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Simple Summary: MicroRNAs (miRNAs) are short RNA molecules that can interfere with messenger
RNA and thus influence protein translation. In recent years, it has been revealed that miRNAs are
also involved in carcinogenesis. However, the effect of each miRNA can differ significantly, and
they may exhibit pro-tumorigenic or anti-tumorigenic properties. Breast cancer is one of the most
common cancer entity in women and distant metastases are frequently observed in the skeleton.
The progression of breast cancer bone metastasis largely depends on the interaction of tumor cells
and cells of the bone microenvironment. In this review, we summarize the current findings related
to miRNAs in metastatic bone disease with a focus on breast cancer. This review emphasizes the
impact of miRNAs on both cancer cells and key cells of the bone microenvironment. Additionally, we
discuss the potential use of miRNAs as a therapeutic target and elaborate advantages and hurdles of
miRNA treatment.

Abstract: Bone metastasis is a frequent complication in patients with advanced breast cancer. Once in
the bone, cancer cells disrupt the tightly regulated cellular balance within the bone microenvironment,
leading to excessive bone destruction and further tumor growth. Physiological and pathological
interactions in the bone marrow are mediated by cell–cell contacts and secreted molecules that include
soluble proteins as well as RNA molecules. MicroRNAs (miRNAs) are short non-coding RNAs that
post-transcriptionally interfere with their target messenger RNA (mRNA) and subsequently reduce
protein abundance. Since their discovery, miRNAs have been identified as critical regulators of
physiological and pathological processes, including breast cancer and associated metastatic bone
disease. Depending on their targets, miRNAs can exhibit pro-tumorigenic or anti-tumorigenic
functions and serve as diagnostic and prognostic biomarkers. These properties have encouraged
pre-clinical and clinical development programs to investigate miRNAs as biomarkers and therapeutic
targets in various diseases, including metastatic cancers. In this review, we discuss the role of miRNAs
in metastatic bone disease with a focus on breast cancer and the bone microenvironment and elaborate
on their potential use for diagnostic and therapeutic purposes in metastatic bone disease and beyond.

Keywords: microRNA; bone metastasis; breast cancer; bone microenvironment; targeted therapy

1. Introduction

Breast cancer is the most commonly diagnosed cancer in women worldwide [1].
Increased awareness, improved screening methods, and novel treatment strategies have
had a significant impact on disease management, and survival rates for patients with
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primary breast cancer are now above 90% [2]. Nevertheless, breast cancer remains the
leading cause of cancer-related deaths in female patients [1], with the majority of cancer
deaths being a consequence of metastatic disease [3]. About 70% of patients with advanced
breast cancer will develop metastases in the skeleton, making bone the most frequent
site of breast cancer metastasis [4]. Patients suffering from breast cancer bone metastasis
are confronted with a tremendous reduction in quality of life, predominantly due to
the accelerated cancer-induced bone loss. They often suffer from skeletal-related events
(SREs) such as bone pain, spinal cord compression, fractures, and consequently increased
morbidity [5].

The establishment of metastatic disease requires several sequential steps, including
the detachment of cancer cells from the primary tumor, intravasation and circulation in
the blood stream, followed by extravasation at secondary organs, adaptation to the new
environment, and, ultimately, proliferation and the formation of overt metastasis [6]. Dis-
seminated breast cancer cells that home to bone arrive in a heterogenous microenvironment
that comprises several cell types originating from either hematopoietic or mesenchymal
stem cells (HSCs or MSCs, respectively). Briefly, bone-resorbing osteoclasts, which are
derived from HSCs, and bone-forming osteoblasts, derived from MSCs, maintain skele-
tal integrity through a tightly balanced remodeling cycle [7]. Key signaling pathways
that regulate osteoclast and osteoblast activity involve the receptor activator of nuclear
factor-κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) axis and canonical
Wnt signaling [8]. Additionally, the bone marrow comprises a dense vascular system
that couples osteogenesis and angiogenesis [9]. Tight interactions between bone cells and
disseminated tumor cells (DTCs) are critical for successful establishment of bone metastasis.
Tumor-supportive environments, so-called “niches”, are thought to regulate tumor cell
homing, dormancy, and colonization at secondary sites [10–14]. Over the last years, signifi-
cant progress has been made in identifying and characterizing the cellular and molecular
composition of the bone metastasis niche [14–18], which includes the HSC, endosteal (os-
teoblasts, osteoclasts, fibroblasts), and vascular (endothelial cells) niches [14,16]. However,
several other cell types that are present in the bone, such as adipocytes, megakaryocytes,
and immune cells, have been reported to regulate metastatic breast cancer growth in
bone [17,19,20]. The precise location of these niches remains to be defined; similarly, the
extent to which these niches overlap and/or interact remains challenging to elaborate.

