checks to support network validation before scrutinizing a

network’s dynamics. A T-invariant defines a state-conserving

subnetwork, i.e., (a) a network whose transitions (reactions) bring

the network back to a given state, if they all took place one after

another (in the specified amount), or (b) keep the network in a

given (steady) state, if all transitions permanently occur (in the

specified relative frequency). The two transitions modeling the two

directions of a reversible reaction always establish a T-invariant.

Thus, it is called a trivial T-invariant.

Reading T-invariants as relative firing rates reproducing a given

steady state allows us to identify superfluous network parts and

those directions of reversible reactions not contributing to

significant I/O behavior in the steady state. These are the

transitions (reactions) not covered by non-trivial T-invariants.

A minimal T-invariant defines a minimal self-contained network

behavior. These T-invariant-induced subnetworks are in the

following called pathways. Likewise to P-invariants, each T-invariant

should enjoy a biological meaning, and – vice versa – there should

not be an expected pathway without corresponding T-invariant.

Finally, each reaction should contribute to the network behavior.

Therefore, the network should be covered by T-invariants. See the

Method section for more details, e.g. how to compute T-invariants.

The Petri net given in Figure 2 is covered by T-invariants. First

of all, there are the expected seven trivial T-invariants for the

seven reversible reactions, which may be read as elementary futile

association/dissociaten pathways: P4~(k3,k4), P5~(k5,k6),
P6~(k12,k13), P7~(k15,k16), P8~(k18,k19), P9~(k21,k22),
P10~(k29,k30).

Additionally, we get three non-trivial T-invariants, reflecting the

I/O behavior, see Table 4. Please note, (k1,k2) is not considered to

be a trivial T-invariant, because it contributes to the I/O behavior.

Each non-trivial T-invariant defines a pathway and can be

thought of as a separate module contributing to the degradation of

HIF. Among the three T-invariants shown in Table 4, the first T-

invariant module is an oxygen-independent HIF degradation

pathway (P1), whereas two and three are oxygen-dependent

pathways (P2 and P3).

1. P1 – oxygen-independent HIF degradation pathway.

This simple two-reaction pathway will turn out to be the

least efficient pathway for HIF degradation.

1. P2 – oxygen-dependent, PHD complexed HIF degradation

pathway.

This linear reaction pathway degrades HIF due to its affinity

towards PHD which results in hydroxylation in the presence of

oxygen. This pathway will be shown to be the most efficient one.

1. P3 – oxygen-dependent, predominantly ARNT complexed

HIF degradation pathway.

This pathway complexes HIF with both ARNT and PHD

followed by hydroxylation in the presence of oxygen. Complex-

Table 4. Non-trivial T-invariants.

T-invariant (Pathway) Transitions (Reactions)

P1 k1 , k2

P2 k1 , k12 , k14 , k18 , k20

P3 k1 , k3 , k15 , k17 , k22 , k18 , k20

Non-trivial T-invariants (in set notation) of the Petri net given in Figure 2, each
defining a pathway. Please note, (k1 , k2) is not considered to be a trivial T-
invariant.
doi:10.1371/journal.pone.0008600.t004

3.

4.

5.

2.

3.

Hypoxia Response Core Network
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ation of ARNT is important to invoke other pathways (cf. HRE)

independent of PHD, in the absence of oxygen. This pathway

will be located in terms of efficiency between P1 and P2.

In our network, these three pathways happen to be linear ones,

i.e. the networks, induced by the transitions involved in a T-

invariant, consist each of a non-branching path. Please note, this is

generally not the case; for examples see [10].

The net is covered by T-invariants (CTI), however not covered

by non-trivial T-invariants, (not strongly CTI). Transitions not

involved in non-trivial T-invariants, and thus not contributing to

the essential I/O behavior, are reduction candidates for steady-

state-oriented reasoning. These are the transitions: k4, k5, k6, k13,

k16, k19, k21, k29, k30, comprising the reversible reactions S5'S7,

and S16'S22, as well as the backward directions of all remaining

reversible reactions. We get the core network shown in Figure 3,

which requires 10 variables and 10 reactions, i.e. 3 variables and 9

reactions (kinetic parameters) less than the model used by Yu et al.

in [16]. Based on our reasoning we hypothesize that it can still carry

out its function efficiently, namely the switch-like transition from

hypoxia to normoxia in the presence of oxygen. The model

reduction will be validated by a number of numerical simulation

experiments in the next section.

Biological interpretation of ADT sets. The final step in

our structural analysis applies the concept of Abstract Dependent

Transition (ADT) sets [20]. Two transitions depend on each other

if they occur always together in the considered set of T-invariants.

This obviously means that none of the two transitions can function

without the other one; that’s why they are called ‘‘to depend on

each other’’. Often we are interested in maximal ADT sets.

However, for the application considered here we need connected

ADT sets, i.e. ADT sets defining connected subnets (which is

generally not the case, see [20] for examples). Thus, if required, we

decompose maximal ADT sets into connected ADT sets.

Connected ADT sets provide a tool to hierarchically structure

the identified T-invariants, which means at the same time to

automatically coarsen a network. A connected ADT set can be

abstracted by a macro transition (drawn as two centric squares),

which will contain the replaced subnet on the next lower hierarchy

level. We get an hierarchically drawn net, which is equivalent to

the flat net. The crucial point is that the hierarchical description

reveals the structuring principle inherent in the T-invariants,

which may contribute to a better understanding of the network

behavior. More importantly, it immediately allows us to identify

redundant pathways and fragile nodes in the network structure,

thus providing the grounds for a formal reasoning on a network’s

robustness.

