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Glioma is a primary high malignant intracranial tumor with poorly understood molecular
mechanisms. Previous studies found that both DNA methylation modification and gene
alternative splicing (AS) play a key role in tumorigenesis of glioma, and there is an obvious
regulatory relationship between them. However, to date, no comprehensive study has
been performed to analyze the influence of DNA methylation level on gene AS in glioma on
a genome-wide scale. Here, we performed this study by integrating DNA methylation,
gene expression, AS, disease risk methylation at position, and clinical data from 537 low-
grade glioma (LGG) and glioblastoma (GBM) individuals. We first conducted a differential
analysis of AS events and DNA methylation positions between LGG and GBM subjects,
respectively. Then, we evaluated the influence of differential methylation positions on
differential AS events. Further, Fisher’s exact test was used to verify our findings and
identify potential key genes in glioma. Finally, we performed a series of analyses to
investigate influence of these genes on the clinical prognosis of glioma. In total, we
identified 130 glioma-related genes whose AS significantly affected by DNA methylation
level. Eleven of them play an important role in glioma prognosis. In short, these results will
help to better understand the pathogenesis of glioma.
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INTRODUCTION

Glioma is the most common and highly malignant primary intracranial tumor which is characterized
by substantial heterogeneity and extremely poor prognosis in central nervous system (CNS) (Dong
and Cui 2020; Pan et al., 2021). The World Health Organization (WHO) defines grade IV glioma as
the glioblastoma (GBM). The annual incidence of this disease worldwide is about 5 cases per 100,000
people (Hottinger et al., 2014), and shows a significant mortality and unclarified molecular
mechanism of the occurrence and development (Hottinger et al., 2014; Dong and Cui 2020).
Although the etiology of glioma has been extensively studied, there are still many challenges and
unknowns in the epigenetic mechanism of its pathogenesis and progress (Molinaro et al., 2019).

Recently, the DNAmethylation has been demonstrated to extensively participate in the epigenetic
mechanisms of CNS (Hwang et al., 2017), and many methyltransferase and demethylase-related
genes (e.g., MGMT, CD44, HYAL2, SPP1, MMP2) contribute to the pathogenesis of glioma (Weller
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et al., 2010; Wiestler et al., 2014; Xiao et al., 2020). A large amount
of the evidence showed that DNA methylation is involved in the
occurrence and development of glioma tumors (Etcheverry et al.,
2010; Chen et al., 2020; Dong and Cui 2020). For example, in
GBM patients, the disease-related important signaling pathways
(e.g., RB1 and TP53) are affected by CpG island promoter hyper-
methylation (Etcheverry et al., 2010). The promoter methylation
of DNA repair enzymes (O6-methylguanine-DNA
methyltransferase) has been identified as a significant
prognostic factor for temozolomide resistance in GBM patients
(Chen et al., 2020).

Conversely, the previous studies reported that pathogenesis of
glioma is significantly associated with the dysregulated alternative
splicing (AS) in the brain (Mogilevsky et al., 2018; Pattwell et al.,
2020; Zeng et al., 2020). AS is the primary driving force behind
generating diverse proteins, which is the basis for the remarkable
and complex functional regulation seen in eukaryotic cells (Xie
et al., 2019). Genome-wide studies showed that 90–95% of human
genes undergo some level of AS, and almost one-third of them
were proved to be generated multiple protein isoforms (Kim et al.,
2014; Wang et al., 2021). These processes usually show an
extreme complexity in brain tissues and can play an important
role in the progression of many CNS diseases (Merkin et al., 2012;
Galarza-Munoz et al., 2017; Consortium 2020). For glioma, for
instance, Mogilevsky et al. discovered that the manipulation of
MKNK2 AS significantly suppressed the oncogenic properties of
GBM cells and resensitized the cells to chemotherapy
(Mogilevsky et al., 2018). Pattwell et al. found that a truncated
splice variant, TrkB.T1, increases PDGF-induced Akt and STAT3
signaling and further enhances PDGF-driven GBM in vivo
(Pattwell et al., 2020). Moreover, many previous studies
indicate that there is a strong link between DNA methylation
and AS and it generally contributes to the pathogenesis of CNS
disorders, including glioma (Feng et al., 2019; Li et al., 2019). For
example, transcriptome analysis revealed that PTEN methylation
influences mature mRNA transcripts through modulation of pre-
mRNA AS, and the methylation-defective PTEN R159K mutant
is found most frequently in glioma patients. There was mark
dysregulation of splicing factors in the PTEN-deficient GBM
samples (Feng et al., 2019). The important oncogeneMETTL3 is a
methyltransferase and it is found to modulate the nonsense-
mediated mRNA decay of splicing factors and AS isoform
switches in GBM. The methylation modification of serine- and
arginine-rich splicing factors by METTL3 promotes GBM tumor
growth and progression (Li et al., 2019).