2. The Bone Microenvironment as a Therapeutic Target in Breast Cancer
Bone Metastasis

Once disseminated breast cancer cells proliferate in bone, the tumor–bone cell inter-
actions result in accelerated osteoclast-mediated bone resorption, a key characteristic of
the disease. Briefly, tumor cell-derived factors (e.g., parathyroid hormone-related protein
(PTHrP) and interleukin 11 (IL-11)) alter the RANKL/OPG ratio in favor of osteoclast activ-
ity [21,22]. During the increased osteolysis, tumor growth-promoting factors are released
from the bone matrix (e.g., bone morphogenetic proteins (BMPs), insulin-like growth factor
1 (IGF-1), and transforming growth factor-beta1 (TGF-β1)), resulting in a feedforward loop
referred to as the vicious cycle of bone metastasis [21,22]. Osteoclasts are key drivers of the
breast-cancer-induced osteolysis; therefore, standard-of-care treatment includes, besides
conventional radiation and chemotherapy, agents that inhibit excessive bone resorption [23].
In clinical practice, bisphosphonates (e.g., Zoledronic acid) and Denosumab, an antibody
against RANKL, are approved for treatment, while several other osteoclast-modifying
agents are still under investigation (e.g., mTOR-inhibitors, Src-inhibitors, cathepsin K-
inhibitors) [23–26]. However, these treatments are only palliative, and the disease remains
incurable. In order to counteract the cancer-induced osteolysis, bone-anabolic agents (e.g.,
Romosozumab, an antibody against Sclerostin [27]), which are used in clinical practice
to treat osteoporosis, are currently emerging as promising treatment approaches [28]. In-
deed, sclerostin-antibody treatment altered the number and activity of osteoblasts and
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osteoclasts in vivo, protected against cancer-induced bone destruction, and reduced the
bone-metastatic burden in mouse models of breast cancer bone metastasis [29].

Despite these recent advances, disrupting the tight interaction between DTCs and
cells of the bone microenvironment remains a challenge that has yet to be overcome.
Besides direct cell–cell contact, pathological crosstalk between tumor cells and bone cells is
mediated via secreted factors. In this context, microRNAs, small non-coding RNAs that can
be transferred between cell types, e.g., via extracellular vesicles (EVs) and exosomes [30–32],
have been suggested as potential therapeutic targets to intervene with the vicious cycle of
bone metastasis.

