
MRI Pattern Recognition in Multiple Sclerosis Normal-
Appearing Brain Areas
Martin Weygandt1*., Kerstin Hackmack1., Caspar Pfüller2, Judith Bellmann-Strobl2,3, Friedemann

Paul2,3,4, Frauke Zipp5, John-Dylan Haynes1,6
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Abstract

Objective: Here, we use pattern-classification to investigate diagnostic information for multiple sclerosis (MS; relapsing-
remitting type) in lesioned areas, areas of normal-appearing grey matter (NAGM), and normal-appearing white matter
(NAWM) as measured by standard MR techniques.

Methods: A lesion mapping was carried out by an experienced neurologist for Turbo Inversion Recovery Magnitude (TIRM)
images of individual subjects. Combining this mapping with templates from a neuroanatomic atlas, the TIRM images were
segmented into three areas of homogenous tissue types (Lesions, NAGM, and NAWM) after spatial standardization. For each
area, a linear Support Vector Machine algorithm was used in multiple local classification analyses to determine the
diagnostic accuracy in separating MS patients from healthy controls based on voxel tissue intensity patterns extracted from
small spherical subregions of these larger areas. To control for covariates, we also excluded group-specific biases in
deformation fields as a potential source of information.

Results: Among regions containing lesions a posterior parietal WM area was maximally informative about the clinical status
(96% accuracy, p,10213). Cerebellar regions were maximally informative among NAGM areas (84% accuracy, p,1027). A
posterior brain region was maximally informative among NAWM areas (91% accuracy, p,10210).

Interpretation: We identified regions indicating MS in lesioned, but also NAGM, and NAWM areas. This complements the
current perception that standard MR techniques mainly capture macroscopic tissue variations due to focal lesion processes.
Compared to current diagnostic guidelines for MS that define areas of diagnostic information with moderate spatial
specificity, we identified hotspots of MS associated tissue alterations with high specificity defined on a millimeter scale.
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Introduction

Following the current diagnostic guidelines for multiple sclerosis

(MS), the so-called ‘McDonald criteria’ [1,2] and novel criteria

[3], exclusively lesion related MR criteria are considered

diagnostically informative. However, recent studies using conven-

tional MRI as well as more advanced imaging sequences have

identified additional markers that were abnormal in MS patients.

For example, recent studies found evidence for grey matter (GM)

volume loss in MS patients [4,5]. These GM alterations could be

detected using conventional MR sequences. However, there is also

a variety of disease-related features that could be detected only

with advanced MR techniques (e.g. magnetic resonance spectros-

copy [6,7]; diffusion tensor imaging [8,9]; high-field MRI [10,11])

and appeared to be ‘invisible’ in standard MR images. Due to this

dissociation, such areas have been termed areas of ‘normal-

appearing white matter’ (NAWM) and ‘normal-appearing grey

matter’ (NAGM) respectively [12]. Collectively, they are known as

normal-appearing brain tissue (NABT; [13]).

Recent work applying pattern recognition techniques (‘classifi-

ers’) to the analysis of neuroimaging data could show that these

methods have higher sensitivity than traditional approaches, i.e.

conventional statistical methods [14] and visual inspection [15].

These studies demonstrated that classifiers were more successful

than conventional statistical approaches in detecting cognitive

states from fMRI data in healthy subjects [16,17,18] as well as

human diagnosticians in detecting Alzheimer’s disease based on

structural MR images [14,15]. Please see [14] for an overview on
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pattern recognition in MRI. Finally, classifiers have been used to

detect neurological diseases based on high-resolution MR images

[15,19,20,21], however not yet in MS.

In the present study, we investigate whether MS patients can be

separated from healthy controls acquired by conventional MR

using pattern classification strategies. We conducted three analyses

based on structural T2-weighted images. In the lesion area

analysis, we searched across all brain areas containing hyperin-

tense lesioned tissue for regional intensity patterns that are

informative about the clinical condition. In the normal-appearing

grey matter area analysis and the normal-appearing white matter

area analysis, we analyzed brain areas that exclusively contained

normal-appearing brain tissue. Using this approach, we could

investigate whether classifiers can extract diagnostic information

for MS from regions that appear normal in conventional MRI.