However, so far, there has been no systematic study to explore
the relationship between glioma-related DNA methylation and
gene AS in the whole genome scale, and the influence of their
interaction on the pathogenesis and progress of glioma.
Therefore, in this study, we performed a genome-wide analysis
by integrating the DNA methylation and AS data of 537 low-
grade glioma (LGG) and GBM individuals. First, we downloaded
the relevant data from the Cancer Genome Atlas (TCGA), TCGA
SpliceSeq and EWASdb database, respectively. Second, we
conducted the differential analysis between LGG and GBM
samples to identify the glioma-related methylation positions
and AS events. Third, based on the results, we performed a

splicing quantitative trait methylation loci (defined as me-sQTL
(Gutierrez-Arcelus et al., 2015; Han and Lee 2017)) analysis to
explore the influence of DNA methylation level on gene AS in
glioma. Fourth, we further explored the characteristics of these
me-sQTLs and affected AS events. Fifth, combining the data of
disease risk methylation positions from EWASdb, we performed
the two-tailed Fisher’s exact test to investigate the disease
specificity of the me-sQTLs and identify the potential key
genes related to them in glioma. Finally, based on these
potential key genes and clinical data, we conducted the least
absolute shrinkage, univariate Cox regression, selection operator
(LASSO) regression, clinical correlation and survival analysis to
explore the influence of these genes whose AS events affected by
DNAmethylation on clinical prognosis of glioma. The flow chart
is shown in Figure 1.

MATERIALS AND METHODS

Data Collection and Processing
Clinical and methylation information of glioma patients was
downloaded from the TCGA database (http://cancergenome.
nih.gov), a comprehensive resource containing multi-omics
data from various cancers. According to the annotation of
TCGA, glioma is classified as the LGG and the GBM. TCGA
is a global genomic profiling project that utilizes high-throughput
microarray technologies to identify molecular subtype
classifications of cancers, multigene clinical predictors, new
targets for drug therapy, and predictive markers for these
therapies (Vigneswaran et al., 2015). The International
Classification of Diseases for Oncology has been used for
nearly 25 years as a tool for coding diagnoses of neoplasms in
tumor and cancer registrars and in pathology laboratories
(Warzel et al., 2003). Data analysis was performed with the
glioma classification LGG and GBM provided by the TCGA
database. Current glioma classifications are based on the 2007
WHO grading scale, which separates gliomas based on cytologic
features and degrees of malignancy after hematoxylin and eosin
(H&E) staining (Erridge et al., 2011). According to the
classification of gliomas in the TCGA database, data analysis is
carried out by using the classifications LGG and GBM of gliomas
provided by the TCGA database. We accessed these TCGA data
using the Genomic Data Commons (GDC) data portal (https://
portal. gdc. cancer.gov/). Particularly, based on our previous
study (He et al., 2020), we first selected “DNA methylation”
for the Data Category, “Illumina human methylation 450” for the
Platform, “brain” for the Primary Site and “gliomas” in the
Disease Type to screen out the suitable methylation array of
patients in the GDC data portal. Then, the“clinical,” “brain” and
“gliomas” were selected to the Data Category, Primary Site and
Disease Type, respectively, to screen out the clinical information
of patients in the GDC data portal. Finally, we removed samples
that lacked methylation or clinical information.

