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Hyperspectral imaging (HSI) technology has increasingly been applied as an analytical tool in fields of agricultural, food, and
Traditional Chinese Medicine over the past few years. The HSI spectrum of a sample is typically achieved by a spectroradiometer
at hundreds of wavelengths. In recent years, considerable effort has been made towards identifying wavelengths (variables) that
contribute useful information. Wavelengths selection is a critical step in data analysis for Raman, NIRS, or HSI spectroscopy.
In this study, the performances of 10 different wavelength selection methods for the discrimination of Ophiopogon japonicus
of different origin were compared. The wavelength selection algorithms tested include successive projections algorithm (SPA),
loading weights (LW), regression coefficients (RC), uninformative variable elimination (UVE), UVE-SPA, competitive adaptive
reweighted sampling (CARS), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), and
genetic algorithms (GA-PLS). One linear technique (partial least squares-discriminant analysis) was established for the evaluation
of identification. And a nonlinear calibrationmodel, support vector machine (SVM), was also provided for comparison.The results
indicate that wavelengths selection methods are tools to identify more concise and effective spectral data and play important roles
in the multivariate analysis, which can be used for subsequent modeling analysis.

1. Introduction

Ophiopogon japonicus (the tuber of Ophiopogon japonicus
Ker-Gawl., Liliaceae) was originally documented in “Shen-
nong materia medica,” in which it was classified as high
grade [1]. The herb is sweet, slightly bitter, and slightly cold,
enters the heart, lung, and stomach channels, moisturizes
lung by nourishing yin, purges heat, promotes the production
of body fluids, and so forth. It is one of the most commonly
used Chinese medicines, which is widely applied to clinic.
Ophiopogon japonicus is mainly planted in Zhejiang and
Sichuan province in China, recognized as “Zhemaidong”
and “Chuanmaidong” in China, respectively [2]. And there
exist great differences in growing and harvesting between
them as follows: “Zhemaidong” is three-year cultivated, while
“Chuanmaidong” is one-year cultivated. On soil conditions,
“Zhemaidong” is planted coastally, while “Chuanmaidong”

is planted inland. Therefore, although “Zhemaidong” and
“Chuanmaidong” are similar in appearance, they not only
differ in quality, but also have a large difference in price. The
traditional identification methods of Ophiopogon japonicus
of different growing areas include thin layer chromatog-
raphy, high performance liquid chromatography, gas chro-
matography, and liquid chromatography-mass spectrometry.
These analytical methods are generally complex and time-
consuming and require consumption of chemical reagents
and higher professional requirements for operators; there-
fore, it is necessary to develop a rapid and nondestructive
identification method of “Zhemaidong” and “Chuanmaid-
ong.”

Hyperspectral imaging (HSI) technology has emerged
as an alternative technique that can meet both spatial and
spectral requirements and thus has been widely applied in
quality evaluation and classification of Traditional Chinese
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Medicine. Zhang et al. fabricated a visible-near-infrared
(Vis-NIR) HSI portable field spectrometer to distinguish
sun-dried and sulfur-fumigated Chinese medicine herbs
and achieved the results with a sensitivity of 96.4% and
a specificity of 98.3% for RPA identification [3]. Tankeu
et al. classified Stephania tetrandra and the nephrotoxic
Aristolochia fangchi based on hyperspectral imaging. A
discrimination model with a coefficient of determination
(𝑅2) of 0.9 and a root mean square error of prediction
(RMSEP) of 0.23 was created [4]. The potential of short wave
infrared (SWIR) hyperspectral imaging and image analysis
as a rapid quality control method to distinguish between
Illicium anisatum (Japanese star anise) and Illicium verum
whole dried fruit was investigated. A classification model
with 4 principal components and an 𝑅2𝑋_cum of 0.84 and
𝑅2𝑌_cum of 0.81 was developed for the 2 species using partial
least squares-discriminant analysis (PLS-DA). The model
was subsequently used to accurately predict the identity
of I. anisatum (98.42%) and I. verum (97.85%) introduced
into the model as an external dataset [5]. Sandasi et al.
applied HIS, MIR, and NIR spectroscopy to certify ginseng
reference materials and commercial products. And good
discrimination models with high 𝑅2𝑋 and 𝑄2 cum values
were developed [6]. These results suggest that hyperspectral
imaging is a potential technique to control medicine quality
for medical applications.

