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Abstract

Purpose: Radiation cystitis (RC), a severe inflammatory bladder condition, develops as a side
effect of pelvic radiation therapy in cancer patients. There are currently no effective therapies to
treat RC, in part from the lack of preclinical model systems. In this study, we developed a mouse
model for RC and used a Small Animal Radiation Research Platform to simulate the targeted
delivery of radiation as used with human patients.
Methods and materials: To induce RC, C3H mice received a single radiation dose of 20 Gy
delivered through 2 beams. Mice were subjected to weekly micturition measurements to assess
changes in urinary frequency. At the end of the study, bladder tissues were processed for histology.
Results: Radiation was well-tolerated; no change in weight was observed in the weeks after
treatment, and there was no hair loss at the irradiation sites. Starting at 17 weeks after treatment,
micturition frequency was significantly higher in irradiated mice versus control animals.
Pathological changes include fibrosis, inflammation, urothelial thinning, and necrosis. At a site
of severe insult, we observed telangiectasia, absence of uroplakin-3 and E-cadherin relocalization.
Conclusions: We developed an RC model that mimics the human pathology and functional
changes. Furthermore, radiation exposure attenuates the urothelial integrity long-term, allowing for
potential continuous irritability of the bladder wall from exposure to urine. Future studies will focus
on the underlying molecular changes associated with this condition and investigate novel treatment
strategies.
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Introduction

Radiation is often used to manage pelvic malignancies,
either as primary or (neo)adjuvant treatment. Management
options include external beam radiation therapy or
brachytherapy, with the former more appropriate to
patients with intermediate- or high-risk disease.1,2

External beam radiation therapy aims to deliver the
highest possible dose of radiation to cancer cells while
sparing normal surrounding tissues and organs. Despite
substantial advances in image guidance that allow better
radiation dose distributions and improve treatment accu-
racy, external beam radiation therapy may still result in
some degree of normal tissue damage. Irradiation-induced
bladder injury can lead to the development of radiation
cystitis (RC), a chronic bladder inflammation character-
ized by hematuria. RC is a debilitating condition that can
severely degrade a cancer survivor’s quality of life and
require long-term follow-up and treatment. Symptoms
associated with this condition include urinary frequency,
urgency, nocturia, pain, incontinence, reduced bladder
capacity, and hematuria. The degree of hematuria can
range from microscopic to life-threatening.3,4 In 2016,
approximately 34% of newly diagnosed cancers are ex-
pected to arise in the pelvis.5 Of the patients with pelvic
tumors receiving radiation treatment, 15% to 20% will
develop bladder complications within 10 years after
treatment.6,7 Risk factors for developing radiation toxicity
include radiation dose, fraction, and field size, as well as
age at exposure, genetic variations, concurrent therapies,
and comorbidities such as diabetes and immunodefi-
ciency.8 There are currently no effective therapies to treat
radiation-induced hemorrhagic cystitis, and, although
rare, it is a severe condition with substantial morbidity
and risk of mortality.

RC is a severe inflammatory condition of the bladder
that consists of three phases. An initial acute inflammatory
response generally lasts only a few weeks after radiation
therapy. This phase is followed by a symptom-free phase
that can last from months to years. The third, irreversible,
chronic phase represents a range of clinical symptoms for
which there is no standard management.4,9 Histologically,
this phase is characterized by an influx of inflammatory
cells, endarteritis, thinning of the urothelial wall, edema,
collagen deposition, loss of smooth muscle cells, and some
degree of hemorrhaging.4 Current treatment options
include rest/hydration, clot evacuation, continuous irriga-
tion, hyperbaric oxygen therapy, blood transfusion, botu-
linum toxin injections, and, as a last resort, formalin
instillation or cystectomy.3,4,9 The effectiveness of these
therapies is limited and the recurrence rate is high;
furthermore, these treatments are mainly focused on
arresting hemorrhaging and do not target other lower
urinary tract symptoms (eg, urgency, frequency, nocturia).