Considering the three non-trivial T-invariants given in Table 4,

we find six ADT sets, compare Table 5. Each ADT set induces a

connected subnet; so, no further decomposition is required. We

abstract each ADT set by a macro transition, and we obtain the

coarse network structure as given in Figure 4.

Now, each macro transition stands for a connected subnet

defined by a set of dependent transitions, i.e. transitions, occurring

always together in all non-trivial T-invariants. Each elementary

(loop-free) macro transition sequence in the coarse net structure

corresponds to a non-trivial T-invariant of the flat network. There

are three such sequences P1 = (A, B), P2 = (A, C, E), and P3 = (A,

D, E), compare Figure 5. Please note, in our network, these three

pathways happen to be linear ones, which is generally not the case.

The places shown in the coarse net structure are the boundary

places of the subnets, building the interface between the subnets.

Thus, the coarse network highlights the structuring principle

inherent in the non-trivial T-invariants (pathways).

Moreover, the coarse net structure elaborates clearly the

redundancy among pathways P2 and P3 as well as the central

role of PHD in the core hypoxia network, which both are not as

obvious in Figure 3. The absence of PHD will result in an

accumulation of HIF, because degradation by pathways P2 or P3

is precluded. As the concentration of PHD is increased, the

efficiency of the HIF degradation in the presence of oxygen is

expected also to increase, which needs to be checked by numerical

simulation. Thus, PHD is the fragile node in the network, which –

when knocked off – will result in a total loss of the robust switch-

like behavior of the network.

In the next section we validate the conclusions from our

structural analysis, particularly the hypothesis of the robustness of

the identified core network, by numerical simulations.

Validation of Model Reduction by Numerical Simulations
All ODEs subjected to numerical simulation in the following

computational experiments are uniquely defined by reading the

qualitative Petri nets discussed in the preceding section as

continuous Petri nets with mass-action kinetics.

Reduction of original model to core model. Experiment

1. We designed a number of experiments to validate the step-

wise model reduction as suggested by the structural analysis and

compare the results with the numerical simulation of the original

model, which is shown in Figure 6(a). There are two aspects which

need to be compared with the original model: (a) the Steady State

Figure 3. Hypoxia core network. All reduction candidates were
automatically identified by structural analysis and got approved by the
numerical simulation experiments of the corresponding ODEs. See
Figure 4 for an hierarchical version of this Petri net.
doi:10.1371/journal.pone.0008600.g003

Table 5. ADT sets.

ADT-set Transitions

A k1

B k2

C k3 , k15 , k17 , k22

D k12 , k14

E k18 , k20

F k4 , k5 , k6 , k13 , k16 , k19 , k21 , k29 , k30

ADT sets as computed based on the minimal T-invariants, given in Table 4.
Compare also Figure 3.
doi:10.1371/journal.pone.0008600.t005
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Value (SSV) of HIF when oxygen is completely absent, and (b) the

critical concentration of oxygen, which completely degrades HIF,

i.e. the oxygen concentration at which the SSV of HIF goes to

zero. The critical oxygen concentration is the concentration where

the transition from hypoxia to normoxia or vice versa takes place.

In Figure 6, the steady state values of HIF concentration are

plotted against oxygen to determine the critical oxygen concen-

tration. In the original model, the SSV of HIF is ,140 units when

oxygen is absent, and the critical oxygen concentration is ,0.65 at

which all HIF is completely degraded.

We start off with systematic silencing network parts as

determined by T-invariant analysis by setting the kinetic

parameters one after the other to zero, compare Figure 6(b–f).

This network is an I/O system with HIF as input and VHL as

output. The oxygen regulates the pathway from HIF to VHL, and

hypoxia or normoxia occurs depending on its concentration. In

response to the concentration variation in HIF, the transcriptional

cascade HRE becomes active, but is not directly involved in the

core regulation of hypoxia or normoxia pathways. Therefore,

silencing the HRE pathway has no direct implication on the

degradation of HIF by oxygen and therefore the oxygen critical

concentration where the transition from hypoxia to normoxia

occurs should remain the same as in the full original model. As a

result, the kinetic parameters k5,k6,k29,k30 are set to zero, and as

predicted by the structural analysis and confirmed by Figure 6(b),

the critical oxygen concentration is the same as in the original

model. This validates the assumption that HRE-related network

part is not required for the core of the hypoxia response network.

After silencing the HRE network part, we looked at the

remaining reversible reactions in the network, which may have

any effect on the HIF degradation and the critical oxygen

concentration. We silenced systematically the reversible reaction

rate constants k4,k13,k16,k19,k21 and it was confirmed that there is

no impact on SSV’s of HIF and the critical oxygen concentration,

see Figure 6(c–f). This validated the reduction of the full model to

the core model shown in Figure 3, which we obtained by the Petri

net analysis and also support our hypothesis that the robustness of

the whole network can be captured by studying the core network

model, where the switch-like function is retained even after

silencing 3 variables and 9 reactions in the network.

Numerical analysis of individual pathways. We contin-

ued our T-invariant-based validation with ordering the modules in

terms of their importance for the robust switching.

