
Research Article
Advancements in RNASeqGUI towards a Reproducible
Analysis of RNA-Seq Experiments

Francesco Russo, Dario Righelli, and Claudia Angelini

Istituto per le Applicazioni del Calcolo, CNR, 80131 Napoli, Italy

Correspondence should be addressed to Francesco Russo; russfran@na.iac.cnr.it

Received 2 July 2015; Revised 11 December 2015; Accepted 3 January 2016

Academic Editor: Sı́lvia A. Sousa

Copyright © 2016 Francesco Russo et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We present the advancements and novelties recently introduced in RNASeqGUI, a graphical user interface that helps biologists
to handle and analyse large data collected in RNA-Seq experiments. This work focuses on the concept of reproducible research
and shows how it has been incorporated in RNASeqGUI to provide reproducible (computational) results. The novel version of
RNASeqGUI combines graphical interfaces with tools for reproducible research, such as literate statistical programming, human
readable report, parallel executions, caching, and interactive and web-explorable tables of results. These features allow the user to
analyse big datasets in a fast, efficient, and reproducible way. Moreover, this paper represents a proof of concept, showing a simple
way to develop computational tools for Life Science in the spirit of reproducible research.

1. Introduction

RNA-Seq [1–4] is now the most widely used technology to
study genome-wide gene expression and regulatory mecha-
nisms in response to stress conditions or drug treatments and
cell development as well as in the onset and progression of
several diseases [5], including cancer. In particular, RNA-Seq
experiments allow profiling an entire transcriptome under a
condition of interest, detecting differences in transcriptional
activities that can be associated with different physiological
or pathological conditions and identifying and estimating
isoform abundances as well as identifying novel genes or iso-
forms. The overall goal of RNA-Seq experiment is to under-
stand which functional processes are significantly altered
(either upregulated or downregulated) when comparing two
or more conditions and, then, to identify the biological
mechanisms regulating such changes.

Usually, RNA-Seq data analyses are complex and require
the usage of several different tools to manipulate and process
data, depending on the particular question the researcher
is interested in (see [6, 7] for a review). When a reference
genome is available, a typical analysis starts with the align-
ment of millions of raw sequences (i.e., short sequences

of about 100 bp, often from paired-end libraries) collected
for each sample by means of a mapping procedure (using
TopHat [8], e.g.). For complex eukaryotic genomes such as
human or mouse, the alignment files (usually in the so-called
bam format) are quite big (about 2–5GBytes per sample).
In a typical experiment, researchers can produce from few
units to tens of samples for a total amount that can reach
tens or hundreds of GBytes. Moreover, with the decrease of
experimental cost, such amount is expected to increase with
fast rate.

Subsequently, the analysis proceeds with the gene expres-
sion quantification (i.e., it can be viewed both as a simple
read counting over a list of annotated genes or as isoform
quantification [2]). Then, the data has to undergo a series
of preprocessing steps, which include filtering and normal-
ization of the gene expression values aimed at making the
samples comparable and removing different sources of biases.

To have a better insight into the biological process under
study, a crucial step is the identification of differentially
expressed (DE) genes across different biological conditions
[7, 9, 10]. In this context, a researcher has to use one or
more statistical tests that are able to assess whether observed
differences in gene expression levels aremore likely due to the

Hindawi Publishing Corporation
BioMed Research International
Volume 2016, Article ID 7972351, 11 pages
http://dx.doi.org/10.1155/2016/7972351

http://dx.doi.org/10.1155/2016/7972351


2 BioMed Research International

differences in the biological conditions rather than to chance.
A typical output of this step is a list of DE genes usually
containing few hundreds of elements.

The final step of the analysis consists in the identification
of pathways and functionalities significantly altered among
conditions. Such point is crucial since it allows the biological
interpretation of the analysis and it is usually known as
Pathway and Gene Ontology analysis.

Several tools are available in the literature to carry out
RNA-Seq analyses. Most of them operate as command-line
(see, e.g., the Tuxedo pipeline in [11]). Unfortunately, the
usage of command-line tools can be intimidating for those
with a limited knowledge of programming languages. To
this purpose, a series of web-servers and graphical user-
friendly interfaces (GUIs) have been recently developed.
For instance, the well-known web-platform Galaxy [12] has
included several tools to build efficient pipelines for carrying
out RNA-Seq data analysis and it represents one of the most
efficient environments to handle big data over the cloud. The
R package oneChannelGUI [13], originally developed for the
analysis of microarray data, has been extended to handle
RNA-Seq experiments and it is now a tool that combines
several different functions for quantification and differential
expression analysis. Analogously, RobiNA [14] and RNASe-
qGUI [15] are similar tools devoted to the identification of
DE genes from RNA-Seq experiments. More recently, RAP
[16] has been proposed as a cloud computing web-interface
offering the possibility of creatingmodular analysis workflow.
We refer to [17] for a comprehensive review of the available
GUIs.