The limited success of current treatment options is due
in part to the absence of preclinical models that mimic the
human condition and the lack of understanding the
molecular changes that are responsible for the disease
progression. Several animal models for RC have been
described4; however, there is variety in radiation delivery
systems, difference in the delivered dose, and dose dis-
tribution, along with species used in these disparate
studies. Furthermore, most studies lack functional anal-
ysis of the bladder in response to irradiation. In this study,
we used the Small Animal Radiation Research Platform
(SARRP) to closely recapitulate the targeted external
beam radiation therapy that human cancer patients
receive.4 Through a single dose of 20 Gy, divided over 2
beams delivered directly to the bladder, we were able to
induce long-term damage to the bladder that coincided
with increased urinary frequency and decreased bladder
capacity as seen in patients with RC.
Methods and materials

Animals

All experimental procedures were reviewed and
approved by the Institute Animal Care and Use Com-
mittee. Eight-week-old C3H/HeN mice (Charles River)
were housed under standard housing conditions with 5
mice per cage, fed a soy protein-free extruded rodent diet,
and cages that were changed weekly. The C3H/HeN
mouse strain was chosen because it is considered to be
fibrosis-prone in response to radiation.10 Female mice
were used for these studies because male mice are known
to mark their territory with urine, thereby interfering with
the micturition studies.
Radiation treatment

Radiation was performed on the SARRP unit (Xstrahl
Life Sciences) using image-based targeting of the bladder.
Twenty mice received a single radiation dose of 20 Gy
and 20 mice served as controls. The 20 Gy dose was
chosen based on previous studies by others using the
same mice strain and reliability of detecting radiation-
induced DNA damage (gamma-H2AX) in the bladder
model.11-14 The selection of this dose was also driven by
pragmatic reasons of model development and also to
allow data comparison with previous studies.11-13,15-18

Finally, and most relevant, is that the standard of care
(SOC) for external beam radiation therapy for interme-
diate- or high-risk prostate cancer is 2 Gy of daily frac-
tions to a total dose of 70 to 74 Gy.19 Using an a/b value
of 2 Gy for prostate cancer, the calculated biologically
effective dose (BED) is 148 Gy (for SOC of 2 Gy in 37
fractions to 74 Gy). This is a comparable BED for a single
dose of 20 Gy in the bladder using an a/b Z 3 Gy
(BED Z 153 Gy for late-responding normal tissues).20
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For SARRP imaging and irradiation, mice were anes-
thetized using isoflurane to maintain precise positioning.
Immediately before treatment, a computed tomography
(CT) scan was taken and the target for irradiation set in
the middle of the bladder. Bladder treatments were per-
formed without the use of contrast to avoid incorrect
dosimetry calculations, which are based on CT values.
For treatments, confirmation of targeting and beam posi-
tion was made visually by experienced operators who had
familiarity with proper animal positioning (to avoid
normal structures) as well as knowledge of the location
and physical characteristics of the mouse bladder on CT
(Fig 1A). A 5 � 5 mm collimator was used to provide full
bladder coverage and the isocenter was set consistently in
the center of the bladder, which is easily visualized on
orthogonal CT views. Typical beams were opposed lat-
erals at 140�. They were angled by the operator to try to
avoid the spine, long bones in the legs, and normal gut/
rectum as much as possible; beams were minorly adjusted
as needed for each animal (Fig 1B).

Treatment planning software (Muriplan, similar to that
used in radiation therapy of human patients) was used to
determine the precise beam arrangement to focus the total
dose on the bladder alone. Imaging and irradiation for
each animal was accomplished within 30 to 60 minutes.
Following successful irradiation, mice recovered in a
warming tank and were returned to general housing.