Materials and Methods

Participants
Forty-one patients with MS (relapsing-remitting type; [1]) and

twenty-six age and gender matched healthy controls participated

in the study (mean age patients = 35.767.4 years; mean age

controls = 38.7611.6 years; 21 female and 20 male patients; 14

female and 12 male controls). Patients exhibited a mild to

moderate symptom severity as indicated by the Expanded

Disability Status Scale (median = 2.0, range = 0.0–7.0). Mean

disease duration of patients was 80.0 (676.3) month.

Ethics statement
Consent was obtained according to the Declaration of Helsinki,

and the study was approved by the research ethics committee of

the Charité - University Medicine Berlin. All subjects gave written

informed consent.

Brain imaging
Whole brain high resolution 3-dimensional T1-weighted images

(MPRAGE, TR 2110 ms, TE 4.38 ms, TI 1100 ms, flip angle 15u,
resolution 0.560.561 mm, axial acquisition direction) and T2-

weighted images (TIRM, TR 10000 ms, TE 108 ms, TI 2500 ms,

resolution 0.560.563 mm, 44 contiguous axial slices) were

acquired using a 1.5 Tesla whole-body tomograph (Magnetom

Sonata, Siemens, Erlangen, Germany) with a standard head coil.

Data preprocessing
A clinician (CP) used in-house software to conduct a lesion

mapping based on subjects’ native TIRM images having a voxel

resolution of 0.560.563 mm. Correction of field-inhomogeneities,

within-subject image coregistration of TIRM images to high

resolution MPRAGE images and spatial normalization of high

resolution images to the Montreal Neurological Institute (MNI)

brain template (voxel resolution: 26262 mm) were performed

using SPM5 (Wellcome Trust Centre for Neuroimaging, Institute

of Neurology, UCL, London UK - http://www.fil.ion.ucl.ac.uk/

spm). Individual lesion areas were excluded in the normalization

routine to avoid lesion-mediated deformation artefacts. Addition-

ally, they were used to generate a group lesion mask (brain

locations where lesions occurred in at least one across all subjects).

The group lesion mask was then combined with templates for grey

and white matter taken from the neuroanatomic WFU pickatlas

[22] to generate a group NAGM mask (coordinates that

exclusively contained NAGM across the sample), a group NAWM

mask, and a group NABT mask defined in the space of the MNI

brain template. Then, we conducted within-subject image

intensity standardization. Data resulting from these steps are

referred to as ‘uncorrected data’ as they were not corrected for

deformation confounds (see below).

We continued by regressing out the variance contained in tissue

intensities that could be explained by the local deformation

parameters determined during spatial normalization. This step

was performed to rule out that classification could rely on

systematic intensity differences between groups induced by the

spatial transformation (e.g. due to correction of thalamic atrophy

in patients only). These data are referred to as ‘corrected data’.

Then, we conducted between-subject z-transformation of the

corrected and uncorrected data to account for intensity variations

e.g. due to coil loadings. Finally, corrected and uncorrected data

(voxel resolution: 26262 mm) were restricted to the search space

of each analysis defined by the group masks described above and

entered the analyses. See Figure 1 and Material S1 for further

details.

Pattern recognition analyses
We assessed whether small brain areas located either in lesioned

tissue, normal-appearing grey matter tissue, or normal-appearing

white matter tissue contain diagnostically relevant information

about the clinical status (‘MS’ or ‘healthy control’). For that we

conducted three tissue specific pattern recognition analyses (lesion

area analysis, NAGM area analysis, and NAWM area analysis)

using in-house software [23]. Each analysis was once based on

uncorrected data and once on data corrected for deformation

confounds.

To identify diagnostically informative areas we used a

searchlight approach [17,24] that determines the separability of

MRI intensity patterns of patients and controls for small spherical

brain areas aligned on a center voxel with a radius of three voxels.

In each tissue specific analysis each voxel was once treated as

center voxel of a searchlight and the separability of patterns of

both groups extracted from this spherical area was determined by

a pattern classifier. The procedure resulted in a map of

classification accuracies depicting the local diagnostic information

for the discrimination of clinical groups for the given tissue class.

For individual searchlights, we extracted the TIRM image voxel

intensities from the spatially standardized and otherwise prepro-

cessed images (see above) of all (N) subjects separately in a first

step. This intensity information was then recorded in a data matrix

where each voxel of the searchlight was represented by a column

and each subject by a row. Leave-one-out (LOO) cross-validation

was used to determine the success of the classifier in separating

between searchlight tissue intensity patterns of patients and

controls. In this procedure, patterns from N-1 subjects (N-1 rows

of the data matrix) were fed into the classifier as a ‘training

dataset’. The classifier then determined a linear decision boundary

to separate between training patterns of patients and controls.