The AS events of these samples were obtained from the TCGA
SpliceSeq database (http://bioinformatics.mdanderson.org/
TCGASpliceSeq), which identifies AS events and describes
their genome profiles using the RNA-seq data of the TCGA

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 7999132

Yang et al. Me-sQTL Analysis in Glioma

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://portal
https://portal
http://bioinformatics.mdanderson.org/TCGASpliceSeq
http://bioinformatics.mdanderson.org/TCGASpliceSeq
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


samples (Ryan et al., 2016). Particularly, we downloaded the AS
isoform average percent spliced-in (PSI) values of the LGG and
GBM samples, respectively, from TCGA SpliceSeq database with
the common parameter settings (i.e., the percentage of samples
with PSI value >75%, minimum PSI range >0 and minimum PSI
standard deviation >0.1) according to the previous studies (Yang
et al., 2019; Rong et al., 2020; Wei et al., 2021). Based on the
classification criteria of TCGA SpliceSeq, we classified the types of
AS events into Alternate Acceptors (AA), Alternate Donors (AD),
Exon Skip (ES), Retained Intron (RI), Alternate Promoters (AP),
Alternate Terminators (AT) and Mutually Exclusive Exons (ME).
The AS events that are not present in both LGG and GBM
samples were removed.

Moreover, the information of disease risk methylation
positions was obtained from the EWASdb database (http://
www.bioapp.org/ewasdb/index.php/Index/index). EWASdb is a
specialized epigenome-wide association database which stores the
results of 1,319 epigenome-wide association study (EWAS)
studies involved in the 302 diseases/phenotypes with the
threshold for significance p < 1 × 10–7 (Liu et al., 2019). We

downloaded the EWAS single epi-marker and annotation files
(phenotype/disease info) and merged the files by the
disease codes.

Differential Analysis of Methylation
Positions
To obtain the glioma-related methylation positions, we
performed differential methylation analysis between GBM and
LGG samples. In particular, we used a Subset-quantile Within
Array Normalization method to preprocess the methylation data
by the R package “minfi,”, a specialized tool for the analysis of the
Illumina methylation 450 array dataset (http://bioconductor.org/
packages/release/bioc/html/minfi.html) (Aryee et al., 2014).
Then, the quality control of methylation array was conducted
“densityBeanPlot” function of this package. The characteristics of
the qualified samples show that the methylation levels (beta
values) of CpG positions are distributed around 0 and 1,
respectively. Finally, based on the qualified methylation array
data, we used a bump-hunting algorithm to identify the

FIGURE 1 | The flow chart of the study design for exploring the influence of DNA methylation level on gene AS in glioma and its impact on disease prognosis.
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differentially methylated positions between GBM and LGG
subjects by the “dmpFinder” function of this package. The
parameter was set by its default value (i.e., type =
“categorical”) and the significance level was set according to a
common threshold for the absolute intercept ≥0.2 (i.e. 20%
difference on the beta values) and the p value <1 × 10–3 (Guo
et al., 2015).

Differential Analysis of Alternative Splicing
Events and Annotation
To identify the glioma-related AS events and corresponding
genes, we performed the differential AS events analysis and
gene annotation. Particularly, the differential AS events
analysis was conducted by the vast-tools software (Irimia
et al., 2014). Based on the PSI of each AS event, we performed
a Bayesian inference-based differential AS analysis by the “diff”
function of vast-tools software with its default parameters.
According to the previous studies, we set the threshold for
significance at the minimum value for absolute value of
differential PSI between GBM and LGG samples (MV|ΔPSI|)
at 0.95 confidence level greater than 10% (Ha et al., 2021; Hekman
et al., 2021). The gene annotation was conducted by g:Profiler
toolset, a web server for conversions between gene identifiers and
functional annotation (Raudvere et al., 2019). We used the g:
Profiler to identify these AS events corresponding genes, convert
their ID and annotate the genome location and type of the genes.
The annotation file (hg19) from the database (release 75) were
used for these analyses (Aken et al., 2017).

Association Analysis Between DNA
Methylation and Alternative Splicing
To explore the effect of methylation on AS events in glioma, we
performed a cis me-sQTL analysis by combining the PSI values of
differential AS events and the beta values of differentially
methylated positions from the same samples. Particularly, we
first considered the distance between the differentially methylated
positions and the transcription initiation site (TSS) of differential
AS events corresponding genes less than 1 M as the cis region,
and selected all methylation positions and AS event pairs that met
the conditions for the cis me-sQTL analysis. The annotation files
of the Illumina methylation 450 array dataset (hg19) and
Ensembl database (release 75) were used to locate the genomic
locations of the methylated positions and the TSS of AS events
corresponding genes, respectively. Then, based on the beta values
of the differentially methylated positions in combination with the
PSI values of the corresponding differential AS events, we used a
linear regression model to perform a cis me-sQTL analysis by the
R package “Matrix eQTL”with the parameters, age, and gender as
covariates (Shabalin 2012). Finally, we conducted a multiple
testing by Benjamini–Hochberg method to correct the p values
of the cis me-sQTL analysis and set false discovery rate (FDR) q
value less than 0.05 as the threshold for significance level
according to the previous studies (Gillies et al., 2018; Drag
et al., 2019; Han et al., 2020).