Experiment 2. The T-invariant analysis identified three

pathways, P1,P2,P3, to be involved in the HIF degradation. P1 is

an oxygen-independent HIF degradation mechanism, whereas the

other two are oxygen-dependent mechanisms, where complexation

– hydroxylation by oxygen – followed by degradation by VHL

occurs in a step-wise fashion. Numerical simulation revealed that

even though P1 pathway degrades HIF, it cannot completely

degrade on its own, and a constant amount of HIF is always present

if oxygen is absent, see Figure 7.

On the other hand, pathway P3 requires more oxygen to

completely degrade HIF than pathway P2. In both oxygen-

dependent pathways PHD is involved in complex formation. But

in P3, there is a competition with ARNT that prevents PHD to

directly complex with HIF. Here, PHD plays only a supportive

role for ARNT for hydroxylating the complex HIF:ARNT:PHD,

and as a consequence it requires approximately twice the amount

of oxygen than the P2 pathway for an efficient HIF degradation.

Experiment 3. We also explored the situation when ARNT

binds much faster than PHD. This is captured by considering the

pathway P3 separately, such that the fast complexation between

HIF:PHD is prevented. In this case, PHD can only bind to the

Figure 4. Coarse Petri net structure of the hypoxia core
network. This is the top level of an hierarchical representation of the
Petri net given in Figure 3. It reveals the structuring principle inherent in
the minimal T-invariants. Each macro transition (drawn as two centric
squares) stands for a connected subnet defined by a set of dependent
transitions, i.e., transitions occurring together in all non-trivial T-
invariants. A, B stand for 1-elementary sets, compare Table 4. The places
shown in the coarse net structure are the interface places between the
subnets. The coarse net structure clearly identifies the central role of
PHD (S12). Its knock-down would switch off P2 and P3 . See also Figure 5.
doi:10.1371/journal.pone.0008600.g004

Figure 5. Pathways of the hypoxia core network. In this example,
each macro transition path in the coarse net structure corresponds to a
non-trivial T-invariant (pathway) of the flat network. There are three
such sequences: P1 – direct degradation: (A, B), P2 – degradation not
requiring ARNT (S4): (A, C, E), and P3 – degradation requiring ARNT
(S4): (A, D, E).
doi:10.1371/journal.pone.0008600.g005
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Figure 6. Experiment 1. Comparison of the dependency of the steady state value (SSV) of HIF (S3) on the oxygen concentration by systematic
silencing network parts as determined by T-invariant analysis by setting sequentially kinetic parameters to zero. (a) full model according to [16]; (b)
kinetic parameters set to zero: k5,k6,k29,k30; (c) k19+(b); (d) k4,k21+(c); (e) k16+(d); (f) k13+(e). The experiment has been done for all three parameter
sets as given in [18]. The dark vertical black line indicates the critical oxygen concentration (*0.65) for which HIF is completely degraded. It separates
hypoxia (left) from normoxia (right). The SSV and the critical oxygen concentration are the same in (a)–(f). Therefore, (f) is considered as the core
module for further analysis.
doi:10.1371/journal.pone.0008600.g006

Figure 7. Experiment 2. Contribution of the individual pathways as induced by the T-invariants P1 , P2 and P3, see Table 4, determined by
numerical integration of the ODEs defined by each pathway. The efficiency of degradation of HIF by oxygen can be ordered as P2]P3]P1 . P1 is the
oxygen-independent pathway. P2 degrades more efficiently due to stronger binding of PHD to HIF than ARNT.
doi:10.1371/journal.pone.0008600.g007
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complex HIF:ARNT which supports the hydroxylation reaction

for further reacting with VHL for HIF degradation. In the absence

of ARNT, HIF is not degraded and present in very high

concentration. At a very low ARNT concentration, there is no

sufficient HIF:ARNT complex, and therefore the degradation is

less efficient. But at a very high ARNT concentration, the

degradation is efficient, see Figure 8. This confirms that the P3

pathway which involves ARNT is less efficient than P2. Therefore,

it suggests that ARNT plays a different role, such as to invoke

HRE rather than its support of oxygen-dependent HIF

degradation.

In summary, the numerical analysis shows that the efficiency of

the individual modules involved in the HIF degradation can be

specified as P2] P3] P1. It also guides us to PHD as the fragile

node, which seems to be the crucial point for the transition

between hypoxia and normoxia. Therefore, we probed the role of

PHD in the hypoxia network by numerical simulations in the next

section.

Importance of PHD initial concentrations: the fragile

node in the network. Experiment 4. The core model that was

further hierarchically structured to a coarse network according to

the structuring principle inherent in the non-trivial T-invariants,

see Figure 4, revealed PHD as bridge between two different I/O

pathways; i.e., PHD is a bridge between the two ADT sequences

(A,C,E) and (A,D,E), both being oxygen-dependent.

In the original model ARNT has a lower affinity to HIF than

PHD. Therefore, the efficient degradation of HIF is still possible

even in the absence of ARNT, as all HIF will be strongly bound by

PHD to form HIF:PHD complex at a faster rate than HIF:ARNT

complex. To validate this, we simulated our core model for various

initial concentrations of ARNT. Figure 9 shows that the SSV’s and

critical oxygen concentration values remained the same as in the

original model for very low initial concentrations of ARNT.

Importantly, in the absence of ARNT concentration, the SSV and

critical oxygen concentration remained also the same. At very high

concentrations, the SSV and critical oxygen concentration moved

to the left because competition of PHD is overruled by the

presence of excess ARNT concentration, and thus both SSV and

critical oxygen concentration fall at much lower values.