Next, the classifier was tested by applying the decision boundary to

the data from the remaining, independent ‘test’ subject (recorded

in the row of the data matrix not used for training). The procedure

was repeated N times until the clinical status of each subject was

predicted based on the corresponding intensity pattern / until

each pattern was left out once from the training dataset. Finally,

the mean of sensitivity and specificity was calculated for this

searchlight classifier and noted at the center voxel of the

searchlight in the accuracy map as a local measure of diagnostic

information. We preferred this accuracy measure over the

percentage of true classification decisions as the mean of sensitivity

and specificity accounts for the unbalanced number of subjects in

the two groups. For further details, see Figure 2.

The classification algorithm we used was a linear Support

Vector Machine (SVM) classifier [25] and is available at http://
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www.cs.wisc.edu/dmi/svm/nsvm/nsvm.m. The algorithm at-

tempts to find a linear decision boundary that separates the

patterns of two classes (here: local searchlight tissue intensity

patterns of MS patients and healthy controls respectively). During

identification of the decision boundary the algorithm optimizes a

free parameter that determines the tradeoff between classifier

complexity and number of non-separable patterns (please see [26]

for further details). Instead of explicitly using cross-validation to

optimize this parameter, the algorithm approximates the cross-

validation rate as this procedure saves computational cost.

Probabilities of observed classification accuracies were calculat-

ed using the x2 - distribution. We applied different p-thresholds for

the analyses to guarantee clarity and comprehensibility of the

results presentation. For the lesion area analysis based on

uncorrected as well as corrected data and for NAGM and

NAWM area analysis based on uncorrected data we report

searchlight center coordinates cvi that exhibit a significant

accuracy on a family-wise-error (FWE; Bonferroni correction)

corrected level pFWE,0.05. For the lesion area analysis based on

uncorrected data, we additionally defined a cluster size criterion

Figure 1. Overview of data processing. For details please see text and Material S1. MNI, Montreal Neurological Institute; NAGM, normal-
appearing grey matter; NAWM, normal-appearing white matter; NABT, normal-appearing brain tissue.
doi:10.1371/journal.pone.0021138.g001
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for significant coordinates to maximize the specificity of the

analysis, i.e. a number (k) of neighbouring searchlights yielding

significant accuracies and set this threshold to k = 5. For the

NAGM and NAWM area analysis based on corrected data, we

report coordinates cvi that exhibit an accuracy on a FWE-

corrected level of pFWE,0.1 and coordinates that exhibit a trend

towards significance (puncorrected = 0.001). To provide insights into

the image features and the neuropathology underlying local

separability of groups, we computed a conventional t-contrast

between patients and controls based on the TIRM images of each

subject for each voxel underlying a cluster of above-chance

searchlight classifier. We assume that high positive t-values are

suggestive of tissue damage due to e.g. demyelination, oedema,

and inflammation [27], whereas pronounced negative t-values

may be suggestive of tissue atrophy e.g. based on iron deposition

[28]. This contrast can also clarify whether multivariate

separability is driven by pronounced voxel-wise intensity differ-

ences or subtle interactions among variables. Results report the

percentage of voxels located within the radius of (a cluster of)

significant searchlights that showed a significant intensity differ-

ence between groups (puncorrected = 0.001, no cluster size criterion,

two-sided) and the mean t-values for these voxels. Furthermore, we

depict native TIRM images of individual subjects for selected

coordinates in order to illustrate image features with information

on the clinical status (Figure 3).