Disease Specificity Analysis of the Cis
Me-sQTLs
In order to explore the disease specificity of these cis me-sQTLs
and further verify our findings as well as identify the potential key
glioma-related genes with affected AS events bymethylation level,
we performed the two-tailed Fisher’s exact test by combining the
disease risk methylation positions and the results of cis me-sQTLs
analysis. Particularly, we first produced the disease risk
methylation position datasets for various disorders including
glioma from EWASdb database (Liu et al., 2019). Then, we
defined the methylation positions which were unlikely to have
an effect on the AS events in cis region (p > 0.05) as the non me-
sQTLs. Next, by the two-tailed Fisher’s exact test, we compared
the proportions of all these cis and non me-sQTLs in the disease
risk methylation positions for each of the disorders to explore the
disease specificity and further verify previous findings. The
threshold for significance level was set as the p value <0.05.
Finally, to identify the potential key glioma-related genes at the
me-sQTL level, we compared the proportions of cis and non me-
sQTLs in glioma-related methylation positions for each gene
using the two-tailed Fisher’s exact test (the threshold of p < 0.05).
The “fisher.test” function of R was used for these calculations.

Influence of the Me-sQTL Genes on Clinical
Prognosis of Glioma
We further analyzed the influence of these potential key genes
whose AS events are affected by DNA methylation on clinical
prognosis of glioma. First, we calculated the average expression of
these genes in each individual and separated the samples into low
and high expression groups according to the median of average
expression. Then, we used the Kaplan-Meier overall survival
curves to compare prognosis between the high expression and
low expression individuals. Next, we performed a univariate Cox
regression analysis to assess the association between these me-
sQTL genes and the prognosis of glioma. The threshold of
significance was set at 95% confidence interval (CI) of hazard
ratio (HR) S 1 and p < 0.05. Then, based on the results of
univariate Cox regression analysis, the R package “glmnet” was
used to perform the LASSO regression analysis, a fit algorithm
based on cyclical coordinate descent and warm start search along
a regularization path, to identify the main glioma prognosis-
related genes (Simon et al., 2011). According to the common
parameter settings, the maxit and alpha were set at 1,000 and 1,
respectively, and others were set by their default values. Based on
the results, the risk scores were calculated for each subject by the
R package “survival” (http://CRAN.R-project.org/package=
survival). Further, the receiver operator characteristic (ROC)
curve was used to verify the reliability of these risk scores by
the R package “survivalROC” (https://CRAN.R-project.org/
package=survivalROC). Finally, we used the chi-square test to
assess the association between the expression of these glioma
prognosis-related genes and other clinical features of the patients,
which included the age at initial pathologic diagnosis, the vital
status, and the gender. The threshold for significance was set at
the p value <0.05.
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RESULTS AND DISCUSSION

The Multi-Omics Data From 537 Glioma
Individuals
In total, we obtained the datasets of DNA methylation values, AS
events PSI values, gene expression levels and clinical information
from 537 glioma samples (including 486 LGG and 51 GBM
patients). The summary of these glioma samples was shown in
Table 1. Particularly, after the missing value filtering and
normalization processing, we quantified a total of 369,531
CpGs methylation positions with the normalized values
according to the annotation files of Illumina human
methylation 450 array. The results of normalization processing
were shown in the Supplementary Figure S1 and our previous
study (He et al., 2020). We obtained 7,414 AS events with the PSI
values from 537 glioma samples the TCGA SpliceSeq database.
These AS events are composed of about 39.0% ES, 27.8% AP,
11.3% AT, 8.4% RI, 6.9% AD, 5.9% AA and 0.5% ME types
(Figure 2A). The expression data of 20,530 genes of the glioma
samples was downloaded from the TCGA database and
quantified by RSEM values. The clinical information of these
samples contains age, gender, survival time, and vital status.
Moreover, after the combination of same disease types and
missing value filtering, we obtained a total of 141 disease risk
methylation position data sets from the EWASdb database.