All those GUIs or web-platforms are easy to use and do
not require a specific knowledge of a programming language.
Therefore, they allow a nonexpert user to run complex and
personalized analyses on the datasets of interest. On one
hand, web-servers are more suited to build large pipelines
that are automatically and completely executed on large
amount of data; on the other hand GUIs are more suited
for an interactive analysis of experimental data in which
the researcher decides which step to perform on the basis
of the inspection of preliminary results. However, the price
to pay for this additional flexibility consists in the difficulty
of keeping track of all actions performed while using GUIs
[17]. Clearly, the latter point is considered a limit in terms of
reproducibility of computational results.

In the last decade, we have seen a growing interest in
the literature on the concept of reproducible (computational)
research (RR in the rest of the paper) [18–21], motivated
by the need to better improve the transparency of scientific
publications and the knowledge transfer. In our opinion, RR
is extremely important since it provides a way to inspect the
correctness and authenticity of results presented in published
papers. This feature consists in the possibility of reexecuting
an entire analysis, or parts of it, of accessing all the details,
of learning more about a particular study, or of replicating
a study up to a certain point and then trying alternative
analyses by using othermethods (e.g., different normalization
procedures and/or filtering procedures and/or DE methods
and/or pathway types of analysis). The problem of the
reproducibility of data analysis is of great relevance in the Life

Sciencewhen the analyses are very complex, time consuming,
and computationally demanding [22, 23].

In fact, to assure reproducibility, it is necessary to store
all initialization parameters and codes of the methods used
during an analysis. To date, the lack of reproducibility has
constituted one of the main limitations of GUIs. However,
in recent years, many different tools provide novel function-
alities that support developers to build software (including
GUIs) capable of keeping track of all actions performedwhile
executing an analysis (see [24] for an overview).

In this work, we present the novel advancements we
introduced in RNASeqGUI [15] with particular focus on the
incorporation of the RR.

Since the first version of RNASeqGUI, we increased
both the number of interfaces and the number of function-
alities within each interface. We added the possibility of
handling complex/multifactor designs (up to two covariates)
by using several different DE methods and the possibility of
conducting two different types of analyses for biological/
technical replicates. We also introduced the possibility of
performing the pathway analysis with three different meth-
ods, such as David [25], Graphite [26], and Gage [27], and of
performing the Gene Ontology analysis with David andGage
interfaces. Each of these functionalities gives the possibility
of querying some of the major pathway databases. In partic-
ular, via David and Graphite it is possible to query Kegg
(http://www.genome.jp/kegg/), Reactome (http://www.reac-
tome.org/), and Biocarta (http://cgap.nci.nih.gov/Pathways/
BioCarta Pathways), whileGage usesKegg pathway database.

Moreover, in order to face the limit of the reproducibility
of the analyses with GUIs, we incorporated the RR feature
inside RNASeqGUI. As a result, all actions and steps are
automatically recorded and visualized in a human readable
report. This report integrates raw data, result tables, figures,
and software code. Not only does the report contain detailed
information about all the actions performed (along with
all initialization settings), but also the code chunks are
executed each time the user makes an action. Therefore,
each code chunk corresponds to a part of the analysis and
can be executed independently in R console. More precisely,
the report is presented as html file in a human readable
format, ready for submission as supplementary material of
a publication or as piece of code in public repositories like
rpubs.com. In a full RR spirit, each time the report file is
generated, all the code chunks contained inside the report are
executed again.

Clearly, the full reexecution might be very time consum-
ing for both the authors and the readers of a publication, since
the amount of data involved in RNA-Seq study can be very
large. Moreover, a potential reader might not have the com-
putational resources to run all the analyses. To address this
limitation, we also implemented a feature in RNASeqGUI,
called caching [28]. Even though this feature is widely used in
many fields of Computer Science, from Internet browsers to
smartphone apps, it is still not commonly used in Life Science.
Caching constitutes a solution to speed up repetitive and
computational expensive code chunks by using intermediate
results stored in precomputed databases. In this way, a third-
party user with small computational resources can either



BioMed Research International 3

replicate some pieces of the analysis or execute an alternative
analysis starting from a middle point in the report.

The paper is organized as follows. In Section 2.1, we
describe the novel version of RNASeqGUI. In Sections 2.2
and 2.3 we explain how RR and caching have been imple-
mented in our platform. Section 2.4 explains how parallel
computations are currently handled in RNASeqGUI. Sec-
tion 2.5 summarizes the main environmental requirements.
Section 2.6 describes how to extend RNASeqGUI by adding
new functionalities. Finally, Section 3 concludes the paper
and draws future development directions.

2. Material and Methods

2.1. RNASeqGUI. RNASeqGUI [15] is an open source graph-
ical user interface, implemented in R, devoted to the analysis
of RNA-Seq experiments. It requires the RGTK2 graph-
ical library [29] to run and is freely available at http://
bioinfo.na.iac.cnr.it/RNASeqGUI.Overall,RNASeqGUIinte-
grates—in a unified platform—several of R packages com-
monly used in the analysis of RNA-Seq data.

RNASeqGUI works at two different levels at the same
time. The first one is the user level composed of all the
interfaces available to the user in order to analyse data, while
the second one, the reporting level, is automatically executed
while the user operates at the first level and regards the
caching and reporting features. This new reporting level (not
present in previous versions [15, 17]) automatically keeps
track of all the operations performed at the user level by
registering all the user actions and the input and output data
and by creating the databases of the intermediate results.This
second level makes the analysis reproducible and constitutes
one of the main novelties of the new version of RNASeqGUI.