These simulation results suggest that the ARNT-dependent

pathway P3 is not required for HIF degradation, and it only

supports the degradation of HIF-a along with PHD. However, this

redundancy contributes to the network’s robustness.

Experiment 5. We also validated numerically that PHD is

crucial for the degradation of HIF, and both SSV and critical

oxygen concentration are extremely sensitive to the initial

concentration of PHD, see Figure 10.

In the absence of PHD, HIF is not degraded, indicating that the

HIF:PHD complex formation is crucial for the degradation of

HIF. As the initial concentration of PHD is increased, the

complexation increased proportionally, and the degradation

became more efficient. This also points to the fact that PHD is

the fragile node in the network, which, when knocked off or

mutated, causes the whole system to collapse. In other words, the

robustness of the whole network depends on PHD that ensures

proper functioning of the network.

In an elegant experiment carried out by Pouyssègur’s group

[26], it has been shown that silencing PHD2 with siRNAs is

sufficient to stabilize and activate HIF-1a in normoxia, while

PHD1 and PHD3 have no effect on the stability of HIF-1a. This

suggest that PHD2 is the critical oxygen sensor maintaining low

HIF-1a during normoxia and acting as fragile node in the network

as captured by our analysis.

Tools
The Petri nets have been drawn with Snoopy [32], available at

http://www-dssz.informatik.tu-cottbus.de, which supports – among

others – the design, animation and simulation of hierarchical

Figure 8. Experiment 3. Pathway P3 is considered separately while varying ARNT initial concentration (S4). Degradation of HIF through pathway P3
is feasible for low (5) and medium (10) initial concentration of ARNT. For extremely high concentration (100), saturation of HIF by ARNT takes place
and thereby the critical oxygen concentration (complete degradation of HIF) does not change.
doi:10.1371/journal.pone.0008600.g008
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Figure 9. Experiment 4. Varying the initial concentration ARNT (S4) in the reduced model to a wide range (0, 5, 1000 … 4500). SSV and critical
oxygen concentration are not affected for a very low value of ARNT initial concentration. Extreme concentration of ARNT (1000, 2000 …) which is 100
or more times than that of PHD initial concentration (10) changes both the SSV and the critical oxygen concentration to a lower value and as a result
the curves are shifted to the left. We also give the simulation of the full model for varying concentration of ARNT. The concentration change is
indicated by the direction of the arrow. The qualitative behavior is the same as for the reduced core model. Even for very high ARNT concentration
the critical oxygen concentration is retained, but the HIF steady state values are lowered.
doi:10.1371/journal.pone.0008600.g009

Figure 10. Experiment 5. Demonstration of fragile node PHD (S12) in the core module of the network. Increase in PHD concentration sHIFts the
critical oxygen concentration to a lower value delineating the importance of binding affinity of PHD-HIF complex for degradation. The loss of PHD
knocks off the oxygen-dependent degradation pathways P2 , P3 and results in inefficient degradation by the oxygen-independent pathway P1 only,
suggesting that PHD is the fragile node in the core module.
doi:10.1371/journal.pone.0008600.g010
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qualitative and continuous Petri nets as used in this paper. The

structural analyses have been done using Charlie [33], a tool to

analyze qualitative Petri nets. Node sets computed by Charlie, such

as P/T-invariants, or ADT sets, can be visualized by automatic

coloring in Snoopy, which supports their manual evaluation. The

automatic coarsening is subject of a running student’s project.

All numerical simulations were carried out in MATLAB using

the built-in variable step size ODE15s integrator with high

absolute (10{7) and relative (10{10) error tolerances. The

simulations were done for a long simulation time period to avoid

transients so that the system settles down to the steady state.

All our results are reproducible by help of the supplementary

material, which we provide on our website.

Discussion

Structural Analysis and Reduction
In our work, we started from the ODEs model introduced by

Yu et al. in [16] as a reduced version of the model presented by

Kohn et al. in [18]. Our structural analysis approach identifies

additional network parts not contributing to the significant I/O

behavior in the steady state, and thus suggesting a further

reduction of the core network. These are the transitions (reactions)

not covered by non-trivial T-invariants, and any places (molecular

species) getting isolated by deleting the reduction candidates. We

identified 9 reactions and 3 molecular species as not being essential

for the core model of the hypoxia response network, which reduces

significantly the number of variables and parameters in the

numerical analysis of the ODEs model of the network.

We confirmed the model reduction as suggested by structural

analysis by a number of numerical simulation experiments where

the corresponding reactions are knocked off one after the other.

We demonstrated by further numerical simulation experiments

that our reduced model exhibits exactly the same significant

behavior as the model investigated in [16]. The core model

identified by our structural analysis consists of 10 dynamic

variables and 10 reactions. The model considered to be the core

model in [16] consists of 13 dynamic variables and 19 reactions.

Furthermore, we derive a coarse network structure, highlighting

the structural principle inherent in the given set of non-trivial T-

invariants, and therefore in the pathways induced by them. This

coarse network structure contributes to a better understanding of

the network behavior, and – even more importantly – allows the

clear identification of the fragile node in the network.

Role of P-Invariants
We also did simulations with zero and non-zero initial

concentration of the P-invariants (details not reported in this

paper). If the initial concentrations of the invariants ARNTtotal ,

HREtotal , and VHLtotal (compare Table 3) are set to zero, i.e.,

S4 = 0, S6 = 0, S17 = 0 (compare Table 1), HIF can still be

completely degraded at the critical oxygen concentration of

*0.65, and switch-like behavior still persists.