A HSI spectrum of a sample is typically measured by
a spectroradiometer for hundreds of wavelengths. The large
number of spectral variables in most spectral datasets often
renders the prediction of a dependent variable unreliable.
However, the use of appropriate projection or selection
techniques, such as principle component analysis or partial
least squares regression, may minimize this problem [7].
Recently, considerable efforts have been made on developing
and evaluating different programs that identify variables that
contribute useful information or eliminate variables that
contain redundancy data. The basic principle of the selection
method is to select a small number of representative variables
from the original set of variables. And the purpose of variable
selection is to select a subset of spectral variables that
produce the smallest possible errors when used to establish
determination or classification models. Variable selection
is an important step in multivariate analysis because the
removal of redundant variables will produce better prediction
results [8].

Two to five wavelengths selection methods were usually
compared [9–11], however, which could not fully reflect
the effectiveness and importance of wavelength selection
methods in multivariate analysis. In the present work, 10
wavelength selection methods were compared in classifica-
tion of “Zhemaidong” and “Chuanmaidong” to discuss the
application of wavelength selection methods in multivariate
analysis.

2. Materials and Methods

2.1. Materials. A total of 675 Ophiopogon japonicus samples
were collected, of which 315 samples were purchased from

different growers of Cixi, Zhejiang province, and 360 samples
were derived from different growers of Mianyang, Sichuan
province.

2.2. Hyperspectral Imaging System. A hyperspectral imaging
system was used in the experiment, which consists of an
imaging spectrograph (Imspector V10E, Spectral Imaging
Ltd., Oulu, Finland), a CCD camera (C8484-05, Hamamatsu
city, Japan), a lens (OLE-23, Specim, Spectral Imaging Ltd.,
Oulu, Finland), an illuminant source with two quartz tung-
sten halogen lamps (Fiber-Lite DC950, Dolan Jenner Indus-
tries Inc., Boxborough, USA), a conveyer belt controlled
by a stepper motor (IRCP0076 Isuzu Optics Corp, Taiwan,
China), and a computer. The whole system was assembled in
a dark chamber except the computer, as shown in Figure 1.

2.3. Acquisition and Calibration of Hyperspectral Images.
After repeated tests, the height between the lens and the
sample was set as 15 cm, the exposure time of camera was
set as 1.35ms, and the speed of the conveyer was set as
18.7mm⋅s−1. The hyperspectral image was acquired by a
software (Spectral Image-V10E, Isuzu Optics Corp, Taiwan,
China).

The acquired raw hyperspectral images should be cal-
ibrated with the white and dark reference according the
following equation:

𝑅 = 𝐼raw − 𝐼black
𝐼white − 𝐼black

, (1)

where 𝑅 was the corrected image, 𝐼raw was the raw hyper-
spectral image, 𝐼white was the white reference with nearly
100% reflectance acquired by the special white Teflon tile,
and 𝐼black was the dark reference image with nearly 0%
reflectance obtained by turning off the light source together
with covering the camera lens.

2.4. Wavelengths Selection Methods

2.4.1. Successive Projections Algorithm, SPA. Successive pro-
jections algorithm (SPA) is an efficient method of spectral
feature selection, which could minimize the collinearity
between variables [12].

2.4.2. Regression Coefficient Method, RC. Regression coeffi-
cient is calculated based on PLS, and sensitive wavelengths
are usually selected according to the regression coefficient of
the optimal PLS model. Generally, the peaks or bands where
the absolute value of RC is greater than threshold are selected
as sensitive wavelength or waveband [9].

2.4.3. Loading Weights Method, LW. The loading weights
show the importance of corresponding wavelength or bands
in the spectral matrix. The peaks or valleys with the maxi-
mum absolute loading weights from the first principal factor
to the optimal principal factor are selected as sensitive
wavelengths [13, 14].
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Figure 1: The hyperspectral imaging system.

2.4.4. Uninformative Variable Elimination, UVE. Uninfor-
mative variable elimination (UVE) is widely applied for vari-
able selection based on analysis of the regression coefficients
of the PLS model. It can eliminate noninformative variables
and the remaining is useful for the chemical and classification
analysis [15, 16].