Figure 1 illustrates a typical RNA-Seq analysis workflow
and represents a schematic view of the most important
features available in RNASeqGUI. The old functionalities are
represented in blue while the novel ones are represented in
orange. Moreover, two levels, namely, panel (a) and panel (b),
respectively, user level and reporting level, are illustrated.

2.1.1. RNASeqGUI Main Interface. The user interface of the
novel version of RNASeqGUI (RNASeqGUI 1.1.0) is divided
into seven main sections, as illustrated in Figure 2.

Each section is devoted to a particular step of the data
analysis process and contains the access to one or more
interfaces. RNASeqGUI is designed to represent a typical
RNA-Seq analysis workflow that starts with the alignment file
(in bam format). This approach is aimed at guiding the user
through all the steps usually performed in an analysis. Clearly,
the user is not obliged to access each section, but he can start
from any section he wants and decide to skip some steps he
considers unnecessary for the specific type of study carried
on. As a consequence, RNASeqGUI results are very flexible
for any type of usage.

Within each section or interface, the user can decide
what is the most appropriate action to perform in the next
step on the basis of the results obtained in the previous one.
For instance, by looking at mean-difference plot (MDplot),
density function (Density or Qplot Density), boxplot of counts

(Count Distr), and scatterplot (Plot All Counts) generated
in the Data Exploration Interface the user can decide if
a normalization step is needed and also which type of
normalization to perform.

In the current release, the first section covers files
exploration of the alignment files (bam format). The second
concerns the counting process of the mapped reads against a
gene annotation file aimed at quantifying the gene expression
levels. The third focuses on the exploration of count-data, on
the normalization procedures, and on the filtering process,
aimed at detecting and removing sources of biases. The
fourth is about the identification of the DE genes that can be
performed by several methods. Such a crucial section now
includes also the possibility of handling complex/multifactor
designs up to two covariates, as well as of using methods that
can apply a suitable statistical hypothesis test in case of either
technical or biological replicates (see Figure 1). Typical output
of this section is the list of DE genes between conditions of
interest.

The fifth section regards the inspection of the results
produced by these methods and the quantitative comparison
among them (via Venn diagrams). Using the interfaces
available in this section it is possible to produce a wide
series of graphical outputs such as Venn diagrams, volcano
plots, fold change plots and histograms of 𝑝 values, FDRs,
and posterior probabilities. The novel sixth section regards
the Gene Ontology and Pathway analysis (see Figure 1).
The introduction of such a section allows a self-contained
analysis and interpretation of the findings from a biological
perspective.

Finally, the seventh section contains the button to gener-
ate the HTML report of the analysis executed (called Report)
and Utility Interface that provides a series of useful functions
for general purposes.

Therefore, the novel version of RNASeqGUI allows the
user to conduct a complete analysis from the quality assess-
ment of the alignment files to the Gene Ontology and
Pathway analysis, deeply extending the range of applications
with respect to previous versions [15, 17]. Moreover, thanks
to some peculiar functionalities, like Heatmap in the Gage
interface, it is possible to interpret the change in gene
expression levels for a particular gene path of interest.

The user manual (available at http://bioinfo.na.iac.cnr.it/
RNASeqGUI/Manual.html) constitutes a detailed descrip-
tion of all functionalities, with several suggestions and exam-
ples to guide the user through the analysis of RNA-Seq data.

Moreover, in the spirit of RR the novel version of
RNASeqGUI keeps track of all actions made by the user
and generates a final executable human readable report inte-
grating data and tables of results and figure with executable
code chunks. To the best of our knowledge, it is the first
tool devoted to the analysis of RNA-Seq that combines the
flexibility of an interactive point&click analysis with the tools
that assure reproducibility [17].

2.1.2. RNASeqGUI Usage. Each analysis must start with the
creation or the selection of a project that refers to a specific
experiment. In principle, the user should create a specific
project for each dataset and for each workflow applied to



4 BioMed Research International

Enrichment analysis

Bam exploration

Read count

Data exploration FilteringNormalization

Data analysis

Technical Biological

Simple design Complex design

Result inspection Result comparison

GraphiteGageDavid

PathwayGene Ontology

CachingHTML report

replicatesreplicates

Tools
Reporting

research
Reproducible

(a) (b)

Figure 1: RNASeqGUI pipeline. Old features are represented in blue and the novel features are represented in orange. The boxes represent
the software modules, while the ellipsis represents the modules functionalities. Panel (a) illustrates all the features the user can interact with,
while panel (b) shows the reproducible research modules that work without user interaction. Note that panel (a) also illustrates a typical
workflow to be executed during the analysis of RNA-Seq data experiments.

such dataset. Then, by choosing the button corresponding
to a desired step, it proceeds with the access to an interface
necessary to configure all those parameters useful to perform
the chosen step (for this task a button, called “How to use this
interface,” helps the user to set them; however,more advanced
information on the usage is provided in the user manual).
After the configuration of all required parameters, the user
must press the button corresponding to the action he wants
to perform. Subsequently, in the R console several messages
are displayed to inform the user about the progress of the
execution (which can last for few seconds, several minutes,

or hours, the latter for the functionalities in the Read Count
Interface).