Setting a P-invariant to zero is just another way to switch off

certain parts of a network. Setting ARNTtotal to zero is equivalent

to switching off pathway P3. Setting HREtotal to zero is equivalent

to switching off the subnetwork identified by our structural analysis

as not contributing to the I/O behavior, as we did in our reported

computational Experiment 1 by setting the kinetic parameters k5,

k6, k29, k30 to zero. Setting VHLtotal to zero will cause an

accumulation of mass on S14, i.e. the actual final degradation step

by k18 will be precluded.

However, setting Oxygen and PHDtotal to zero would switch off

the network parts crucial for the network behavior: O2, and the

fragile node PHD. To activate the given network, it is sufficient to

set the first two P-invariants (O2, and, for example, S12) to non-

zero initial concentrations. Otherwise, the network is completely

paralyzed, i.e. switch-like behavior is absent, even when the other

three invariants (ARNTtotal , VHLtotal , and HREtotal ) have non-

zero initial concentrations. In summary, playing with the P-

invariants’ initial concentration is just another perspective to

reason about the core network.

The ODEs defined by our core model could be further reduced

for the continuous simulation experiments by exploiting the mass

conservation laws as determined by three P-invariants (P-

invariant 1 corresponds to a constant in the ODEs, P-invariant

5 is not part of the core network). In fact, the detailed analytical

investigation undertaken in [16] have extensively exploited the

conservation laws to derive a simple equation to determine

analytically the critical oxygen concentration that exhibits

switch-like behavior.

Comparison with EPA
The hypoxia model is analyzed in [16] using the notion of

extreme pathways [17]. Our structural analysis is based on T-

invariants – one of the Petri nets’ standard notions from the very

beginning [19]. T-invariants and extreme pathways are closely

related concepts, and both notions coincide for networks

without reversible reactions. Sometimes it is a matter of choice,

whether two reactions are considered as the two opposite

directions of one reversible reaction, or just two closely related

reactions, such as association and dissociation. However, T-

invariants do never neglect trivial T-invariants which reflect

exactly such local reproduction effects. Due to the analogy of

both notions, our structuring approach, which we explained in

this paper using the Petri net terminology, can be equally

applied to the notion of extreme pathways and other related

concepts.

Robustness Vs. Fragility
Robustness and fragility are two sides of the same network.

Robustness is defined as the ability of the system to maintain its

function against internal and external perturbations [34,35].

Therefore, to explore robustness it is paramount to identify the

system, its function and the perturbations [36]. For the hypoxia

network it is important to maintain its function, i.e. the switch-like

behavior, against internal and external perturbations [37].

Redundancy is the hallmark of biological networks where the

very same function is carried out by different pathways, which

provides robustness against perturbations like mutation. If a

mutation blocks an arterial pathway of a network, the network

may still function due to the presence of an alternative pathway,

and this is termed redundancy. Therefore, redundancy of a

biological network is defined as the ability of the network to carry

out the same function through different pathways to cope up with

failures [38].

Identifying all the pathways that carry out the same function in

a complex and large network is generally hard to achieve by visual

inspection only. Thus we applied structural analysis, specifically T-

invariants and the concept of ADT sets, to the hypoxia network to

determine the core network and its pathways of HIF degradation,

and to derive an hierarchically structured representation of the

reduced network yielding the coarse network structure. The

structure of the coarse network clearly elaborates redundant

pathways by alternative paths between input and output species.

Thus, the three different linear pathways involved in the

degradation of the protein HIF-a have been identified, out of

which two are oxygen-dependent pathways which are responsible

Hypoxia Response Core Network
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for the switch-like robust function. Another information that is

teased out from the coarse network is that PHD is the shared node

for the two oxygen-dependent pathways, which – when silenced –

results in a complete loss of function of both oxygen-dependent

pathways in the core network indicating that it is indeed the fragile

node in the network.

We define a fragile node as a node which – when silenced – will

paralyze all the identified redundant pathways, such that the

expected switch-like behavior is completely lost. There may be

some other nodes which when knocked off can paralyze parts of

the network, but the switch-like robust behavior persists.

Consequently, these nodes cannot be considered as fragile nodes.

To illustrate this, ARNT is not a fragile node because, when it is

silenced in the core network, a robust-switch like response is still

preserved, because of the presence of the ARNT-independent

pathway.

We have also shown for the first time by our case study that

Petri nets may be used as a qualitative tool to determine the

robustness of the structure of the network by identifying

redundancy within the network that can be validated by numerical

analysis. The modules that contribute to the I/O behavior can be

easily extracted in terms of T-invariants, and as a consequence

insight can be gained about the contribution of each module to the

robustness of the network.

In the future, we would like to formalize the notion of

robustness in Petri nets terms, complemented by further

qualitative analysis techniques.

General Procedure
The following steps summarize the general methodology which

we have demonstrated by help of the hypoxia network as running

example.

N Compute the minimal P-invariants and check their biological

plausibility. Check whether each P-invariant gets a non-zero

initial marking (concentration).

Check whether the network is covered by P-invariants.

Places not involved in any P-invariant may be structurally

unbounded. They can be initially set to zero if they are not

contained in a structural deadlock. The actual boundedness

degree of such places, e.g. in a steady state, depends on the

given timing constraints.

N Compute the minimal T-invariants and check their biological

plausibility.

Check whether the network is covered by T-invariants.

Transitions not involved in any T-invariant may occasionally

occur, but usually stand for particular modeling assumptions.