Differential Analysis of Methylation
Positions and Alternative Splicing Events
We performed a differential methylation analysis between the
LGG and GBM subjects to identify the glioma-related DNA
methylation positions. All of the methylation array data met
quality control metrics. The results showed that the beta values of
DNA methylation positions are mainly distributed around 0 and
1, respectively, for each sample. The details are described in the
Supplementary Figure S2 and our previous study (He et al.,
2020). By the differential methylation analysis, we identified a
total of 208,138 positions with a significantly different
methylation level between LGG and GBM subjects. The results
are shown in the Supplementary Table S1 and our previous
study (He et al., 2020).

To identify the glioma-related AS events, we further
conducted differential AS events between the LGG and GBM
subjects. According to the significance threshold MV|ΔPSI| at
0.95 confidence level ≥10%, we identified a total of 287
differential AS events between LGG and GBM subjects. These

differential AS events belonged to 263 genes (Supplementary
Table S2). Figure 3 shows the most significant differential AS
events (SpliceSeq ID: 96726) of LPHN3 gene (MV|ΔPSI| at 0.95
confidence level = 0.25). A recent study reported that LPHN3 was
an important paralog of EVA1C which leads to the high
infiltration levels of multiple immune cells in glioma (Hu and
Qu 2021). Moreover, according to the classification criteria for
SpliceSeq database, about 35.5%, 31.0%, 14.0%, 9.1%, 5.2% and
5.2% of these identified AS events are categorized into ES, AP,
AT, RI, AD and AA types, respectively (Figure 2A). We did not
find a significant difference in the proportion of AS event types
when compared with the original AS event type proportion
by the two-tailed Fisher’s exact test (Figure 2A). This revealed
a typological universality of the differential AS events in
glioma.

Association Analysis Between DNA
Methylation and Alternative Splicing
Combining the PSI values of differential AS events with the beta
values of differentially methylated positions from the same
samples, we used a linear regression model to perform the cis
me-sQTL analysis by R package “Matrix eQTL” with the
parameters, age, and gender serving as covariates. In total, we
identified 19,345 methylated positions affecting 256 AS events
which are involved in 233 genes (over 88% of the total differential
genes) with a significance level of FDR q < 0.05. This revealed a
general influence of DNAmethylation level on gene AS in glioma.
The top 25 significant results are shown in Table 2 (the full
information is listed in the Supplementary Table S3). Among the
256 affected AS events, we found that about 34.1%, 32.2%, 14.6%,
9.6%, 4.6% and 5.0% of these affected AS events are categorized
into ES, AP, AT, RI, AD and AA types, respectively. By the two-
tailed Fisher’s exact test, we also did not find a significant
difference of percentage between the affected and the original
AS event types (Figure 2A). This revealed a typological non-
specific regulation of gene AS by DNA methylation level in
glioma. Further, we explored the relationship between the
significance of regulation of the cis me-sQTLs and the
distance of them to the TSS of the corresponding affected
gene, and their distribution characteristics in genome. The
results showed that these cis me-sQTLs tended to be
distributed in the proximity of the corresponding affected gene
TSS, and there were more significant regulatory effects of them in
these regions (Figure 2B). This was consistent with the findings
of previous studies (Pangeni et al., 2018; Chen and Elnitski 2019).

TABLE 1 | Summary of the 537 individuals studied in this work.

Individuals Sample Type Sample Size Mean Age
(Aken et al.)

Male/Female (Han
and Lee)

Death Rates
(Han and

Lee)

GBM subjucts Primary Tumor 51 61.54 (13.41) 56.00/44.00 66.00
LGG subjucts Primary Tumor 486 42.91 (13.42) 54.64/45.36 25.15
Total 537 44.66 (14.48) 54.77/45.23 28.97