3. MicroRNAs (miRNAs)

miRNAs are small (~20 nucleotides in length), non-coding RNA molecules that post-
transcriptionally control gene expression [33]. Mechanistically, miRNAs bind to their
complementary sequences on the 3′ untranslated region (UTR) of their target mRNA and
consequently repress the production of the target protein [33,34]. miRNA biogenesis in-
volves several sequential steps, including the generation of primary miRNAs (pri-miRNA)
and precursor miRNAs (pre-miRNA, around 60–70 nucleotides), with the subsequent
release of mature miRNAs [35]. These processes involve cleaving steps that are performed
by Drosha in the nucleus and Dicer in the cytoplasm, two ribonuclease III endonucle-
ases [35–37] (Figure 1). Since their original discovery in C. elegans in 1993 [33], a great
number of miRNAs have been reported and characterized. Functionally, miRNAs are
crucial in regulating physiological cell processes, including differentiation, proliferation,
migration, and apoptosis [38,39]. miRNAs are dysregulated in several cancers [36], includ-
ing breast cancer [40]. Studies have now also reported unique miRNA expression patterns
depending on the breast cancer subtype [41,42]. Importantly, miRNAs can act as both
tumor suppressors and oncogenes, depending on their target gene, and the expression
of miRNA clusters with both pro- and anti-tumorigenic roles has been reported in breast
cancer [43].
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RNA-induced silencing complex (RISC) [45]. Finally, unwinding of the miRNA duplex takes place, 
enabling the binding of the miRNA to its target mRNA with consequent degradation or transcrip-
tional repression [44,45]. 
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breast cancer tumor marker CA15-3 [52]. Furthermore, lower levels of miR-34a were ob-
served in patients suffering from breast cancer in comparison to benign breast disease and 
healthy controls. These data underline the potential use of miR-34a in breast cancer diag-
nosis, as well as differential diagnosis of malignant and benign breast disease. In the same 
study, Zaleski et al. found a correlation between miR-34a and the Union for International 
Cancer Control (UICC) stage. The authors observed lower levels of miR-34a in breast can-
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III enzyme, Drosha, is formed [44]. Pre-miRNAs are formed upon the cleavage of pri-miRNA
by Drosha [44]. This process takes place in the nucleus. Following exportation to the cytoplasm
by exportin 5 (XPO5), Dicer, another ribonuclease III enzyme, processes the pre-miRNA into its
mature form [45]. miRNAs are further processed by the Argonaute (AGO) family of proteins to
form an RNA-induced silencing complex (RISC) [45]. Finally, unwinding of the miRNA duplex
takes place, enabling the binding of the miRNA to its target mRNA with consequent degradation or
transcriptional repression [44,45].

4. miRNAs in Breast Cancer Bone Metastasis

Tightly regulated crosstalk of bone and tumor cells drives the progression of breast can-
cer growth in bone. miRNAs have been shown to affect both bone and tumor cells [32,46–48],
highlighting their capability to interfere with the vicious cycle of bone metastasis (Figure 2).
Indeed, altered expression of miRNAs has been associated with disease progression and
clinical outcome in breast cancer patients, and they are emerging as attractive non-invasive
clinical biomarkers [49,50]. Although several established biomarkers for breast cancer
diagnosis (e.g., CA 15-3 and CEA) exist, the combination of two or more tumor markers
with miRNAs has been shown to increase their diagnostic value [51,52]. A study by Zaleski
et al. demonstrated an improvement in both the sensitivity and specificity of breast cancer
diagnosis when using miR-34a in addition to the well-established breast cancer tumor
marker CA15-3 [52]. Furthermore, lower levels of miR-34a were observed in patients
suffering from breast cancer in comparison to benign breast disease and healthy controls.
These data underline the potential use of miR-34a in breast cancer diagnosis, as well as
differential diagnosis of malignant and benign breast disease. In the same study, Zaleski
et al. found a correlation between miR-34a and the Union for International Cancer Control
(UICC) stage. The authors observed lower levels of miR-34a in breast cancer patients of
UICC stage II or higher, underlining the potential role of miRNAs as prognostic biomarkers
in breast cancer [52]. Thus, the significance of miRNAs is not limited to diagnosis; they may
also contribute as prognostic biomarkers [53], as miR-10b was one of the first identified
miRNAs highly expressed in metastatic breast cancer [54]. High expression levels of miR-
10b were observed in breast cancer patients with lymphatic node metastasis [55], as well as
in patients with distant metastases in the bone [56] and brain [57]. Furthermore, studies
have shown that lower levels of miR-124 in primary breast cancer tissues correlate with
shorter bone-metastasis-free survival in breast cancer patients [46]. As another example,
miR-218 serum levels have been shown to be elevated in patients with breast cancer bone
metastasis when compared to those in patients without metastasis [32]. Similarly, altered
miR-124 and miR-218 expression in breast cancer cells has been associated with increased
aggressiveness in vitro and in vivo [46,58,59].
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Figure 2. miRNAs in the bone metastatic environment. The bone microenvironment consists of sev-
eral cell types, including osteoblasts, osteoclasts, stromal cells, and endothelial cells, that orchestrate
the tightly regulated bone metabolism. Cancer- and bone-cell-derived miRNAs can either promote or
suppress metastatic outgrowth of tumor cells within the bone. The figure depicts the role of miRNAs
in breast cancer bone metastasis and groups them according to their influence on tumor growth.