Figure 3 shows an example of interaction with the Result
Inspection Interface, which helps to better understand how the
software interfaces are structured.

After a job is executed, the results are presented to the user
in a graphical form or, alternatively, the user receives the path
where to access them. This second case shows up when the
output consists of large tables.

As mentioned before, typical input data consists in a
series of alignment files (in bam format) that can be obtained



BioMed Research International 5

Figure 2: RNASeqGUI main interface.

from the raw sequences using standard mapping procedures.
Moreover, in order to quantify gene expression levels the user
has also to provide a gene annotation file (in GTF format).
The sections are aimed at guiding the user through the data
analysis following flow-charts such as the one described in
Figure 1. However, we set the sections to be as independent
as possible. In this way, the user is not obliged to follow a
predetermined flux of execution, but he is free to use each
section without a preestablished order.

2.1.3. RNASeqGUI Output. RNASeqGUI provides results of
any action in graphical and/or table-formatted form.The first
time the user creates a project, a specific folder, named as the
project, is created in the RNASeqGUI Projects root directory.
In that folder the user will find all intermediate and final
results of his analysis.

The project directory contains three main directories
named Logs, results, and plots, as illustrated in Figure 4.

The Logs folder contains all the files (report.Rmd,
report.html, report.md, report.txt, and sessionInfo.txt files)
reporting all the actions performed during the analysis (see
Section 2.2) and a subdirectory named cache within the
caching database files (see Section 2.3). Each database file
is created when an action is performed to store the results
obtained and the parameters used.

The Results folder contains all the tables produced during
theDE analysis and the Pathway andGeneOntology analysis.
They are saved in txt and tsv (tab separated values) format.
Moreover, when the Read Count Interface is used, a new
subdirectory inside the Results folder is created to store the
results of the specific read count function invoked (either
SummarizeOverlaps from Subread package [30] or Feature-
Counts from GenomicRanges package [31]).

In theResults folder, thanks to theReportingTools package
[32], most relevant result tables are also available in html
format.Therefore, they can also be opened via a web browser
(see Figure 5) and it is possible to interact with them.They can
be filtered by values, sorted by using different column criteria.
Moreover, it is possible to access available information of the

genes by a single click.This action automatically redirects the
user to two databases, such as http://www.ensembl.org/ and
http://www.ncbi.nlm.nih.gov/, containing relevant biological
information on the selected gene. Therefore, it is possible
to retrieve information of biological interest in a fast and
interactive way.

Finally, the Plots directory contains all the figures in pdf
format, generated during the analysis.

2.2. Reproducible Research in RNASeqGUI. RR is the key
aspect of the novel version of RNASeqGUI. By means
of literate statistical programming novel internal module
devoted to the reproducibility automatically keeps track of
all lines of code corresponding to the actions performed
by the user during the analysis, by writing (in the Logs
folder) R markdown file, named report.Rmd (an example is
given in Supplementary Material Figure 1, available online at
http://dx.doi.org/10.1155/2016/7972351).

Each time an action is made by the user, RNASeqGUI
registers it with amark in theRmd file, writing the executed R
code. In this way, when the user clicks the report button (see
Figure 2), the report.Rmd file is compiled and executes all the
marks and the code lines and generates the HTML file named
report.html (see Supplementary Material Figure 2).

Hence, this report.html contains all the information about
the code lines used by RNASeqGUI plus all the initialization
parameters and the input and output data. Such a report
can be considered as a full detailed log file, written in
human readable format, usable as supplementary material,
containing executable code along with all initializations and
printed results (plots, tables, arrays, etc.).

Therefore, not only does RNASeqGUI provide the open
source code, but also all those lines do, which have been
actually executed during a specific analysis. They are clearly
reported as code chunks.These lines constitute complete and
independent units of code that can be executed indepen-
dently in R console without the need to install RNASeqGUI.

For instance, the Supplementary Material Figure 3 shows
a scrap of the HTML report, which contains a code chunk
used to produce a fold change plot (PlotFC). In this way, if
a reader is interested in generating the same plot, he does
not need to read the code of the entire analysis performed.
It will be sufficient to copy and paste the code chunk for the
particular step of interest inside R console, to generate the
same plot. Finally, the user can compare the plot generated
in this way with the plot depicted in the report.html to check
whether they are identical. This can be done with all the code
chunks inside the report.html.

2.3. Caching in RNASeqGUI. Another aspect of the RR is
given by the possibility of fast reproducing and sharing of
analyses and results via Internet.

In fact, when generating the report file, the execution of
all code chunks used during the entire performed analysis
can be very time consuming. Therefore, to face such issues
we used caching: a strategy to store data into several objects
in order to retrieve them in a faster and secure way.