Results

Lesion area analysis
For uncorrected data maximal accuracy for the separation of

patients and controls was obtained in a posterior parietal WM area

([MNI: -38, -38, 18], accuracy = 96%, p,10-13, corr., significant

Figure 2. Mapping of brain regions with diagnostic information. (A) ‘Searchlight’ approach that searches across the brain for local tissue
intensity patterns that are informative about the clinical condition (MS, healthy control [HC]). For a given ‘center’ voxel cvi in the brain the searchlight
is defined as a spherical cluster with a radius of three voxels surrounding the center coordinate. Thus, a searchlight contained 123 spherically
arranged voxels if the minimal distance to the boundary of the search space was at least three voxels. However, when the center voxel was located
closer to a boundary of the search space of a given analysis the searchlight could deviate from the spherical shape and contain less voxels in order to
guarantee that only voxels belonging to the supposed tissue class were contained in searchlights in a given analysis. (B) Within this cluster of voxels
the spatial pattern of intensities is extracted for each subject separately. The data from all (Ntotal = NMS + NHC) but one subject (Ntotal-1) are used as a
‘training dataset’ to train a classifier to distinguish between patterns from the two groups. The classifier is then tested by applying it to the data from
the remaining ‘test’ subject (in this example NHC). This leave-one-out (LOO) cross-validation procedure was then repeated n-times by leaving out the
data of one subject at a time from the training data set. The success of the classifier is an estimate of the local information at that position in the
brain. (C) The resulting accuracy was then noted at the coordinate cvi as the local information related to the clinical condition. By iterating this
procedure across different positions in the brain it is possible to obtain a map of diagnostic accuracies for each coordinate cvi, depicting the
diagnostic information contained in local patterns in decoding the clinical condition.
doi:10.1371/journal.pone.0021138.g002
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voxels = 53%, mean t-value = 3.6). Interestingly, only 19 of 41

patients had at least one lesion in the corresponding searchlight.

Thus, a maximal accuracy (i.e. mean of sensitivity and specificity)

of 73% could have been obtained given that controls do not have

lesions and classification relies exclusively on lesions. Consequent-

ly, accuracy could impossibly rely on the presence of lesions alone.

Figure 3 shows native TIRM image features used by pattern

classifiers for this coordinate. In addition to white matter structures

the caudate nucleus also contained significant information on the

clinical status ([MNI: 234, 216, 212], accuracy = 86%,

p,1027, corr., significant voxels = 83%, mean t-value = 4.5).

On average across all areas obtaining significant accuracies the

contribution of significant tissue intensity differences between

patients and controls on the voxel level for separation was very

strong (55614%). See Material S1, Table S1 and Figure 4 for

further details.

For deformation corrected data, a frontal WM area achieved

the highest accuracy in separating between patients and controls

([MNI: 22, 38, 22], accuracy = 83%, p,1026, corr., significant

voxels = 22%, mean t-value = 2.9). 13 out of 41 patients had a

lesion in that area. Correspondingly, a maximal accuracy of 66%

could have been obtained given that controls do not have lesions

and classification relies exclusively on lesions. The contribution of

significant tissue differences between patients and controls on the

voxel level for the separation of groups was much smaller as

compared to the analysis based on uncorrected data. On average,

20% (SD = 19%) of all voxels involved showed a significant tissue

intensity difference. See Table S2 and Figure 4 for further details.

Normal-appearing grey matter area analysis
Predominantly cerebellar regions and deep grey matter nuclei

were informative about the clinical condition for data not

Figure 3. Image features with information on the clinical status. In order to provide insights into pathology indicating MR image features we
depict exemplary searchlight classifiers in the native space of individual subjects, i.e. their native TIRM images (0.560.563 mm voxel resolution) and
highlight the pattern structure of selected subjects. (A) Posterior parietal white matter searchlight that obtained maximal accuracy in the lesion area
analysis for uncorrected data (96%, p,10-13). Top row: Outer contour lines correspond to the border of searchlights. Inner contour lines correspond
to the voxel in the respective searchlight that was most important for the multivariate decision process. The sorting of individual images from left to
right follows the diagnoses of the classifiers (left: images that were diagnosed as controls, right; images that were diagnosed as patients; eccentricity
follows diagnostic confidence). Bottom row: Polar plot of the tissue intensity patterns drawn from the voxels located in this area in the normalized
TIRM images of individual subjects (26262 mm voxel resolution), sorted clockwise by the relevance of a voxel for the classification in descending
order. The plot suggests that the classifier grounds its decisions mainly on a set of hyperintense voxels in patients that are distributed across the
searchlight. (B) Searchlight of maximal accuracy in the NAGM area analysis based on data corrected for deformation effects. The TIRM image
characteristics and the polar plot depicted underline the capability of the pattern recognition approach to identify disease indicating information
from brain tissue characteristics ‘invisible’ to the human eye. TP, true positive; TN, true negative; FP, false positive; FN, false negative.
doi:10.1371/journal.pone.0021138.g003

MRI Pattern Recognition in Multiple Sclerosis

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e21138



corrected for deformation effects. The highest accuracy in

cerebellar regions was obtained in the declive ([MNI: 2, 222,

270], accuracy = 84%, p,1027, corr., significant voxels = 1%,

mean t-value = 21.5). Among deep grey matter nuclei, the

highest accuracy was obtained for regions in the lentiform nucleus

([MNI: 3, 226, 2], accuracy = 82%, p,1026, corr., significant

voxels = 0%, mean t-value = 20.6). As is indicated by mean t-

values these areas were mainly characterised by hypointense

signals in patients which is suggestive of brain atrophy. However,

although this pattern of hypointensity was quite consistent across

regions the difference was not very pronounced. On average

across all voxels involved, only 5% (SD = 6%) showed a significant

difference. See Table S1 and Figure 4.