To validate treatment targeting, CT imaging and
treatment planning was performed with and without CT
contrast in a few test subjects. Multiple possible treatment
plans (2 or 3 beams, arc, 5 � 5 or 10 � 10 collimator)
were compared using dose-volume histograms in the
treatment planning software. The 2-beam treatment pro-
vided the best ratio of bladder coverage to normal tissue
damage and so was chosen for the larger study of 40 mice
outlined above.
Micturition assay

Once per week, mice were placed into metabolic cages
for overnight voiding measurements from 4 PM until
8 AM (16 hours). These times were chosen because
rodents are nocturnal and the mouse bladder reaches peak
capacity between 7 PM and 1 AM.21 Metabolic cages
allow free access to food and water and provide a means
for separating urine from feces. Urine was collected on a
pH-sensitive paper affixed to the underside of the cage to
distinguish between urine and water drops. After 16
hours, the animal was returned to general housing and the
paper was removed for analysis. pH-sensitive paper was
scanned in color, urinary frequency was calculated by
quantifying the number of urine spots on the paper, and
urine output was estimated by measuring the surface area
of the urine spots and comparing it with a standard curve
of known volume/area measurements using a Photoshop
counting tool. The moving average of 3 consecutive
weekly measurements was calculated and plotted. Sig-
nificance was calculated using a multiple t test.

Immunohistochemistry

Animals were sacrificed when irradiation-induced
increased micturition changes were observed. Upon
sacrifice, bladders were instilled with 100 mL of 4% form-
aldehyde, dissected, and fixed for 24 hours at 4�C. Subse-
quently, bladders were cut in half longitudinally and
processed for histology at the University of Michigan Unit
of LaboratoryAnimalMedicine in vivo animal core facility.

The 4-mm sections were subjected to hematoxylin and
eosin (H&E), Masson Trichrome (fibrosis; TRM-2, SCY
TEK Laboratories), or toluidine blue (mast cells; T3260,
Sigma) staining. Additionally, slides were immunostained
for uroplakin-3 (ab78196, Abcam), platelet/endothelial
cell adhesion molecule-1 (PECAM-1)/CD31 (ab124432,
Abcam), and E-cadherin (ab76055, Abcam). All slides were
warmed to 61�C to melt paraffin and subjected to a series of
deparaffinization and rehydration steps. Trichrome and to-
luidine blue stains were performed according to the manu-
facturer’s instructions. For the immunostaining, antigen
retrieval was performed in sodium citrate buffer pH 6.0 and
peroxidase activitywas blocked in 3%hydrogen peroxide in
methanol for 15 minutes. For uroplakin-3 and E-cadherin
detection, theM.O.M. kit (PK-2200, Vector Labs) was used
according to the manufacturer’s instructions, with a
15-minute incubation for primary antibodies. For CD31,
slides were incubated in blocking buffer (1% bovine serum
albumin, 0.1% cold fish skin gelatin, 0.5% triton X-100,
0.05% sodium azide in phosphate-buffered solution) for 1
hour, exposed to primary antibodydiluted in blocking buffer
for 15 to 30 minutes, and washed in phosphate-buffered
solution containing 0.05% Tween20. Antibody signal was
enhanced using the ABC detection system (Vector Labs,
PK-4001), visualized with Immpact DAB (Vector Labs,
SK-4105), and counterstained with hematoxylin.

Data analysis

H&E sections were scored by a blinded veterinary
pathologist (Unit of Laboratory Animal Medicine in-vivo
animal core facility, University of Michigan) for the
presence of fibrosis, urothelial thinning, ischemic necrosis
and inflammation. The lesions were graded based on
severity: minimal, mild, moderate, and severe (score 1
through 4, respectively). Inflammation was defined by the
presence of polymorphonuclear cells, lymphocytes,
plasma cells, and/or macrophages, and sections were
scored based on the number of inflammatory cells present:
absent, minimal (rare, 1to 5 cells), mild (at least 10 fields
with 6 to 20 cells), moderate (at least 10 fields with 20 to
50 cells), or marked (packed with cells).
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Figure 1 Small animal radiation research platform setup. (A) Bladder computed tomography imaging in the presence and absence of
instilled contrast fluid. (B) Small Animal Radiation Research Platform treatment computed tomography with typical treatment beam
arrangement and isodose distribution for 20 Gy. A ventral beam entry was chosen to reduce dose to the long bones of the legs. Two
beams of 5 � 5 mm were used to spread dose to skin on entry and exit points. The bladder has been outlined with a black dotted line for
ease of visualization.