2.4.5. Competitive Adaptive Reweighted Sampling, CARS.
Competitive adaptive reweighted sampling (CARS) is a fea-
ture variable selection method combining Monte Carlo sam-
pling with PLS regression coefficient. Adaptive reweighted
sampling is employed in CARS, and the variables with larger
weight of regression coefficient are applied as a new subset to
establish PLSmodel, and after repeated calculation, the subset
with the lowest root mean square error of cross validation
(RMSECV) is chosen [17, 18].

2.4.6. Interval PLS, iPLS. In the iPLS method, the data are
divided into nonoverlapping sections; each section develops a
separate PLSmodel to identify the most useful variable range
[19, 20].

2.4.7. Backward Interval PLS, BiPLS. For the backward iPLS
(BiPLS) algorithm, the dataset is split into a given number
of intervals; the PLS models are then calculated with each
interval left out in a sequence; that is, if 𝑛 intervals are chosen,
then each model is based on 𝑛 − 1 intervals that exclude one
interval at a time. The first omitted interval gives the poorest
performing model with respect to RMSECV [21, 22].

2.4.8. Forward Interval PLS, FiPLS. As in the interval PLS
model, the dataset is split into a given number of intervals,
but the PLS models are then developed based on successively
improving intervals with respect to RMSECV; that is, if 𝑛
intervals are used, then the firstmodel is based onone interval
that has the best performance, the secondmodel uses the next
interval, and so on [23, 24].

2.4.9. Genetic Algorithm-PLS, GA-PLS. The method com-
bines the advantage ofGA andPLS and is themost commonly
used method for spectral data analysis. GA applied to PLS
have been shown to be very efficient optimization procedures.
They have been applied on many spectral datasets and have
been proved to provide better results than full-spectrum
methods [25, 26].

2.4.10. UVE-SPA Method. In this method, UVE eliminates
uninformative variables, and then SPA is employed for
variable selection. Fewer variables are selected by a UVE-SPA
algorithm compared to UVE.

2.4.11. Model Evaluation and Software. The efficiency of the
wavelengths selection method is based on the identification
rate and the number of variables. The efficiency equation is
as follows:

𝐸 =
(𝐷𝑠 − 𝐷𝑓) × (𝑁𝑓 − 𝑁𝑠)

𝑁𝑓
× 100, (2)
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Figure 2: Average raw spectra reflectance curves of Ophiopogon
japonicus.

where 𝐸 was the efficiency of wavelengths selection method,
𝐷𝑠 was the identification rate of prediction set in the model
established by variables selected by the wavelengths selection
method, and 𝐷𝑓 was the identification rate of prediction set
in the full-spectrum model.𝑁𝑓 was the number of variables
of full-spectrum and𝑁𝑠 was the number of variables selected
by wavelength selection method.

When 𝐸 > 0.5, the wavelength extraction method is
proved to be highly efficient.

When −0.5 ≤ 𝐸 ≤ 0.5, the method is proved to be
efficient, except when𝐸 = 0, (𝑁𝑓−𝑁𝑠)/𝑁𝑓 ≥ 0.8; themethod
is proved to be highly efficient.

When 𝐸 < −0.5, the method is proved to be of low
efficiency.

The spectral data extraction, SPA, UVE, UVE-SPA, iPLS,
BiPLS, FiPLS, CARS, GA-PLS, and SVM were conducted
on Matlab R 2010b (The Math Works, Natick, MA, USA).
LW, RC, and PLS-DA were performed on Unscrambler� 10.1
(CAMO AS, Oslo, Norway).

3. Results and Discussion

3.1. Raw Spectra Reflectance Curves of Ophiopogon japonicus.
The spectra of “Zhemaidong” and “Chuanmaidong” were
acquired in the range of 380–1030 nm. The raw average
spectra of “Zhemaidong” and “Chuanmaidong” were shown
in Figure 2. No significant differences were observed in
the range of 380∼401 nm and 961∼1030 nm, while different
magnitudes of the spectra reflectance could be found in the
range of 402∼960 nm. Wavelength selection methods were
further employed to identify feature information for better
classification of “Zhemaidong” and “Chuanmaidong.”

675 Ophiopogon japonicus samples were split into two
sets, calibration set and prediction set. “Zhemaidong” sam-
ples were labeled as “1,” while “Chuanmaidong” samples were

Re
gr

es
sio

n 
co

effi
ci

en
t

8

6

4

2

0

−2

−4

−6

−8

Wavelength (cm−1)
400 500 600 700 800 900 1000

Selected wavelengths

Figure 3: Seven wavelengths were selected by RC method.