Figure 6 represents a typical execution flux involving
the caching procedure. During step 1, a code chunk is



6 BioMed Research International

①

② ③

④

⑤

⑥

Figure 3: An example of execution flux for the results inspection interface. From the main interface, by clicking the results inspection interface
button, a second interface opens. This interface is useful to inspect the results produced, by DE analysis. For each DE method, there is a
dedicated button that opens a new box at the bottom of the interface. Such interface contains other buttons. We notice that each interface
presents a “How to use this interface” button helping the user with the configuration of the parameters. After selecting results file (NoiSeq
results file in this example), it is possible to use one of the buttons in the additional boxes, to make a graphical representation of the results
(PlotFC in this example).

executed producing output data and caching database file
within input/output variables. During step 2, when the same
code chunk is executed, the output is drawn from the cache
database file.

There are lots of R packages useful for caching [33–35].
We choose filehash [36], since it better fits our needs and
storage idea. We wrapped some of its functionalities in order
to implement, in the novel version of RNASeqGUI, a caching
system to create a set of cache database files, stored in the
Logs/cache folder, for each analysis flux (project) of RNASe-
qGUI. In this way, each function, when executed, generates
a cache database file within the input/output variables and
some partial computation data. These files are useful during
the RNASeqGUI report generation.

Indeed, after the execution of each code chunk, RNASe-
qGUI generates a mark for it in the R markdown file (cf.
Section 2.2) and a cache database file, traced in the R
markdown file (see Figure 7(a)).

In this way, during the report generation (activated by the
report button in the main interface) the data are loaded from
the cache database file, speeding up the entire process (see
Figure 7(b)), instead of reexecuting the entire code written in
the report.Rmd file.

Moreover, in a complete spirit of transparency the user
can share these files via Internet making it possible to
reproduce the same analysis without complication of data
research and manipulation.

In other words, cachingmakes all the intermediate results
available in order to check them separately and to be used
as starting points for different analyses. As a consequence,
the implementation of caching allows the user to run in a
more efficient way different types of analyses on the same
dataset and to easily modify an analysis while still preserving
reproducibility.

However, when sharing cached data through Internet,
reproducibility might be limited unless both the raw data and
the code needed to generate cached data are released.

To better understand how caching is implemented in
RNASeqGUI, in Supplementary Material Figure 4 a scrap of
the HTML report file is represented. To check the execution
flux and to speed up the report compilation at the same
time, both the commented code used to generate the cached
data (in the blue parenthesis (A)) and the code used to
load cached data (red parenthesis (B)) are reported. In
Supplementary Material Figure 4(B) the result of the upper
quartile normalization, stored in theuqua.db object, is loaded
via the function LoadCachedObject. In this way, to check
if the cached object is correct, a third-party user is able to
generate the cached data by uncommenting the code reported
in Supplementary Material Figure 4(A) that was used to
produce the uqua.db object.

Furthermore, even if some code chunks are very fast to
be generated (few seconds), it would be better to cache them
as well, since during the generation of the HTML report,



BioMed Research International 7

asciiascii

f(x)f(x)

RNASeqGUI_Projects

MyProject2

pdf figures
csv tables

Read counts

R markdown
file

Full HTML

MyProject1

Logs ResultsPlots

Cache

Caching database
files

Feature counts Summarize

MyProject3

report
Reporting Tools

html files
Overlaps

txt files
Read counts

txt files

The web
f(x)

ascii asciiasciiascii

Figure 4: Output tree for the RNASeqGUI package.

without them, all the code chunks are reexecuted and the
overall process could last for several minutes.

To allow a better management of the entire data analysis
and an automatic way to keep track of the computational
protocol used for analysing a specific dataset, we combined a
human readable report, within the code chunks, and caching
in RNASeqGUI.

We stress that each execution of RNASeqGUI is linked
with the name of the project chosen by the user and the name
of the input file used. All the settings are saved in the report.
Therefore, the user will keep track of all changes of the input
parameters used. However, if a user changes the parameters
within the same project and with the same input file then
the cashed object will be overwritten along with the previous
result file. To avoid such problem, one should create a single
project for a specific workflow. Therefore, if a user wants to
try two or more different settings of the same method then
he has to create one project for each setting.

2.4. Parallel Computing in RNASeqGUI. Another crucial
aspect, while working with large amount of data, is the

computational cost required to complete each job. In par-
ticular, when working with large alignment files from RNA-
Seq experiments, the most computational demanding step
consists of the read counting process (i.e., the quantification
level of each gene in each sample). To handle such process in a
reasonable amount of time also on standard desktop, we used
parallel computing within the R environment.

There are several packages that help to implement parallel
computing in R, like doparallel [37] combined with foreach
[38] and snow [39]. In RNASeqGUI we used BiocParallel
[40], a package allowing parallel evaluation for Bioconductor
[41] objects. We chose this package for its multiplatform
portability and since it is optimized to work on bam files.

We tested the parallel computation by using two example
datasets, one composed of six bam files of a cell culture from
mouse (mouse dataset) and one consisting of seven samples
of a cell culture from Drosophila melanogaster (Drosophila
dataset), published in [42]. The mouse dataset has a total
amount of data of about 38.4GB and approximately 572
million reads, while the Drosophila dataset has a total of
approximately 360 million reads for about 11.2 GB.



8 BioMed Research International

Figure 5: An example of HTML table using the ReportingTools package. By clicking on the gene of interest the author is redirected to
well-known databases, such as NCBI or ENSEMBL.