These samples are from our previous study (He et al., 2020).
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FIGURE 2 | The characteristic of the cis me-sQTLs and the affected AS events. (A) The pie charts show the proportion in all (left), differential (middle) and DNA
methylation affected AS events (right) annotated with each class (AA, AD, ES, RI, AP, AT and ME), respectively. (B) The blue bar graphs indicate the relationship between
the abundance of the cis me-sQTLs and the distance of them to TSS of corresponding AS events. The red dots indicate the relationship between the statistical
significance of the cis me-sQTLs associated with AS and the distance of them to TSS of corresponding AS events. (C) The disease specificity of the cis me-sQTLs
by the two-tailed Fisher’s exact test. (D) The glioma specificity of the cis me-sQTLs in each gene by the two-tailed Fisher’s exact test. The black bars in histogram
represent 95% confidence intervals.
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Disease Specificity Analysis of the Cis
Me-sQTLs
To explore the disease specificity of these cis me-sQTLs and verify
our findings, as well as further identify the potential key glioma-
related genes at the me-sQTL level, we performed the two-tailed
Fisher’s exact test using the disease risk methylation position data
from the EWASdb database. We found that the risk methylation
positions of all the 141 diseases are overlapped with the cis me-
sQTLs and non me-sQTLs. By comparing the proportions of cis
me-sQTLs and non me-sQTLs in each disease risk methylation
position dataset (the threshold of Fisher’s p value <0.05), we
found that the cis me-sQTLs significantly enriched the risk
methylation position dataset of 103 diseases, which are mainly
composed of CNS disorders and malignant tumor diseases
including glioma (odds ratio (OR) = 2.49, p = 0). In contrast,
the remaining 38 diseases, whose risk methylation positions are
not significantly enriched by the cis me-sQTLs, are mainly
composed of the other types of disorders, e.g., the rheumatic
heart disease (p = 5.99 × 10–1), septicemia (p = 6.97 × 10–1), and
Infertile (p = 1). The top 5 most and least significant results are
shown in Figure 2C (the full information is listed in the

Supplementary Table S4). The results revealed the specificity
and similarity of neuro-oncological disorders at the me-sQTL
level and verified the association of the cis me-sQTLs we
identified with glioma. Further, for each type of AS event and
each gene, we compared the proportions of their cis and non me-
sQTLs in glioma risk methylation position dataset, respectively.
The results showed that the cis me-sQTLs of almost all types of
AS events are significantly enriched in glioma risk methylation
position dataset, i.e., AA (OR = 4.76, p = 1.18 × 10–36), AT (OR =
2.85, p = 9.63 × 10–66), ES (OR = 2.39, p = 6.26 × 10–112), RI (OR =
2.05, p = 2.85 × 10–30), AD (OR = 2.55, p = 4.78 × 10–21), and AP
(OR = 2.88, p = 8.69 × 10–191), and there are a total of 130 genes
whose cis me-sQTLs are significantly enriched in glioma risk
methylation position dataset (p < 0.05). Figure 2D shows the top
20 significant results and full information is listed in the
Supplementary Table S5. We considered that these genes are
more correlated with the pathogenesis of glioma at the me-sQTL
level and selected them for the following prognosis analysis of
glioma.

Influence of the Me-sQTL Genes on Clinical
Prognosis of Glioma
We further analyzed the influence of the potential key genes
which are associated with glioma in me-sQTL level on the clinical
prognosis of glioma. The expression data were obtained from
TCGA database and these data are involved in 117 of the 130
potential key genes. We found that the overall survival curve of
the subjects with high expression of these genes is significantly
longer than the subjects with low expression (p = 7.56 × 10–1

(Figure 4A). This revealed that the expression dysregulation of
these potential key genes is significantly associated with the bad
prognosis of glioma patients. To avoid dependence between the
117 genes and identify the main glioma prognosis-related genes,
we performed the univariate Cox regression analysis of the 117
genes. However, the results showed that 61me-sQTL genes
identified are high-risk factors for the prognosis of glioma
subjects (i.e. 95% CI HR S 1 and p < 0.001) (Supplementary
Figure S3). We discover that both over-expression of those 30
genes and under-expression of the other 31 genes can lead to a
poor prognosis in glioma patients, which is also consistent with
common sense. given that patients are in advanced stages of the
disease and their survival may be affected by other complications
or factors. Then, we further applied the LASSO regression
algorithm to conduct the selection and calculate the risk score
of each subject to univariate Cox regression results. The results
showed that there are 11 genes (i.e., KIF3A, HAUS1, TMCC1,
BEND7, B3GNT5, MTMR3, ITGB3, BICD1, EXTL3, SUN1 and
MXRA8) identified when the cross-validated partial likelihood
deviance reaches its minimum value (Figures 4B,C). Among the
11 genes, the coefficients of 7 were positive (i.e., increase risk of
disease), and others were negative (i.e., decrease risk of disease). A
previous study reported that the low expression of the TMCC1
gene confers poor clinical prognoses of glioma patients which is
in accordance with our findings (Pangeni et al., 2018). The area
under the curve (AUC) of the ROC is 0.988, which reveals the
reliability of the risk score (Figure 4D). According to the median