4.1. Direct Effects of miRNAs on Breast Cancer Cells and Metastasis

Extensive evidence indicates that miRNAs directly affect breast cancer cell behavior
and bone metastasis progression. For example, knockdown of miR-1976 in breast cancer cell
lines stimulated migration, invasion, and adhesion in vitro when compared to a control [60].
Similarly, lack of miR-1976 promoted epithelial-to-mesenchymal transition (EMT), a key
step in metastasis establishment [61], and enhanced cancer stem cell (CSC) properties [60].
Opposing results were observed when cells were transfected with miR-1976 mimics, and
the authors attributed a reduced presence of lung metastasis in vivo to miR-1976-induced
alterations in EMT and the CSC pool [60]. Similarly, miR-429 has been shown to reduce
proliferation, migration, and invasion, as well as EMT, in breast cancer cells in vitro and
to inhibit bone metastasis in vivo [62]. A reduced invasion capacity was also observed in
the MDA-B02 bone metastatic breast cancer cell line upon overexpression of miR-30b-d,
miR-30b-c, or miR-30a-b-c-d-e [63]. Others have shown that transglutaminase 2 (TG2)
downregulates miR-205 in breast cancer cells and thereby promotes bone metastasis [64].
Overexpression of miR-143 in breast cancer cells reduced cell viability, migration, and
invasion in vitro through targeting mitogen-activated protein kinase 3 [65]. In contrast,
others have shown that overexpression of miR-20a-5p stimulates the migration and invasion
of breast cancer cells [66]. Studies have also suggested that miR-34a-5p regulates Met
expression in breast carcinomas and, thus, progression to metastasis in bone [67]. Met
receptor and its ligand hepatocyte growth factor (HGF) are involved in several cellular
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signaling pathways that regulate proliferation, migration, and invasion, and aberrant Met
signaling has been reported in several types of cancer [68]. Indeed, an inverse correlation
of miR-34a-5p and the tyrosine kinase receptor Met in breast cancer bone metastasis has
been reported [67]. When associated with Met/HGF, miR-34a-5p has thus been suggested
as a diagnostic marker predicting poor prognosis [67]. Furthermore, overexpression of
miR-203 and miR-135 reduced the migration, proliferation, and viability of breast cancer
cells in vitro, with reduced tumor growth in bone observed in vivo [69].

Osteomimicry-Related Genes in Breast Cancer Cells Are Altered by miRNAs

In order to increase their chance of survival in bone, disseminated breast cancer cells
are capable of acquiring a bone-cell-like phenotype, a process known as osteomimicry [70].
Osteomimicry factors expressed by breast cancer cells that home to bone include, for
example, Runt-related transcription factor 2 (Runx2), Bone Morphogenetic Proteins (BMPs),
Alkaline Phosphatase (ALP), PTHrP, RANKL, or OPG—reviewed in great detail in [71].
Interestingly, miRNAs can affect the expression of several osteomimicry-related genes in
breast cancer cells, which could account for their metastasis regulatory function [58,63].
For example, overexpression of miR-30s in MDA-B02 cells reduced osteomimetic genes,
including CX43 and CDH11, as well as Dickkopf-related protein 1 (DKK1) [63]. On the other
hand, miR-218 increased the expression of bone sialoprotein (BSP), osteopontin (OPN), and
a chemokine receptor, CXCR4, in MDA-MB-231 breast cancer cells [58], suggesting that miR-
218 supports osteomimicry and, thus, breast cancer cells homing to bone. Furthermore, miR-
218 expression in breast cancer cells was associated with elevated Wnt-signaling. Compared
to MCF10A breast epithelial cells, metastatic MDA-MB-231 breast cancer cells expressed
higher levels of miR-218 and Wnt target genes LEF1 and TCF-4 [58]. In osteoblasts, miR-
218 induced and stimulated differentiation, and it induced Wnt signaling by targeting
DKK2, Sost, and Sfrp2 [58]. These studies suggest a miR-218/Wnt signaling loop between
breast cancer cells and osteoblasts that supports breast cancer bone metastasis [58]. Indeed,
overexpression of miR-218 in breast cancer cells promoted osteolytic disease in vivo, while
antagonizing miR-218 attenuated tumor growth and bone destruction [59].