Cache
database

file

Output data

Code chunk

① ②

①

②

Figure 6: A typical execution flux involving the caching procedure.
During step 1, a code chunk is executed producing output data and
caching database file within input/output data. During step 2, when
the same code chunk is executed, the output is drawn from the cache
database.

For the test we used two machines with R version 3.1.2:
one desktop personal computer and one node of a cluster.The
desktop PC is configured with an Intel I7-4790K@4.00GHz
running Ubuntu 14.04, while the cluster node is equipped
with 12 cores of Intel Xeon X5650@2.67GHz, running Cen-
tOS release 6.5.

Table 1: Time (in seconds) necessary to execute the counting
procedure for RNA-Seq reads on two example datasets (mouse and
Drosophila datasets). On the rows are represented two datasets
used for the read counting step and the columns indicate if the
parallel computing was used or not, on two different machines. The
test was performed on a desktop personal computer with Intel I7-
4790K@4.00GHz and 24GBof RAM, runningUbuntu 14.04 and on
aCluster node composed of 12 cores of Intel XeonX5650@2.67GHz,
with 64 GB of RAM running CentOS release 6.5.

Desktop Cluster
Parallel (s) Not parallel (s) Parallel (s) Not parallel (s)

Mouse 725 2027 2339 3409
Drosophila 442 559 416 969

As shown in Table 1, the computational time is drastically
reduced when we made use of parallel computing, both on
desktop PC and on cluster node.

On the rows of Table 1 the times in seconds for the
tested datasets are reported, using the SummarizeOverlaps
method of the GenomicRanges package [31]. The columns are
the computational times, measured with and without parallel
computing, on each machine, using 8 cores on the desktop
PC and 12 cores on the cluster.

2.5. Installation and Environmental Requirements. RNASe-
qGUI is designed as a desktop application and requires a
machine equipped with at least 8GB of RAM. The novel



BioMed Research International 9

R markdown
file

Cache database 
file 1

Cache database 
file 2

Cache database 
file 3

Cache database 
file n

Function 2 execution

Function 3 execution

Function n execution

Putting database 1 loading mark

Putting database 2 loading mark
Putting database 3 loading mark

Puttin
g database n loading mark

Fu
ncti

on
 1 

ex
ecu

tio
n

...

(a)

R markdown
file

Loading
database 1

Loading
database 2

Loading
database 3

Loading
database n

Compiling trigger

Full HTML report

Cache

file 1
database

Cache

file 2
database

Cache

file 3
database

Cache

file n
database

· · ·

(b)

Figure 7: Schematic illustration of caching in RNASeqGUI. Panel (a) represents the caching file creation process. For each button of
RNASeqGUI, one caching database file is created and a mark in the R markdown file is inserted, for its future load. Panel (b) represents
the loading process during the report creation. Once the html button (in the log files section of RNASeqGUI) is selected, the R markdown file
is compiled and data in the caching file are loaded to speed up the creation of the entire report.

version 1.1.0 successfully runs with R v3.2.2 and Bioconductor
v3.2 with all major operative systems such as Linux, Mac OS
X Yosemite, and Windows. Its functionalities work both on
complex eukaryotic genomes (e.g., human andmouse) and on
simpler organisms (e.g.,Drosophilamelanogaster).The instal-
lation procedure and the additional requirements (specific for
each operative system) are detailed in the user manual, avail-
ableat http://bioinfo.na.iac.cnr.it/RNASeqGUI/Manual.html.

It is also possible to use RNASeqGUI (v 1.1.0) on a cluster
environment. To start RNASeqGUI on the cluster, we sim-
ply used the command ssh -X user@clusterhostdomain and
running RNASeqGUI in R shell as described in the manual.
In this way, it was possible to use RNASeqGUI in remote
mode from a computer running the X unix window system,
making the data present on the cluster directly accessible by
RNASeqGUI.



10 BioMed Research International

2.6. Extensibility. One of the most appealing features of
RNASeqGUI regards the fact that it is relatively simple to add
a new functionality. In fact, the steps necessary to add the new
button (i.e., functions) are only three.

Firstly, the user has to write his own function, putting it
in an appropriate R source file. After that, he has to write the
code to create the button in the selected interface section, and,
finally, he has to create the code to bind together the function
and the button.Theusermanual explains through an example
how the latter two steps can be performed.

As a consequence, in the spirit of open source, the
user is allowed not only to include de novo developed
functions, but also to use already developed packages in order
to extend the features of RNASeqGUI. However, we note
that the new method added by a user will not possess the
reproducible research and caching features straightforwardly.
Consequently, the usage of the new method will not be
reported in the report file generated by RNASeqGUI. Future
releases of RNASeqGUI will try to face this issue as well.

3. Conclusions

In this work, we have presented a novel version of RNASe-
qGUI that combines the flexibility of a graphical user inter-
face with the tools available in Bioconductor for RR. The
novel version significantly extends the original version with
respect to several aspects [15, 17] (see Figure 1).