N If the model aims at the description of steady state behavior,

check the network also for trivial T-invariants, and whether the

net is covered by non-trivial T-invariants. Transitions not

contained in non-trivial T-invariants are reduction candidates,

as well as any places getting isolated by deleting the reduction

candidates. Confirm by computational experiments the

validity of the reductions.

N Compute the maximal ADT sets and check their biological

plausibility.

Compute the connected ADT sets and the interface places

between them. Hierarchically re-structure the network by

hiding each subnet induced by a connected ADT set in a

macro transition.

N Evaluate the coarse net structure. Identify pathways redun-

dancy and fragile nodes, if any. You may confirm your

conclusions by computational knock-off experiments.

This methodology seems particularly adapted to study larger

networks with no or very little kinetic information. However,

beyond that we have demonstrated that also ODE models may

benefit from our complementary structural analysis approach

because it may help to identify the core network, and thus

contributes to model reduction. Moreover, model-based experi-

ment design, specifically to explore a network’s robustness, may

benefit from the profound knowledge of a network’s structure.

Our structuring method works for any type of network,

independently of its functionality and its representation as a

qualitative, time, stochastic, continuous, or hybrid Petri net.

However, the reduction approach is based on steady-state oriented

reasoning, and thus can only be applied in such circumstances.

Notably, the whole structural analysis approach is formally

defined and supported by computational tools; no user

interaction is required. So it works for networks of arbitrary

size, and – because it requires only structural reasoning – also for

(qualitatively) infinite state spaces. ADT sets can be directly

computed, without having to compute the set of minimal T-

invariants first. Thus the amount of T-invariants, which grows

exponentially with the net size in the worst-case, does not

establish a limiting factor.

Methods

To be self-contained, we recall the basic Petri net notions

relevant for this paper; for more details and formal definitions see

[10,20] and the supplementary material S1, for a general

introduction into Petri net theory see [2–4].

Biochemically Interpreted Petri Nets
To allow formal reasoning we represent biochemical networks

by Petri nets, which combine executability and formal semantics

amenable to mathematically sound analysis techniques. The idea

to use Petri nets for the representation of biochemical networks is

rather intuitive and has been mentioned by Carl Adam Petri

himself in one of his internal research reports on interpretation of

net theory in the seventies. It has also been used as the very first

introductory example in one of the early survey papers [2]. We

follow this approach, see Figure 11.

The standard notion of qualitative Petri nets are weighted,

directed, bipartite graphs with the following basic ingredients.

N There are two sets of nodes of distinguished type. The

elements of one set are called places P~fp1, . . . ,pmg, in the

figures represented by circles, and the elements of the other set

are called transitions T~ft1, . . . ,tng, in the figures represented

by rectangles. Places usually model passive system components

like species playing the role of precursors and products of

chemical reactions, while transitions stand for active system

components like chemical reactions, transforming precursors

into products. Reversible chemical reactions are modeled

explicitly by two opposite transitions, compare Figure 12.

N The directed arcs connect always nodes of different type. They

go from precursors to reactions, and from reactions to

products. In other words, the pre-places of a transition

correspond to the reaction’s precursors, and its post-places to

the reaction’s products.

N Arcs are weighted by natural numbers. The arc weight may be

read as the multiplicity of the arc, reflecting known stoichiom-
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etries, if any. The arc weight 1 is the default value and is

usually not given explicitly.

N A place carries an arbitrary number of tokens, represented as

black dots or a natural number. The number zero is the default

value and usually not given explicitly. Tokens can be

interpreted as the available amount of a given species in

number of molecules or moles, or any abstract, i.e. discrete

concentration level. The tokens on all places establish the

marking of the net, which represents the current state of the

system.

The tokens may move through the net driven by the firing of

transitions. The rules of the token game are defined by the firing

rule. It consists of two parts: the precondition and the firing

itself.

N A transition is enabled, if all its pre-places carry at least as many

tokens as required by the weights of the corresponding ingoing

arcs.

N An enabled transition may fire, i.e. a transition is never forced

to fire. The firing of a transition removes from all its pre-places

as many tokens as specified by the ingoing arc weights, and

adds to all its post-places as many tokens as specified by the

outgoing arc weights. The firing happens atomically and does

not consume any time.

The repeated atomic firing of transitions establishes the discrete

behavior of the qualitative Petri net, compare Figure 11. All

markings, which can be reached from a given marking by any

firing sequence of arbitrary length, constitute the set of reachable

markings. The set of markings reachable from the initial marking is

said to be the state space of a given Petri net. However, in this paper

we confine ourselves deliberately to analysis techniques, which do

not require the construction of the state space. So the presented

approach works also for nets with infinite state spaces, i.e. for

unbounded Petri nets.

We adopt the following drawing conventions, compare

Figure 12.

N Logical nodes (fusion nodes) are colored in grey. All logical nodes

with the same name are identical from an analysis point of

view. They are commonly used for compounds involved in

several reactions, in our case study for O2.

N Transition-bordered subnets can be hidden in macro transitions,

drawn as two centric squares. This allows an hierarchical

structuring of larger nets. We apply this technique to coarsen a

given net according to its minimal T-invariants’ inherent

structure.

N Read arcs (test arcs) are drawn as two opposite arcs. They are

used to connect side conditions, which must be fulfilled for a

reaction to take place, but which will not be changed by the

firing. This applies in our case study to O2.