Table 1: Class assignment and division of Ophiopogon japonicus
samples.

Zhemaidong Chuanmaidong
Label 1 2
Calibration set 210 240
Prediction set 105 120
Sum up 315 360

labeled as “2.”Ophiopogon japonicus samples were divided in
Table 1.

3.2. SensitiveWavelengths Selection. Firstly, eachwavelengths
selection method should be optimized to evaluate the perfor-
mance of each method better.

3.2.1. SPA. Thenumber of sensitive wavelengths was set as 5∼
30, and 5 wavelengths (889, 1014, 411, 460, and 407 nm) were
selected.

3.2.2. RC. Regression coefficients of PLSmodel based on full-
spectrum were shown in Figure 3. The threshold was set as
±4.5; finally, 7 wavelengths were selected by RC method.

3.2.3. UVE. UVEmethod was applied for full-spectrum data
with no pretreatment; the number of principal components
was set as 20. The selection criteria of threshold were 99% of
themaximumvalue of variable stability. 291 wavelengthswere
selected by UVE (as shown in Figure 4), in which columns
represent selected wavelengths.

3.2.4. UVE-SPA. 291 variables were selected byUVEmethod;
SPAwas applied tominimize the number of variables selected
by UVE. 12 wavelengths were extracted finally which were
shown in Figure 5.
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3.2.5. iPLS. The raw dataset was split to 16–32 intervals, and
the optimal interval was selected according to the lowest root-
mean-squares error of cross validation (RMSECV). As shown
in Figure 6, 16 intervals were the optimum mode. RMSECV
of PLSmodels based on 16 intervals, respectively, were shown
in Figure 7; the 15th interval was selected as the sensitive
wavelengths range.

3.2.6. BiPLS. The optimal result was achieved when raw
dataset was divided into 32 intervals. Finally, seen in Figure 8,
13 intervals were selected as follows, numbers 3, 5, 7, 9∼11, 13,
14, 24, 25, and 30∼32.

3.2.7. GA-PLS. In the GA-PLS method, population size was
set as 30, probability ofmutationwas set as 0.01, probability of
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cross-over was set as 0.5, and the number of runs was chosen
to be 100. 85 wavelengths were selected eventually.

After optimization procedure, wavelengths selected by
different methods were shown in Table 2. The number of
wavelengths selected by SPA, RC, LW, and UVE-SPAmethod
was under 12, while that by iPLS and GA-PLS method was
32 and 85, respectively, and that by UVE, CARS, and BiPLS
method was no more than half of the full-spectrum, whereas
FiPLS eliminated only 32 redundant variables.

3.3. Partial Least Squares-Discriminant Analysis (PLS-DA)
Model. PLS-DA models were established based on variables
selected by different methods and the raw full-spectrum,
respectively, and prediction results of different models were
compared (shown in Table 3). In UVE-PLS-DA, UVE-SPA-
PLS-DA, CARS-PLS-DA, BiPLS-PLS-DA, FiPLS-PLS-DA,
and GA-PLS-PLS-DA models, the identification accuracy
improved and the number of variables reduced. Seen from
Table 3, the identification accuracy of all models was over
88%. Compared with PLS-DA model based on the raw
dataset, the identification accuracy of BiPLS-PLS-DA model
increased from 95.1% to 99.1%, while the number of variables
decreased from 512 to 208, which stated BiPLS was an
effective wavelengths selection method. Although the iden-
tification accuracy of PLS-DAmodels based on SPA, RC, LW,
and iPLS method was lower than that of full-spectrum, the
number of variables greatly decreased. Compared with PLS-
DA model based on full-spectrum, the number of variables
of SPA-PLS-DA model decreased 99%, from 512 to 5, while
the identification accuracy only decreased 1.8%. The number
of variables of RC-PLS-DA model was reduced 98.6%, while
the identification accuracy only decreased 1.3%. The number
of variables of PLS models based on LW and iPLS models
decreased 98.4%, while the identification accuracy decreased
only 6.7%. According to the efficiency of each wavelengths
selection method, SPA, RC, LW, and iPLS were methods
of low efficiency, FiPLS was efficient method, and UVE,
UVE-SPA, CARS, BiPLS, and GA-PLS were highly efficient
methods.