Among data corrected for deformation confounds, maximal

accuracy was obtained in the inferior semi-lunar lobule of the

cerebellum ([MNI: 226, 276, 250], accuracy = 77%, p,1025,

corr., significant voxels = 0%, mean t-value = 20.3). Moreover, a

parahippocampal area obtained significant results ([MNI: 38,

230, 218], accuracy = 70%, p ,1023, uncorr., significant voxels

= 0%, mean t-value = 0.6). Finally, high accuracy was also

obtained for a region in the subcalossal gyrus ([MNI: 16, 4, 214),

accuracy = 70%, p ,1023, uncorr., significant voxels = 0%,

mean t-value = 20.7). Pronounced intensity differences on the

voxel level did not contribute to the separation of patients and

controls at all. See Table S2 and Figure 4 for full details. See

Figure 3 for image features used by pattern classifiers in the

inferior semi-lunar lobule.

Figure 4. Brain regions with information on the clinical status. Top: Center coordinates of searchlight classifiers with above-chance accuracy
in the separation of patients and controls. Bottom: Tissue intensity differences between patients and controls for voxels underlying significant
searchlight classifiers (t-statistic; MS minus control). Left: Analysis based on raw data. Right: Analysis is based on data corrected for deformation. FFG,
fusiform gyrus; ISL, inferior semi-lunar lobule; LFN, lentiform nucleus; PYR, pyramis; WM, white matter.
doi:10.1371/journal.pone.0021138.g004
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Normal-appearing white matter area analysis
For uncorrected data maximal accuracy for the separation of

MS patients and controls was obtained in a posterior NAWM area

([MNI: 222, 242, 26), accuracy = 91%, p,10210, corr.,

significant voxels = 17%, mean t-value = 1.6). NAWM areas

separating between groups were predominantly characterized by

hyperintense signals in patients. The contribution of significant

tissue differences between patients and controls on the voxel level

for separation was relatively weak. On average, 16% (SD = 20%)

of all voxels involved showed a significant tissue intensity

difference. See Table S1 and Figure 4.

Importantly, we also found significant results when we

corrected for deformation effects in two NAWM areas ([MNI:

36, 260, 30], accuracy = 71%, p,1023, uncorr., significant

voxels = 0%, mean t-value = 0.6; ([MNI: 256, 212, 30],

accuracy = 71%, p,1023, uncorr., significant voxels = 0%,

mean t-value = 1.1). Significant tissue intensity differences on the

voxel level did not contribute to the separation of groups at all.

See Table S2 and Figure 4.

Discussion

The present study demonstrates that MS patients can be

separated from healthy controls based on local brain tissue

intensity patterns by a combination of conventional MR

techniques and pattern recognition algorithms. Among regions

containing lesions, especially posterior parietal WM areas were

informative about the clinical status of subjects. When classifica-

tion relied exclusively on NABT, especially deep GM nuclei and

cerebellar areas contained information.

We performed three pattern classification analyses based on T2-

weighted images following a lesion-mapping conducted by an

experienced neurologist: A lesion area analysis, a NAGM area

analysis, and a NAWM area analysis. Each analysis was once

based on uncorrected data and once on data corrected for

deformation confounds.

In the lesion area analysis, we investigated whether patients

can be separated from controls based on regional tissue intensity

patterns containing macroscopic lesions. This allowed evaluating

the variation of disease indicating information of lesions

depending on their precise location defined on the millimeter

scale. For data not corrected for deformation maximal accuracy

was obtained in a posterior parietal WM area (accuracy = 96%).

However, also deep gray matter structures obtained a high

accuracy (caudate nucleus, accuracy = 86%). For corrected data,

a frontal WM area turned out to be maximally informative

(accuracy = 83%). In order to clarify to which extent separation

could be driven exclusively by the presence of lesions, we

determined the number of patients that had at least one lesion in

the areas of maximal separation for deformation corrected and

uncorrected data. It turned out that the accuracy obtained

empirically was much higher than would have been possible

when classification would have relied exclusively on lesions. This

indicates that classifiers extracted diagnostic information from

two sources: macroscopically visible lesions and subtle signal

variations. This suggests that classifiers captured the outcome of a

continuous disease process ranging from normal tissue in controls

over NABT to lesions as an endpoint in patients.