Invariant Analysis
Basic notions. The structure of a Petri net can be

represented as a matrix, called incidence matrix in the Petri net

community, and stoichiometric matrix in systems biology. The

matrix representation opens the door to analysis techniques based

on linear algebra (to be precise – discrete computational

geometry). We recall the basic notions.

N The incidence matrix of a Petri net is an integer matrix with as

many raws as there are places and as many columns as there

are transitions. Raws and columns are indexed by P or T ,

respectively. The matrix entry (p,t) describes the token

change on place p by the firing of transition t.

N A place vector is a vector which has as many components as there

are places; it is indexed by P. Likewise, a transition vector is a

vector which has as many components as there are transitions;

it is indexed by T.

Figure 11. Petri net example. The Petri net for the well known
chemical reaction r: 2H2zO2?2H2O and three of its markings (states),
connected each by a firing of the transition r. The transition is not
enabled anymore in the marking reached after these two single firing
steps.
doi:10.1371/journal.pone.0008600.g011

Figure 12. Hierarchical structuring by use of macro transitions.
The three nets are identical and model a single enzymatic reaction
following the mass-action kinetics AzE'AjE?BzE. The transitions
k1 and k2 model a reversible reaction. Macro transitions (drawn as two
centric squares) hide net details (in this case transition-bordered
subnetworks) on the next lower hierarchy level. Macro transitions can
be arbitrarily nested resulting into hierarchically structured Petri nets.
doi:10.1371/journal.pone.0008600.g012
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N A P-invariant is a non-zero and non-negative integer place

vector x such that x: ~0; in words, for each transition it holds

that: multiplying the P-invariant with the transition’s column

vector yields zero. Thus, the total effect of each transition on

the P-invariant is zero, which explains its interpretation as a

token-conserving component.

N A T-invariant is a non-zero and non-negative integer transition

vector y such that :y~0; in words, for each place it holds

that: multiplying the place’s row with the T-invariant yields

zero. Thus, the total effect of the T-invariant on a marking is

zero, which explains its interpretation as a state-conserving

component.

N The set of nodes corresponding to an invariant’s non-zero

entries are called the support of this invariant x, written as

supp(x).

N An invariant x is called minimal if its support does not properly

contain the support of another invariant, i.e. there is no

invariant z with supp(z)5supp(x), and the greatest common

divisor of all non-zero entries of x is 1.

N A net is covered by P-invariants, shortly CPI, (covered by T-invariants,

shortly CTI ) if every place (transition) belongs to a P-invariant

(T-invariant).

N A trivial T-invariant consists of the two transitions modeling

the two directions of a reversible reaction. A net which is

covered by non-trivial T-invariants is said to be strongly

covered by T-invariants (SCTI). Transitions not covered by

non-trivial T-invariants are candidates for model reduction,

e.g. if the model analysis is concerned with steady state

analysis only.

The set X~fx1,x2, . . . ,xqg of all minimal P-invariants (T-

invariants) of a given net is unique and represents a generating

system for all P-invariants (T-invariants). All invariants x can be

computed as non-negative linear combinations: d:x~
Pq

i~1

(ai
:xi), with d,ai[N0, i.e. the allowed operations are addition,

multiplication by a natural number, and division by a common

divisor. Usually, we consider minimal invariants only.

A minimal P-invariant (T-invariant) defines a connected subnet,

consisting of its support, its pre- and post-transitions (pre- and

post-places), and all arcs in between. There are no structural

limitations for such subnets induced by minimal invariants (for

examples see [10]), but they are always connected, however not

necessarily strongly connected.

Minimal invariants generally overlap; the combinatorial effect

causes an explosion of the number of minimal invariants. There

are exponentially many of them in the worst-case. Therefore we

apply a structured representation of a given set of invariants,

which is explained in the Section Structuring Method.

Applications. Invariants are a beneficial technique in model

validation, and the challenge is to check all invariants for their

biological plausibility. The minimal self-contained subnets induced

by P-invariants or T-invariants, identify token-conserving or state-

conserving modules, respectively, which should have an enclosed

biological meaning.

A P-invariant stands for a set of places over which the weighted

sum of tokens is constant and independent of any firing, i.e. for any

markings m1, m2, which are reachable by the firing of transitions,

it holds that x:m1~x:m2. In the context of metabolic networks, P-

invariants reflect substrate conservations, while in signal transduc-

tion or gene regulatory networks P-invariants often correspond to

the several states of a given species (protein or protein complex) or

gene. A place belonging to a P-invariant is obviously bounded, i.e.

the number of tokens on each place is finite in any reachable

marking, and CPI causes structural boundedness, i.e. boundedness

for any initial marking.

The automatic identification of minimal T-invariants is in

general useful as a method to highlight important parts of a

network, and hence aid its comprehension by biochemists. Often,

we are especially interested in a network’s input/output behavior,

which we characterize by input/output T-invariants (I/O T-

invariants), i.e. such T-invariants, involving input and output

transitions, or places considered to be input/output species. These

special T-invariants can often be read as alternative, self-contained

pathways within a given network.

Structural deadlock. A notion related to P-invariants is

structural deadlock. A non-empty set of places D is called structural

deadlock if the set of pre-transitions of D is contained in the set of

post-transitions of D, i.e. every transition, which fires tokens onto a

place in this structural deadlock set D, also has a pre-place in D.

Pre-transitions of a structural deadlock cannot fire if the

structural deadlock is clean, i.e. it does not contain a token.