3.4. Support Vector Machine (SVM) Models. Support vector
machine is suitable for solving small sample, nonlinear,
and high dimensional pattern problems. SVM models were
developed based on variables selected by different methods
and full-spectrum, and the results were compared. Seen
from Table 4, the identification accuracy of all models was
over 88%. The optimal performance was achieved by GA-
PLS-SVM model; the identification accuracy of calibration
set and prediction set were 99.6% and 99.1%, respectively.
Comparedwith SVMmodel established with raw spectra, the
performance of UVE-SVM, BiPLS-SVM, and FiPLS-SVM
models was better, and the number of variables reduced with
different degrees. Although the identification accuracy of
UVE-SPA-SVM and CARS-SVM decreased 0.5%, the num-
ber of their variables reduced 97.7% and 79.5%, respectively.
Similarly, the identification accuracy of SPA-SVM, RC-SVM,
LW-SVM, and iPLS-SVM models was worse than that of
raw spectra, with a decrease of no more than 8.5%, while

the number of variables reduced 99.0%∼93.8%. Therefore,
wavelengths selection which greatly improves the operation
rate and prediction effect is an extraordinary step ofmodeling
analysis. According to the efficiency of each model, SPA, RC,
LW, and iPLS were methods of low efficiency, UVE, UVE-
SPA, CARS, and FiPLS were efficient method, and BiPLS and
GA-PLS were highly efficient methods.

3.5. Comparison of Different Models. According to the dis-
criminant results of SVM and PLS-DA models, BiPLS and
GA-PLS were highly efficient methods. SPA, RC, LW, and
iPLS were methods of low efficiency, probably because these
methods greatly reduce variables but also remove some useful
information. The efficiency of UVE, UVE-SPA, and CARS
was different in the two models. Above all, in identification
of “Zhemaidong” and “Chuanmaidong,” BiPLS and GA-PLS
were efficient wavelengths selection methods.

Seen fromTables 3 and 4, the identification accuracy of all
models was above 88%.The average identification accuracy of
prediction set of PLS-DA models and SVMmodels based on
different selected variables was 94.8% and 95.1%, respectively,
which stated the similar performance of PLS-DA models
and SVM models in identification of Ophiopogon japonicus.
The optimal performance of PLS-DA and SVM models was
achieved based on BiPLS and GA-PLS methods, respectively,
with the identification accuracy over 99%. The results indi-
cated that using variable selection methods to select sensitive
wavelengths was efficient for reduction of spectral data as
well as the establishment of classification model, and it was
feasible to identify “Zhemaidong” and “Chuanmaidong” by
applying near-infrared hyperspectral imaging technology.

4. Conclusions

In this study, in view of hyperspectral data of Ophiopogon
japonicus, 10 wavelengths selection methods were chosen
to explore the general characteristics of different feature
selection methods. UVE, UVE-SPA, CARS, BiPLS, and GA-
PLSwere highly efficientmethodswhen the selected variables
were used to develop PLS-DA models, and CARS achieved
the best performance where the number of variables reduced
79.5% and the identification accuracy increased from 95.1%
to 98.2%. Of all the SVM models based on different selected
variables, BiPLS and GA-PLS were highly efficient methods,
and GA-PLS performed the best where the number of
variables decreased 83.4% and the identification accuracy
increased from 96.9% to 99.1%, which was consistent with
the literatures [26, 27]. SPA, RC, LW, and iPLS were methods
of low efficiency; the number of variables decreased greatly
while the identification accuracy reduced slightly, while
Zhang et al. proved that, in the determination of soluble
protein content in oilseed rape leaves based on near-infrared
hyperspectral imaging, of all the sensitive wavelengths selec-
tion method, SPA performed better than GA-PLS and RC
[28]. Therefore, the performance of each method could be
different according to different spectral data.
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The study indicated that the wavelengths selection
method could extract a small number of variables contain-
ing effective information and eliminating noninformation
variables. Variables selection methods were tools to identify
more concise and effective spectral data and played important
roles in the multivariate analysis, which could be used for
subsequent modeling analysis. Meanwhile, the characteristic
wavelengths selected could provide a theoretical basis for the
development of instruments.
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