FIGURE 3 | The results of differential analysis for the AS event 96726 of
LPHN3 gene. (A) The red line indicates that the maximum probability of ΔPSI
of AS event 96726 between LGG and GBM subjects is greater than 0.25. (B)
The histogram shows the two joint posterior distributions over PSI and
the point estimates for each replicate.
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of risk scores, the patients were separated into the low and high-
risk groups.We found that the LGG andGBM subjects are mainly
distributed in the low and high-risk group, respectively, which

reflects the consistency between the risk scores calculated by the
prognosis-related me-sQTL genes and the severity of glioma.
Moreover, the results of chi-square test showed that the risk

TABLE 2 | The top 25 significant results of the me-sQTLs and the differential AS events affected by the methylated position.

Methylated
position

Differential analysis of methylated positions AS event Differential analysis of AS Me-sQTLs

Strand Intercept f p Value Gene E (ΔPSI) 95% MV|ΔPSI| Statistic p Value FDR Beta

cg04928129 1429051− −2.1144 230.3921 3.34E-44 33029 LMF1 −0.004168 0.11 28.4852 4.34E-109 9.97E-106 0.7302
cg00583426 1209990− −2.7769 210.9880 4.05E-41 33029 LMF1 −0.004168 0.11 28.1495 1.93E-107 2.22E-104 0.6155
cg08259514 1131634− −3.8941 291.6219 1.79E-53 33029 LMF1 −0.004168 0.11 27.7357 2.11E-105 1.61E-102 0.5842
cg04603812 1429265− −4.5946 291.2726 2.01E-53 33029 LMF1 −0.004168 0.11 27.3596 1.51E-103 8.70E-101 0.7149
cg03323597 1131489− −2.1121 273.3760 8.81E-51 33029 LMF1 −0.004168 0.11 26.8338 6.07E-101 2.79E-98 0.7754
cg09249980 1213919− 1.1469 137.6579 9.86E-29 33029 LMF1 −0.004168 0.11 25.2485 4.74E-93 1.36E-90 1.0011
cg00611495 1120275− −1.0380 165.5488 1.38E-33 33029 LMF1 −0.004168 0.11 25.1518 1.44E-92 3.31E-90 0.8511
cg20104307 778658+ −1.9372 165.0035 1.71E-33 33029 LMF1 −0.004168 0.11 25.0200 6.57E-92 1.37E-89 0.7347
cg27040104 1384722− −0.7004 129.0667 3.38E-27 33029 LMF1 −0.004168 0.11 24.8244 6.25E-91 1.20E-88 0.8274
cg00525011 122031+ −1.6582 190.3615 9.36E-38 33029 LMF1 −0.004168 0.11 24.6293 5.92E-90 1.05E-87 0.6617
cg04913730 1121907− −1.7877 137.0784 1.25E-28 33029 LMF1 −0.004168 0.11 24.5070 2.42E-89 3.98E-87 0.6183
cg00675160 1208531+ −0.7381 141.6593 1.93E-29 33029 LMF1 −0.004168 0.11 24.4083 7.57E-89 1.16E-86 0.7337
cg08438529 1052939− −1.2133 173.4449 6.27E-35 33029 LMF1 −0.004168 0.11 24.1224 2.05E-87 2.94E-85 0.5957
cg07549278 1204244− −2.0317 95.9829 4.18E-21 33029 LMF1 −0.004168 0.11 23.9448 1.59E-86 2.15E-84 0.6040
cg16383109 126451− −1.4219 232.0717 1.82E-44 33029 LMF1 −0.004168 0.11 22.9002 2.77E-81 3.35E-79 0.6947
cg05245533 795877− −0.9085 145.6310 3.86E-30 33029 LMF1 −0.004168 0.11 22.8553 4.65E-81 5.34E-79 0.6500
cg16443148 776667− −0.2492 47.2131 1.61E-11 33029 LMF1 −0.004168 0.11 22.6322 6.12E-80 6.12E-78 0.6401
cg09786479 1020419+ −3.2149 77.1741 1.68E-17 33029 LMF1 −0.004168 0.11 22.6067 8.22E-80 7.87E-78 0.5584
cg07336438 1131466− −0.9484 173.4777 6.19E-35 33029 LMF1 −0.004168 0.11 22.5742 1.20E-79 1.10E-77 0.7216
cg10163825 776685+ −0.4881 18.5564 1.93E-05 33029 LMF1 −0.004168 0.11 22.5302 1.99E-79 1.76E-77 0.9054
cg27127090 1131327+ 0.3781 81.8560 2.08E-18 33029 LMF1 −0.004168 0.11 22.1160 2.38E-77 1.95E-75 0.9443
cg07915516 377344− −1.5503 116.9595 5.29E-25 33029 LMF1 −0.004168 0.11 21.8766 3.77E-76 2.99E-74 0.7060
cg06587435 865125+ 1.6381 82.6033 1.49E-18 33029 LMF1 −0.004168 0.11 21.7725 1.25E-75 9.00E-74 1.1040
cg08641445 1080637+ 0.4693 58.8931 6.88E-14 33029 LMF1 −0.004168 0.11 21.6790 3.68E-75 2.57E-73 0.9575
cg05272807 1232363+ 0.2547 93.9919 9.94E-21 33029 LMF1 −0.004168 0.11 21.6061 8.55E-75 5.78E-73 0.7974