Runx2 has been shown to be a direct target of several miRNAs. miR-30 family members
reduced the expression of Runx2 in MDA-MB-231 breast cancer cells [63]. Others have
shown that ectopic expression of miR-135 and miR-203 in combination with systemic
administration of miR-135 and miR-203 reduces orthotopic tumor growth and spontaneous
metastasis of MDA-MB231 cells to bone in vivo [69]. Consistently, reduced tumor growth
in bone was observed when cells expressing miR-135 and miR-203 were directly injected
into the tibiae [69]. This was accompanied by reduced cancer-induced osteolysis and fewer
TRAP+ osteoclasts. The authors suggest reduced expression of Runx2 and related target
genes, including IL-11, MMP13, and PThrP, in breast cancer cells in the presence of miR-135
and miR-203 as a working mechanism [69].

4.2. miRNAs Disrupting the Tumor Cell–Bone Cell Crosstalk

The studies described in the previous section report direct effects of miRNAs on tumor
cell behavior (e.g., migration, invasion, EMT). However, miRNAs can also indirectly affect
tumor growth via effects on cells of the tumor/bone microenvironment (Figure 3). The
bone microenvironment consists of various cell types, including bone-specific cells such
as osteoclasts, osteoblasts, stromal cells, and endothelial cells [16]. A complex signaling
network mediates the crosstalk of the plethora of cells within the bone. Especially over
the past years, the bone microenvironment has gained tremendous attention, as research
suggests an extensive interplay between tumor cells and cells of the tumor microenviron-
ment [14,16]. In the following sections we review the effects of miRNAs on key players
within the bone microenvironment.
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Figure 3. Direct and indirect roles of miRNAs in bone metastasis. miRNAs can affect cancer cells
directly, either promoting (green arrows) or inhibiting (red arrows) tumor growth as depicted in the
top panel. In addition, miRNAs affect other cells in the bone microenvironment, including osteoblasts,
osteoclasts, and endothelial cells.

4.2.1. Osteoclasts

Given the osteolytic nature of breast cancer bone metastases, the role of osteoclasts in
metastatic bone disease has been extensively studied. Various miRNAs have been discov-
ered as important players in this process. For instance, lentivirus-mediated restoration of
miR-124 in breast cancer cells reduced metastatic burden and osteolysis in hind limbs of
mice when compared to a control [46]. Similar results were observed when mice received
treatment with ago-miR-124 after tumor cell injection [46]. Reduced osteoclast number and
activity are suggested to be at least partially responsible for the reduced metastatic burden
in vivo. Indeed, complementary mechanistic in vitro studies support this hypothesis, as
conditioned medium from miR-124-transfected breast cancer cells reduced the viability and
differentiation of osteoclasts in vitro [46]. Guo and colleagues showed that breast-cancer-
cell-derived exosomes containing miR-20a-5p stimulated the proliferation of bone marrow
macrophages and differentiation into osteoclasts in vitro [66]. Recently, Wu et al. reported
that exosomal miR-19a not only is a factor secreted by ER+ bone metastatic breast cancer
cells, but also mediates osteolysis by creating an osteoclast-enriched environment within
the bone in the presence of integrin-binding sialoprotein [72].

miRNAs can also directly affect osteoclast differentiation. For instance, ectopic expres-
sion of miR-141, miR-190, miR-219, miR-33a, and miR-133a reduced osteoclast differentia-
tion and/or activity in vitro [73]. Combined ectopic expression of miR-141/190/219 was
even more effective in reducing osteoclast differentiation and activity than single agents;
these effects were further enhanced upon the addition of zoledronic acid, a standard-of-care
agent used to ease cancer-induced bone disease [73]. Similarly, systemic miRNA treatment
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resulted in increased trabecular bone volume in BALB/c mice in vivo [73]. Additionally,
miR-141 and miR-219 reduced bone metastasis of SCP28 cells in vivo [73].