For each comprehensive analysis, not only does RNASe-
qGUI keep track of all actions executed by the user, but it also
provides a set of cached objects saved in a database (by storing
some intermediate results of the analysis) and in addition
it generates a human readable report, which combines data,
figures, and tables within the source code used to generate
them. In this manner, the results (i.e., figures, tables, etc.)
can be directly used in a publication, while the report can be
viewed as a kind of supplementary information of a paper.
Moreover, the database of cached objects can be shared via
Internet allowing collaborators, reviewers, and readers to
perform the same analysis and using the same data. Thanks
to the report and thanks to the availability of cached objects
database, not only does the user promote the transparency
of his own work, but he also improves knowledge transfer
and allows other readers to execute alternate analysis starting
from intermediate results of the original analysis carried out.

Moreover, we extended RNASeqGUI in the number of
interfaces and functionalities, also within each interface.
We added the possibility of handling complex/multifactor
designs by using several different DE methods and the
possibility of conducting two different types of analyses
for biological/technical replicates and also implemented the
Pathway and Gene Ontology analysis. Therefore, the novel
version constitutes a self-containing software able to support
researchers in extracting biologically relevant information
from the analysis of large datasets of RNA-Seq experiments.
RNASeqGUI is a growing platform for the analysis of RNA-
Seq data. Future releases will include other functionalities
such as the possibility of identifying and estimating isoform
abundances, in order to extend the range of supported
features [17].

Finally, we aim that this work will constitute a proof of
concept on how RR feature can be incorporated in GUIs
in a useful and suitable way. Therefore, it will promote the
development of novel computational software for the analysis
of other NGS data (e.g., ChIP-Seq data, BS-Seq, etc.) in the
spirit of RR.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors want to thank M. Franzese, V. Costa, and R.
Esposito for suggestions and discussions and D. Granata for
technical support. This work was supported by the Italian
Flagship InterOmics Project (PB.P05), BMBS COST Action
BM1006, PON01-02460.

References

[1] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolution-
ary tool for transcriptomics,” Nature Reviews Genetics, vol. 10,
no. 1, pp. 57–63, 2009.

[2] V. Costa, C. Angelini, I. De Feis, and A. Ciccodicola, “Uncover-
ing the complexity of transcriptomes with RNA-Seq,” Journal of
Biomedicine and Biotechnology, vol. 2010, Article ID 853916, 19
pages, 2010.

[3] F. Ozsolak and P. M. Milos, “RNA sequencing: advances,
challenges and opportunities,” Nature Reviews Genetics, vol. 12,
no. 2, pp. 87–98, 2011.

[4] E. L. van Dijk, H. Auger, Y. Jaszczyszyn, and C. Thermes,
“Ten years of next-generation sequencing technology,” Trends
in Genetics, vol. 30, no. 9, pp. 418–426, 2014.

[5] V. Costa, M. Aprile, R. Esposito, and A. Ciccodicola, “RNA-
Seq and human complex diseases: recent accomplishments and
future perspectives,” European Journal of Human Genetics, vol.
21, no. 2, pp. 134–142, 2013.

[6] S. Pepke, B. Wold, and A. Mortazavi, “Computation for ChIP-
seq and RNA-seq studies,” Nature Methods, vol. 6, no. 11, pp.
S22–S32, 2009.

[7] A. Oshlack, M. D. Robinson, andM. D. Young, “From RNA-seq
reads to differential expression results,” Genome Biology, vol. 11,
no. 12, article 220, 2010.

[8] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S.
L. Salzberg, “TopHat2: accurate alignment of transcriptomes in
the presence of insertions, deletions and gene fusions,” Genome
Biology, vol. 14, no. 4, article R36, 2013.

[9] C. Trapnell, D. G. Hendrickson, M. Sauvageau, L. Goff, J. L.
Rinn, and L. Pachter, “Differential analysis of gene regulation at
transcript resolution with RNA-seq,” Nature Biotechnology, vol.
31, no. 1, pp. 46–53, 2013.

[10] F. Finotello and B. Di Camillo, “Measuring differential gene
expression with RNA-seq: challenges and strategies for data
analysis,” Briefings in Functional Genomics, vol. 14, no. 2, pp.
130–142, 2015.

[11] C. Trapnell, A. Roberts, L. Goff et al., “Differential gene and
transcript expression analysis of RNA-seq experiments with



BioMed Research International 11

TopHat and Cufflinks,” Nature Protocols, vol. 7, no. 3, pp. 562–
578, 2012.

[12] J. Goecks, A. Nekrutenko, J. Taylor et al., “Galaxy: a com-
prehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences,”
Genome Biology, vol. 11, no. 8, article R86, 2010.

[13] R. Sanges, F. Cordero, and R. A. Calogero, “oneChannelGUI:
a graphical interface to Bioconductor tools, designed for life
scientists who are not familiar with R language,” Bioinformatics,
vol. 23, no. 24, pp. 3406–3408, 2007.

[14] M. Lohse, A. M. Bolger, A. Nagel et al., “RobiNA: a user-
friendly, integrated software solution for RNA-Seq-based tran-
scriptomics,” Nucleic Acids Research, vol. 40, no. 1, pp. W622–
W627, 2012.

[15] F. Russo and C. Angelini, “RNASeqGUI: a GUI for analysing
RNA-Seq data,” Bioinformatics, vol. 30, no. 17, pp. 2514–2516,
2014.