FIGURE 4 | The influence of the glioma-related genes whose AS significantly affected by DNA methylation level on the disease prognosis. (A) The Kaplan-Meier
overall survival curves of the low (red) and high (blue) expression groups. (B) and (C) show the results of LASSO regression. There are 11 independent genes with their
coefficient when the partial likelihood deviance reaches its minimum value. (D) The ROC curve reveals the reliability of the risk score by comparing the true and false
positive rate. (E) The heatmap shows the association between the risk scores of the prognosis-related me-sQTL genes and the clinical features of glioma patients.
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scores of the prognosis-related me-sQTL genes are also associated
with the age at initial pathologic diagnosis (p = 4.89 × 10–2) and
vital status (p = 1.81 × 10–9), but not with the gender of the
patients (p = 4.60 × 10–1) (Figure 4E). This proves that the 11 key
genes we found are meaningful for clinical prognosis of glioma.
Among the 11 genes, 7 of them (i.e., B3GNT5, BICD1, KIF3A,
HAUS1, MTMR3, ITGB3 and EXTL3) have been confirmed to be
associated with the prognosis of glioma (Kim et al., 2011; Sumazin
et al., 2011; Huang et al., 2017; Zhou et al., 2018; Jeong et al., 2020;
Li et al., 2020; Wang et al., 2020). Our findings imply that the
functions of these genes in glioma prognosis may be related to the
methylation regulation of their AS events.

CONCLUSION

In this study, we used the TCGA data to explore the role of the
me-sQTL process on pathogenesis of glioma and identify the
affected genes and further analyze the influence of them on the
clinical prognosis of glioma. In total, we identified 130 such genes
which have the following three characteristics: 1) they are
significantly differentially expressed between the LGG and
GBM subjects; 2) their AS events are significantly regulated by
DNA methylation level in the cis regions; and 3) the cis me-
sQTLs of them are significantly enriched in glioma risk
methylation position dataset. Further, the results of clinical
data analysis show a significant association between the
expression of these genes and the clinical prognosis of glioma,
and among them, 11 (i.e., KIF3A, HAUS1, TMCC1, BEND7,
B3GNT5, MTMR3, ITGB3, BICD1, EXTL3, SUN1 and MXRA8)
are considered the key risk factors for the prognosis and severity
of glioma. At the same time, these 130 genes provide new ideas for
the study of the interaction between DNA methylation and
alternative splicing in gliomas and similar diseases and provide
reference for future research on the study of DNA methylation
and variable splicing in neurological diseases in the whole

genome. In summary, we performed a strategy to explore the
influence of DNA methylation level on gene AS in glioma and
these findings will help to better understand pathogenesis of
glioma.
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