Increased levels of matrix metalloproteinase (MMP)-13 have been shown to stimulate
osteoclast activity in the metastatic bone environment [74], suggesting that MMPs mediate
tumor cell–bone cell communication in the metastatic environment. Conditioned medium
from breast cancer cells transfected with miR-124 inhibited the expression of MMP-13 in
MC3T3 osteoblasts when compared to a control [46], which could, further on, indirectly
reduce osteoclast activity and have consequences on the establishment of breast cancer
bone metastasis. In agreement, miR-203 and miR-135 reduced the expression of MMP-13
in breast cancer cells [69], which could partially account for the reduced bone metastases
in mouse models in these studies. Others have shown that breast-cancer-cell-derived
miR-429 reduces osteoclast differentiation in vitro via MMP-9 and V-crk sarcoma virus
CT10 oncogene homolog-like (CrkL) [48]. In vivo, mice injected with miR-429-transfected
breast cancer cells had reduced cancer-induced osteolysis when compared to a control,
and histological analysis of the bone metastases showed a reduction in both CrKL and
MMP-9 expression in the miR-429 group [48]. Others have shown that overexpression
of miR-20a-5p in MDA-MB-231 breast cancer cells increases the expression of MMP-2
and MMP-9, which is associated with increased migration and invasion in vitro [66]. In
addition, breast-cancer-cell-derived miR-20a-5p was able to stimulate osteoclastogenesis
in vitro [66].

Interleukins (ILs) have been identified as key regulatory soluble factors that mediate
the tumor–bone cell interaction in breast cancer bone metastasis [75]. Several studies have
shown that ILs affect the function and maturation of both osteoblasts and osteoclasts [76–78].
The majority of the published literature on the matter reports osteoclast stimulatory effects
of ILs [79–82], which highlights them as a therapeutic target in breast-cancer-mediated
osteolysis. Studies by Cai and colleagues have attributed the anti-metastatic effects of miR-
124 to downregulation of IL-11 and identified IL-11 as a direct downstream target of miR-
124 [46]. Briefly, in these studies, mice injected with control cells had significantly increased
metastatic burden and osteolysis in hind limbs when compared to mice injected with MDA-
MB-231-miR-124 cells, with similar results observed when using ago-miR-124 treatment [46].
The reduced metastatic burden was accompanied by reduced osteoclast number and
activity in vivo. Complementary in vitro studies, in which conditioned medium from miR-
124-transfected breast cancer cells reduced the viability and differentiation of osteoclasts,
support this hypothesis [46]. Importantly, breast cancer cells expressing miR-124 had
significantly lower mRNA and protein levels of IL-11 when compared to control [46].
This observation, in addition to complementary in vitro and in vivo studies using IL-
11 neutralizing antibodies and recombinant human IL-11, demonstrated that miR-124
induced downregulation of IL-11 is partially responsible for reduced breast cancer bone
metastasis [46].

TGF-ß is a key regulator of the vicious cycle of bone metastasis; it is released from the
bone matrix during osteolysis and consequently stimulates tumor progression [83]. Studies
have shown that TGF-ß increases the secretion of osteoclast-stimulating ILs (IL-11 and
IL-8) in breast cancer cells [84]. In this context, miR-204, miR-211, and miR-379 have been
identified as key regulators of the TGF-ß-induced production of IL-11 in bone metastatic
MDA-MB-231 breast cancer cells [85]. By binding to the IL-11 3′ UTR, these miRNAs reduce
IL-11 mRNA and protein secretion [85].

Additionally, conditioned medium from bone metastatic MDA-B02-cells that overex-
pressed miR-30 family members reduced osteoclast formation and differentiation in vitro,
potentially through reduced expression of the osteoclast-promoting cytokines IL-11 and
IL-8 [63]. Furthermore, conditioned medium from MDA-B02 breast cancer cells stably
transfected with miR-30s decreased the formation of TRAP-positive multinucleated os-
teoclasts in vitro [63]. In vivo, mice injected with MDA-B02-pmiR30a-b-c-d-e tumor cells
had reduced osteolytic bone disease, reduced bioluminescence signal, and reduced TRAP+
osteoclasts when compared to a control [63].
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4.2.2. Osteoblasts