Therefore, a structural deadlock can not get tokens again as soon

as it got clean, and then all its post-transitions are dead.

Consequently, a structural deadlock needs a non-empty initial

marking.

The support of a P-invariant defines a structural deadlock, but

not vice versa.

Structuring Method
The following discussion concentrates on T-invariants. Like-

wise, the technique can be applied to P-invariants due to the given

symmetry of the two notions.

We introduce a dependency relation based on a set of minimal T-

invariants. It can be equally applied to the full set of all minimal

T-invariants as well as to a subset, e.g. the set of non-trivial T-

invariants. Let X denote a set of minimal T-invariants x of a given

Petri net. Two transitions i, j depend on each other, if

Vx[X : i[supp(x)uj[supp(x):

This is an abstract dependency defined on the invariants’

support. Dependent transitions appear always together in the

given set of minimal T-invariants. The knock out of one of them

prevents the whole set of transitions depending on each other to

accomplish their common function. The dependency relation is

reflexive, symmetric, and transitive. Thus it is an equivalence

relation in the transition set T , leading to a partition of T . We call

the equivalence classes Ai maximal abstract dependent transition sets

(ADT sets). The classification of all transitions is based on the T-

invariants’ supports, and it holds

VAi,Vx[X : Ai(supp(x) _ Ai\supp(x)~1:

Contrary to T-invariants, which generally overlap, ADT sets are

disjunctive by definition and induce subnets which may overlap in

interface places only.

The subnets induced by ADT sets represent a possible structural

decomposition of biochemical networks into smaller subnets,

which can be read as the smallest biologically meaningful

functional units or building blocks a network is composed of.

The decomposition is formally defined, requires no user

interaction, and is only based on statically decidable properties.

We hide building blocks defined by ADT sets within macro

transitions which helps to hierarchical structure larger networks.
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However, maximal ADT sets are not necessarily connected.

Hence, a further decomposition into connected ADT sets is

generally needed; then we get non-maximal ADT sets. Having a

decomposition of the set of transitions into ADT sets inducing

connected subnets, we are able to coarsen automatically a given

net according to the minimal T-invariants’ inherent structure:

N macro transitions abstract from connected ADT sets, and

N places on the hierarchy’s top level correspond to the interface

between the ADT sets.

The coarse structure gives a structured representation of all T-

invariants, which may contribute to a better understanding of the

net behavior. Moreover, the coarse structure allows to identify

sensitive net parts, i.e. the knock out of which would switch off a

significant part of the network, a whole pathway or even prevent

any output; see [20] for a more detailed discussion.

Notably, ADT sets can be directly computed, without having to

compute the set of minimal T-invariants first. This can be done by

checking the following system of linear equations for solvability for

all pairs of transitions i,j[T :

:y~0,y=0,y§0,y(i)~0,y(j)=0:

Thus the amount of T-invariants, which grows exponentially with

the net size in the worst-case, does not establish a limiting factor

for our hierarchical structuring approach.

Continuous Petri Nets
This work involves the differential equations formalism. For this

purpose we read the constructed qualitative Petri nets describing

the hypoxia network as continuous Petri nets [10,30].

In a continuous Petri net the marking of a place is no longer an

integer, but a positive real number. It is called token value, which

we interpret as the concentration of the species modeled by the

place. Due to the influence of time, a continuous transition is

forced to fire as soon as possible. The instantaneous firing of a

transition is carried out like a continuous flow, whereby the

strength of the flow is determined by the transition’s firing rate

function. The current deterministic firing rate generally depends on

the current marking of the pre-places, i.e. of the current

concentrations of the reaction’s precursors. In the case of mass-

action kinetics, a transition’s rate function is given by the product

of its pre-places (read as real-valued variables) and its kinetic

constant.

A continuous Petri net uniquely defines a system of ordinary

differential equations (ODEs), where one equation describes the

continuous change over time on the token value of a given place

by the continuous increase of its pre-transitions’ flow and the

continuous decrease of its post-transitions’ flow, i.e., each place p
subject to changes (i.e. dynamic variables) generates an equation:

dm pð Þ
dt

~
X

t[.p

f t,pð Þv tð Þ{
X

t[p.

f p,tð Þv tð Þ:

Please note, the notation m(p) refers to the current token value

of place p and corresponds to the more popular notation ½p�. f (t,p)
specifies the weight of the arc going from transition t to place p,

f (p,t) the weight of the arc going from place p to transition t, and

v(t) the rate function of t. .p yields the set of pre-transitions of p,

and p. yields the set of post-transitions of p.

Each equation corresponds basically to a line in the incidence

matrix, whereby now the matrix elements consist of the rate

functions multiplied by the arc weight, if any. Moreover, as soon as

there are transitions with more than one pre-place, we get typically

a non-linear system, which calls for a simulative solution by

numerical integration of the system on hand. With other words,

the continuous Petri net becomes the structured description of the

corresponding ODEs, see also [10,11,30]. The correspondence

between the graphical notations, Petri nets and the differential

equations terminologies is summarized in Table 6.

Supporting Information
The Petri net tools used in this case study as well as all Petri net

versions of the hypoxia response network are available at http://

www-dssz.informatik.tu-cottbus.de.

We also provide self-contained supplementary material (see S1

on the journal website) with the formal definitions of all technical

terms of the Petri net theory used in this paper.

Supporting Information

Supplementary Material S1 Formal definitions for the

Method section.

Found at: doi:10.1371/journal.pone.0008600.s001 (0.08 MB

PDF)
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