In the NAGM area analyses, especially deep GM nuclei and

cerebellar brain regions were identified as informative regions.

Maximal accuracy was obtained in cerebellar regions (uncorrect-

ed data: 84% accuracy; deformation corrected data: 77%

accuracy). Nearly all informative areas were on average

characterised by slightly decreased signals in patients. Hypoin-

tensity of deep GM nuclei in T2-weighted images has been

demonstrated in recent studies [29]. It has been linked to brain

atrophy resulting from elevated iron deposition in MS [28].

Future studies are necessary to investigate the relationship of

informative NABT areas revealed by pattern classifiers in

standard MR images and metabolic alterations in these areas

measured by MRS or alterations in diffusion processes measured

by DTI. The contribution of significant intensity differences in

individual voxels to the separation of groups was small. This

suggests that multivariate classifiers did not mainly rely on

information from voxels with strong intensity differences, but

included information from voxels that show weak differential

effects. These results and findings as the cerebellar image features

depicted in Figure 3 suggest that pattern recognition methods can

extract diagnostic information from subtle interactions between

brain tissue intensity variations that are hard to detect for the

visual system.

Among NAWM areas a posterior region obtained maximal

accuracy (accuracy = 91%). Most of the informative NAWM

areas were characterized by slight hyperintensity in patients,

although hyperintensity was much less pronounced than for

lesions. This matches the criteria of so-called ‘dirty-appearing’

white matter that has higher intensity as normal WM but lower

intensity than lesions [30]. However, additional studies are needed

investigating the neuropathological foundations of informative

NAWM areas as identified in this study.

To summarize, we identified regions with information for MS in

lesioned, but also NAGM, and NAWM areas. This proves that

standard MR techniques have sufficient sensitivity to capture fine-

grained tissue alterations in normal-appearing brain areas of MS-

patients. Furthermore, we obtained a high spatial specificity in

detecting brain regions with diagnostic information, as we

identified hotspots of MS associated tissue alterations defined on

a millimeter scale.

Supporting Information

Table S1 Cross-validation results for the mapping of
regions with disease indicating information based on
uncorrected data. H, hemisphere; CS, cluster size, i.e. the

number of neighboring significant searchlights; x, y, z, Montreal

Neurological Institute coordinate of the center of the searchlight

classifier with the peak accuracy; DA(%), decoding accuracy; p,

probability of the accuracy according to x2-distribution. Mn t,
mean t-value for the group contrast patients minus controls for

voxels underlying a (cluster of) significant searchlight classifier(s);

Vox*(%), percentage of these voxels showing significant results

for the contrast (p = 0.001, uncorrected, no cluster size criterion,

two-sided).

(DOC)

Table S2 Cross-validation results for the mapping of
regions with disease indicating information based on
data corrected for deformation. H, hemisphere; CS, cluster

size, i.e. the number of neighboring significant searchlights; x, y,
z, Montreal Neurological Institute coordinate of the center of the

searchlight classifier with the peak accuracy; DA(%), decoding

accuracy; p, probability of the accuracy according to x2-

distribution. Mn t, mean t-value for the group contrast patients

minus controls for voxels underlying (a cluster of) significant

searchlight classifiers; Vox*(%), percentage of these voxels

showing significant results for the contrast (p = 0.001, uncorrected,

no cluster size criterion, two-sided).

(DOC)
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Material S1 Material S1 gives further information
regarding data preprocessing and detailed results for
each tissue-specific pattern recognition analysis (Le-
sions, NAGM, and NAWM).

(DOC)

Author Contributions

Conceived and designed the experiments: MW KH CP JBS FP FZ JDH.

Analyzed the data: MW KH CP. Contributed reagents/materials/analysis

tools: MW KH JDH. Wrote the paper: MW KH CP FP FZ JDH.

Designed the software used in analysis: MW KH JDH. Data acquisition:

CP JBS FP.

References

1. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, et al. (2001)

Recommended diagnostic criteria for multiple sclerosis: guidelines from the
International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:

121–127.
2. Polman CH, Wolinsky JS, Reingold SC (2005) Multiple sclerosis diagnostic

criteria: three years later. Mult Scler 11: 5–12.
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