Studies by Liu et al. reported that overexpression of miR-218 in breast cancer cells
supports bone metastasis via direct and indirect effects on osteoblasts [32]. The authors
reported two independent mechanisms by which miR-218 could affect breast cancer bone
metastasis. First, bone metastatic breast cancer cells secrete EVs that contain elevated
levels of miR-218 when compared to the parental cell line [32]. The addition of EVs from
MDA-231-miR-218 cells to osteoblast cultures reduced type I collagen mRNA expression
and the bone formation marker P1NP—a measure of osteoblast activity—in the medium.
Similar results, namely, reduced P1NP serum levels, were observed in vivo upon injection
of EVs from MDA-231-miR-218 cells when compared to a control [32]. Interestingly though,
no effect on osteoblast differentiation was observed in these experiments [32]. As a second
mechanism, the authors suggested that overexpression of miR-218 in breast cancer cells
alters the expression and secretion of inhibin beta subunits, which consequently affects
procollagen processing in osteoblasts [32].

Others have shown that, via reducing DKK1—a key inhibitor of osteoblast differentia-
tion [86]—in breast cancer cells, miR-30s stimulates osteoblast differentiation as compared
to a control [63]. Additional key regulatory pathways in bone remodeling as well as cancer-
induced bone disease include the RANK/RANKL/OPG axis [87] and Wnt signaling [88].
Several miRNAs have been shown to alter the RANKL/OPG ratio with potential conse-
quences on the progression of breast cancer bone metastasis [46,48]. Both miR-124 and
miR-429, in independent studies, decreased RANKL and increased OPG in osteoblasts,
leading to an altered RANKL/OPG ratio [46,48].

4.2.3. Further Components of the (Bone) Tumor Microenvironment

Besides the heterogenous cell populations and soluble factors, the tumor microenvi-
ronment also comprises the extracellular matrix (ECM). MMPs are proteolytic enzymes
that are involved in remodeling and/or degrading the ECM, a requirement for metastasis
establishment. Additionally, MMPs mediate several steps of metastasis, including tumor
angiogenesis and tumor cell proliferation, migration, and invasion [89,90]. Indeed, studies
have shown that miRNAs can affect metastatic breast cancer growth in bone via altering
the availability of MMPs [46].

The bone microenvironment is highly vascularized [9], and evidence supports the
detrimental role of the bone marrow vascular niche in the initiation and progression of
breast cancer bone metastasis [11,14,16,91]. miRNAs are also proposed to be involved in
regulating tumor angiogenesis. In mouse models of lung cancer bone metastasis, miR-192
has demonstrated anti-metastatic potential. Mice injected with cancer cells overexpressing
miR-192 showed reduced osteolytic bone lesions and decreased metastatic burden in the
bones [31]. Interestingly, tumors in the miR-192 group were less vascularized, and in vitro
studies showed that miR-192 reduces the migration of HUVEC cells, suggesting that miR-
192 exerts anti-metastatic effects via vascular endothelial cells [31]. In these experiments,
miRNAs were transferred between cell types via exosome-like vesicles [31].

5. Therapeutic Implications of miRNAs in Metastatic Bone Disease

As stated before and summarized in Table 1, miRNAs may serve as a potential novel
therapeutic targets in cancer as they modify both bone and tumor cells. However, to date,
no clinical trials targeting breast cancer or metastatic bone disease have been registered
in the clinical trials database (www.clinicaltrials.gov, accessed on 22 November 2021).
Nevertheless, a handful of Phase I trials and one Phase II clinical trial have been registered
in the clinical trials database, targeting miRNAs or using miRNA mimics as a drug in
cancer treatment of leukemia, lymphoma, and other solid cancer entities [92].

www.clinicaltrials.gov
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Table 1. miRNAs involved in breast cancer bone metastasis.

MicroRNA Target Effect on Bone
Metastasis Reference

miR-10b Promoting [56,93,94]

miR-1976
Phosphatidylinositol-4,5-

bisphosphate 3-kinase catalytic
subunit gamma (PIK3CG)

Inhibiting [60]

miR-429
V-crk sarcoma virus CT10

oncogene homolog-like (CrkL) and Inhibiting [62]