336 B.M.M. Zwaans et al Advances in Radiation Oncology: OctobereDecember 2016
For trichrome and uroplakin-3 staining, 6 representa-
tive images were taken per slide and scored by 2 blinded
scientists. The degree of fibrosis identified with Masson
trichrome stain was classified as normal/mild or moderate/
severe. Uroplakin-3 staining was classified as present or
absent. All data points were processed in GraphPad and
statistical significance was calculated using the multiple
t test.
Results

Targeted radiation induces an increase in
micturition frequency

Female C3H mice received a single dose of 20 Gy
irradiation targeting directly to the bladder using SARRP.
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Mice tolerated radiation well; no change in overall health
or body weight was observed in the weeks after irradia-
tion (Fig 2A). Approximately 20% of mice suffered from
some degree of alopecia, ranging from minor alopecia on
their back to almost full body hair loss. Alopecia was
observed in both irradiated and nonirradiated animals,
and, in irradiated mice, areas of hair loss did not correlate
with areas of radiation exposure. In addition, alopecia is a
common phenotype of the C3H mouse strain and thus we
conclude that the hair loss was unrelated to irradiation
exposure.22 One irradiated mouse died at 11 weeks after
irradiation; the cause was undefined at necropsy.

Weekly micturition measurements were performed
using pH-sensitive paper and metabolic cages, with the
first placement in the metabolic cages at 1 week before
irradiation treatment. This measurement was used as a
baseline measurement; the last micturition measurement
was performed at 19 weeks after irradiation (Fig 2B). A
significant increase in micturition resulting from radiation
exposure was observed starting at 17 weeks after irradi-
ation (Fig 2C-D). To correct for variation in water con-
sumption, we calculated the average urine volume per
micturition event. The increased micturition frequency
coincided with a decrease in urine volume per micturition
event in the irradiated mice (Fig 2E), indicating that the
elevated frequency is independent of the amount of water
consumed and may possibly be due to reduced bladder
capacity.
Radiation-induced pathological damage to the
bladder

Bladder tissues from 6 mice per treatment group were
randomly selected for pathological analysis. H&E stain-
ing was scored (score, 0-4) blinded by a pathologist for
fibrosis, inflammation, urothelial thinning, and ischemic
necrosis.4,9 No change in bladder size was noted in
response to irradiation. Bladder irradiation resulted in a
long-term mild increase in each of these pathological
changes (Fig 3). Normal bladder tissue consists of the
urothelium and the detrusor muscle, separated by the
lamina propria, which is in part made up of connective
tissue, vasculature, lymphatic vessels, nerve endings, and
surveilling immune cells (eg, macrophages). Irradiation
causes long-term damage to all 3 layers of the bladder
wall. The most prominent long-term pathological change
observed upon exposure is the buildup of fibrous tissue in
the lamina propria and between muscle cells (Fig 4).
Additionally, a mild increase in inflammatory cells was
detected in response to irradiation (Fig 4). Other
observed pathological changes include edema, loss of
endothelial cells, urothelial hyperplasia, and hemorrhag-
ing (Fig 4).

Masson trichrome stain revealed a modest increase in
fibrosis in irradiated bladders in comparison to control
tissue (Fig 5; not significant). Mast cells play a role in the
early phase of radiation-induced inflammation and pro-
mote fibrosis.23 However, toluidine blue staining did not
reveal a significant influx of mast cells in response to
irradiation in our model (Fig 6).

The mouse urothelium, typically made up of 2 to 3
layers of urothelial cells and a single layer of umbrella
cells, was reduced to a single cell layer or even
completely lost in the majority of irradiated bladder tis-
sues (urothelial thinning; Fig 3). To visualize the uro-
thelium, bladder sections were stained with the urothelial
differentiation marker uroplakin-3, which is expressed in
the superficial umbrella cells and some intermediate
urothelial cells. Uroplakin-3 staining was lost in 60% of
irradiated bladder samples (Fig 7A). However, the
absence of uroplakin-3 was not indicative of urothelial
thinning as lack of uroplakin-3 was also observed in
hyperplastic regions (Fig 7A).