[16] M. D’Antonio, P. D’Onorio De Meo, M. Pallocca et al., “RAP:
RNA-Seq analysis pipeline, a new cloud-based NGS web appli-
cation,” BMC Genomics, vol. 16, supplement 6, article S3, 2015.

[17] A. Poplawski, F. Marini, M. Hess, T. Zeller, J. Mazur, and H.
Binder, “Systematically evaluating interfaces for RNA-seq anal-
ysis from a life scientist perspective,” Briefings in Bioinformatics,
2015.

[18] R. Gentleman, “Reproducible research: a bioinformatics case
study,” Statistical Applications inGenetics andMolecular Biology,
vol. 4, no. 1, article 2, 25 pages, 2005.

[19] R. D. Peng, “Reproducible research in computational science,”
Science, vol. 334, no. 6060, pp. 1226–1227, 2011.

[20] D. C. Ince, L. Hatton, and J. Graham-Cumming, “The case for
open computer programs,” Nature, vol. 482, no. 7386, pp. 485–
488, 2012.

[21] “Enhancing reproducibility,” Nature Methods, vol. 10, no. 5,
article 367, 2013.

[22] R. D. Peng, “Reproducible research and Biostatistics,” Biostatis-
tics, vol. 10, no. 3, pp. 405–408, 2009.

[23] A. Nekrutenko and J. Taylor, “Next-generation sequencing
data interpretation: enhancing reproducibility and accessibil-
ity,” Nature Reviews Genetics, vol. 13, no. 9, pp. 667–672, 2012.

[24] V. Stodden, F. Leisch, and R. D. Peng, Eds., Implementing
Reproducible Research, CRC Press, 2014.

[25] C. Fresno and E. A. Fernández, “RDAVIDWebService: a versa-
tile R interface to DAVID,” Bioinformatics, vol. 29, no. 21, pp.
2810–2811, 2013.

[26] A. L. Tarca, S. Draghici, P. Khatri et al., “A novel signaling
pathway impact analysis,” Bioinformatics, vol. 25, no. 1, pp. 75–
82, 2009.

[27] W. Luo, M. S. Friedman, K. Shedden, K. D. Hankenson, and P.
J. Woolf, “GAGE: generally applicable gene set enrichment for
pathway analysis,” BMC Bioinformatics, vol. 10, no. 1, article 161,
2009.

[28] R. D. Peng, “Caching and distributing statistical analyses in R,”
Journal of Statistical Software, vol. 26, no. 7, pp. 1–24, 2008.

[29] M. Lawrence and T. L. Duncan, “RGtk2: a graphical user
interface toolkit for R,” Journal of Statistical Software, vol. 37, no.
8, pp. 1–52, 2010.

[30] Y. Liao, G. K. Smyth, and W. Shi, “The Subread aligner: fast,
accurate and scalable read mapping by seed-and-vote,” Nucleic
Acids Research, vol. 41, no. 10, article e108, 2013.

[31] M. Lawrence, W. Huber, H. Pags, P. Aboyoun, and M. Carlson,
“Software for computing and annotating genomic ranges,” PLoS
Computational Biology, vol. 9, no. 8, Article ID e1003118, 2013.

[32] M. A. Huntley, J. L. Larson, C. Chaivorapol et al., “Reporting-
Tools: an automated result processing and presentation toolkit
for high-throughput genomic analyses,” Bioinformatics, vol. 29,
no. 24, pp. 3220–3221, 2013.

[33] Z. Liu and S. Pounds, “An R package that automatically
collects and archives details for reproducible computing,” BMC
Bioinformatics, vol. 15, article 138, 2014.

[34] S. Falcon, weaver: Tools and extensions for processing Sweave
documents. R package version, 1(0), 2007.

[35] Y. Xie, Dynamic Documents with R and Knitr, CRC Press, New
York, NY, USA, 2nd edition, 2015.

[36] R. Peng, “Interacting with data using the filehash package for
R,” Working Paper 108, Department of Biostatistics Working
Papers, Johns Hopkins University, Baltimore, Md, USA, 2006.

[37] Revolution Analytics and S. Weston, “DoParallel: foreach par-
allel adaptor for the parallel package,” R Package Version, vol. 1,
no. 8, 2014.

[38] S. Weston, “UsingThe foreach Package,” 2014.
[39] L. Tierney, A. J. Rossini, and N. Li, “Snow: a parallel computing

framework for the R system,” International Journal of Parallel
Programming, vol. 37, no. 1, pp. 78–90, 2009.

[40] M. Morgan, V. Carey, and M. Lawrence, “BiocParallel: Bio-
conductor Facilities for Parallel Evaluation,” R Package Version
0.4.1, 2014.

[41] R. C. Gentleman, V. J. Carey, D. M. Bates et al., “Bioconductor:
open software development for computational biology and
bioinformatics,”GenomeBiology, vol. 5, no. 10, article R80, 2004.

[42] A. N. Brooks, L. Yang, M. O. Duff et al., “Conservation of
an RNA regulatory map between Drosophila and mammals,”
Genome Research, vol. 21, no. 2, pp. 193–202, 2011.