Matrix metalloprotease 9 (MMP-9) [32,46–48]

miR-30 family
Osteomimicry genes e.g., Cadherin
11 (CDH11) and Integrin Alpha 5

(ITGA5), Interleukins
Inhibiting [63]

miR-205 Inhibiting [64]

miR-143 Mitogen-activated protein kinase 3
(MAPK3) Inhibiting [65]

miR-20a-5p SRC Kinase Signaling Inhibitor 1
(SRCIN1) Promoting [66]

miR-34a-5p Met Inhibiting [67]

miR-135 Runt-related transcription factor 2
(Runx2) Inhibiting [69]

miR-203 Runx2 Inhibiting [69,93]

miR-124 Interleukin-11 (IL-11) Inhibiting [46]

miR-19a Phosphatase and Tensin homolog
(PTEN) Promoting [72]

miR-141 Microphthalmia-associated
transcription factor (Mitf) Inhibiting [73]

miR-219 Mitf, TNF receptor associated
factor (Traf-6) Inhibiting [73]

miR-204, miR-211,
and miR-379 IL-11 Inhibiting [85]

miR-218
Dickkopf-related protein 2 (DKK2),
Secreted frizzled-related protein 2

(sFRP2), Sost
Promoting [32,58]

miR-192
IL-8, Intercellular Adhesion

Molecule (ICAM) and C-X-C Motif
Chemokine Ligand 1 (CXCL1)

Inhibiting [31]

Regarding breast cancer and metastatic bone disease, several in vivo studies demon-
strated miRNA-mediated effects on the bone microenvironment leading to reduced tumor
growth and attenuated osteolytic disease. For example, high levels of miR-30 [63], miR-
124 [46], miR-192 [31], and miR-429 [62] have been shown to have a beneficial effect with
reduced osteolysis in vivo. In addition to osteolytic lesions, the frequency of bone metas-
tasis or tumor burden in general can be altered by differential miRNA expression. For
instance, reduced tumor burden, especially in the bone, mediated by miR-135 and miR-203
has been observed in mice [69]. The identification of disease-specific miRNAs brings us a
step forward towards more personalized medicine, utilizing an endogenous molecule.

With respect to breast cancer, Ell and colleagues demonstrated that after systemic
application of pre-miR-141 and pre-miR-219, the number of osteoclasts was significantly
decreased. Although the analysis revealed that osteoblast differentiation was not affected,
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the authors could not rule out the possibility that other cells are affected by systemic
pre-miRNA treatment [73].

6. Future Perspectives

In general, RNA-based medicine has received tremendous attention within the last
decade [95]. Beyond mRNA-based drugs, non-coding RNAs, including miRNAs, are
amenable for therapeutic development. Although miRNA-based drugs have not reached
clinical approval yet, several compounds are in pre-clinical and clinical development. These
drugs target various diseases, including cancer, where great progress has been made in
recent years. In particular, the fact that miRNAs and other oligonucleotide drugs are
adaptable molecules holds great promise in personalized medicine with individual and
agile drug design.

However, given their biological properties, there are still potential pitfalls related to
miRNA-related medicine. As mentioned before, miRNAs are usually short non-coding
RNA molecules with an approximate length of 20 nucleotides. Their small size may be
an advantage for drug delivery but may lack target specificity. One potential solution to
overcome the low specificity could be a mixture of different miRNAs with the same target
to ensure reliable target inhibition. Nonetheless, this approach might also increase the rate
of off-target effects and, therefore, potentially also the risk of adverse events. In addition to
off-target effects, unwanted and unpredictable side-effects within the complex signaling
networks should be considered and extensively investigated.

Once the obstacles—including off-target effects, tissue specificity, and delivery
systems—have been overcome, it can be assumed that treatments using miRNAs as targets
will further progress, and novel drug candidates will be developed for diseases with high
unmet medical needs, such as metastatic bone disease. Given that miRNAs were first
discovered only a few decades ago, miRNA-based drug development is still in its infancy,
but the conditions are promising for the development of next-generation miRNA-based
drugs. More fundamental and translational studies are needed to better understand the
mechanisms of action, as well as potential adverse effects related to miRNAs in various
disease conditions.

7. Conclusions

The currently available results of preclinical studies suggest an important role of
miRNAs in metastatic bone disease. Several miRNAs have already been characterized, and
the data indicate a potential novel druggable target in cancer therapy that should be further
evaluated in pre-clinical development and clinical trials.
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