Long-term loss of urothelial integrity in response
to radiation

Hematuria is a prominent symptom of RC, ranging
from microscopic to gross hematuria. In chronic RC,
hematuria is characterized by telangiectatic blood vessels
and endarteritis that result in fibrosis and leaky blood
vessels.7,9,12 Underneath the urothelium is a dense capil-
lary plexus that, in addition to providing the urothelium
with blood supply, protects the detrusor from substances
that penetrate through the urothelium. To test for vascular
changes in response to radiation, bladder tissues were
stained for PECAM-1/CD31. Overall, no striking differ-
ences were found in blood vessel density and size in
response to irradiation (data not shown). However, tel-
angiectasia, small dilated blood vessels, was apparent in
an area of severe damage (Fig 7B). A urine dipstick test
revealed no sign of hematuria (data not shown). To assess
if increased bladder permeability in this region could
drive this vascular response, we determined the expres-
sion of uroplakin-3 and the cell-adhesion molecule
E-cadherin in this region. Both factors contribute to the
impermeable properties of the urothelium.24-26 Uroplakin-
3 expression was significantly reduced in this hyperplastic
region and E-cadherin localization shifted from being
strictly membrane bound to high a cytoplasmic abundance
without altering expression levels (Fig 7B). These
changes indicate that attenuation of urothelial integrity is
a long-term side effect from radiation treatment and could
contribute to vascular changes seen in RC.

Discussion

Medical advances in early cancer diagnosis and treat-
ment are leading to improved cancer survival rates. The
number of cancer survivors in the United States is
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expected to rise to almost 30% between 2016 and 2026.27

As a result, the side effects of cancer treatments such as
chemoradiation and radiation therapies are becoming
more apparent and are creating a new challenge for health
care providers. One such side effect is radiation cystitis, a
severe debilitating chronic inflammatory bladder condi-
tion caused by exposure to pelvic irradiation.

Our goal was to develop a mouse model of RC that
recapitulates the functional and pathological changes
seen in humans by using SARRP. SARRP uses CT
imaging and a multiple external radiation beam approach
to accurately deliver radiation while limiting radiation
exposure to normal tissues. This technique was previ-
ously applied successfully by our research team in a rat
model for acute RC, in which radiation lowered inter-
micturition intervals in a dose-dependent manner.28 In
Edema
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C D

Figure 4 Hematoxylin and eosin staining of normal (A) and irradia
changes. Arrowheads point at sites of hemorrhaging. Black bar, 100
the current study, we show that a single treatment of
20 Gy in C3H/HeN mice causes a significant increase in
micturition frequency starting at 17 weeks after irradia-
tion while simultaneously reducing the volume per
micturition event. These findings suggest that the
increased frequency is due to reduced bladder capacity.
Acute inflammation, cell death, and necrosis in early RC
causes irreversible fibrosis, thereby reducing bladder
elasticity; subsequently, the patient presents with lower
urinary tract symptoms such as urgency, frequency, and
nocturia.4,7 The increased radiation-induced micturition
in our mouse model was supported by a mild increase
in fibrosis (Fig 3 and 4). The lack in significant differ-
ence in fibrosis between the 2 treatment groups was
possibly from the low number of animals included in the
study. In addition, a modest increase in inflammation
was noted (no statistical significance). The lack of a
strong inflammatory and fibrotic response could be dose-
dependent because radiation-induced damage is posi-
tively correlated with the total dose16,28; thus, a higher
dose or extension of the study will likely result in a
more severe phenotype. Furthermore, the influx of in-
flammatory cells, such as mast cells, and edema are
characteristics of acute RC and thus might not be
apparent long-term after irradiation.4

Damage to the vasculature plays a pronounced role in
the development of hematuria and is the leading cause of
extensive complications in patients with RC. Endothelial
cells have a slow turnover rate; thus, radiation-induced
vascular damage only becomes apparent in late RC.
Changes in the vasculature include loss of endothelial
cells, endarteritis, fibrosis around blood vessels, telangi-
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vasculature in patients with RC is an active area of
research. Novel approaches include neovascularization
techniques such as hyperbaric oxygen therapy and in-
jection of vascular endothelial growth factor and/or
endothelial cells, as well as blood coagulation therapies
including estrogen, GreenLight XPS laser therapy, and
intravesical liposomal formulation of tacrolimus and
prostaglandin instillations.4
Furthermore, we found that irradiation causes long-
term damage to the urothelium, which is visible through
thinning of the urothelial layer and focal areas of ischemic
necrosis (Fig 4). The bladder has the unique ability to
store large quantities of urine while maintaining a high
level of impermeability. Numerous factors in the urothe-
lium contribute to bladder impermeability, including
uroplakin proteins and tight junctions.25,26,29 When these
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factors are compromised, a severe inflammatory condition
of the bladder can arise.30 Therefore, we sought to
determine if radiation can affect the integrity of the
bladder urothelium long-term. In addition to a loss of
urothelial cells, our study found reduced uroplakin-3
expression in irradiated urothelium (Fig 7A). Likewise,
at sites of severe damage, E-cadherin, a major component
of tight junctions, was redistributed from the cellular
membrane to the cytoplasm without compromising
E-cadherin expression levels (Fig 7B). Cellular redistri-
bution of E-cadherin may be an indication that radiation
disrupts tight junction formation long-term. Further
studies are needed to understand the consequences of
these urothelial changes and to investigate the efficacy of
targeted therapy to protect the urothelium (eg, hyaluronic
acid) for RC patients.31,32

Another C3H substrain (C3H/Neu) was previously
used to model RC.11-13 Similar to our current study, mice
were exposed to a single dose of 20 Gy, causing increased
collagen deposition, urothelial thinning, and progressive
loss of uroplakin-3 expression. However, in this model, a
single vertical beam using an Isovolt 320/20 X-ray
machine was used to target the bladder. This technique
has a number of limitations when compared with our
study. First, it has a higher degree of localized collateral
damage in surrounding tissues of the single planar beam
than would be expected in the current 2-planar beam
study. Second, the 20-Gy bladder dose in the current
study was calculated using image-guided treatment plan-
ning software that was not available at the time of the
previous studies, giving a higher degree of dosimetry
confidence. This mouse model is a useful tool to further
characterize radiation-induced changes in the bladder and
to test novel treatment modalities.

Despite the evidence of RC-related symptoms in our
SARRP-irradiated mouse bladders, a number of limita-
tions to the study should be noted. First, the method
used to quantify micturition frequency does not account
for timing of the urination events or for the possible
movement of the mouse during urination. Second, as
described earlier, RC has a triphasic development: an
early acute phase, followed by an indolent symptom-free
phase, and a chronic irreversible phase. In our study, we
did not observe significant changes in micturition
immediately after radiation treatment. Although it is
unclear if the patients with chronic RC always have a
history of acute RC, it is feasible that a higher radiation
dose will reveal an acute response. In addition, a higher
dose will likely also intensify the functional and histo-
logical changes observed in this study. Finally, we
acknowledge that the method used to calculate mictu-
rition volume is not strictly quantitative. However, other
described methods are either invasive (eg, placement of
an indwelling catheter) or do not allow for natural
bladder behavior (eg, taking a mouse out of its own
environment).33,34
Conclusion

In this study, we developed a chronic RC model that
simulates the human condition. This is the first mouse
study that uses SARRP for bladder irradiation to closely
mimic human patients. Radiation exposure resulted in
increased micturition frequency and histological changes
including fibrosis, urothelial damage, inflammation, and
necrosis. Furthermore, we demonstrated that radiation
exposure attenuates the urothelial integrity long-term,
allowing for continuous irritability of the bladder wall
from exposure to urine. Future studies will focus on the
underlying molecular changes associated with this con-
dition and investigate novel treatment strategies to help
patients with radiation cystitis.
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