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Abstract: The cellular utilization of oxygen leads to the generation of free radicals in organisms. The
accumulation of these free radicals contributes significantly to aging and several age-related diseases.
Angiotensin II can contribute to DNA damage through oxidative stress by activating the NAD(P)H
oxidase pathway, which in turn results in the production of reactive oxygen species. This radical
oxygen-containing molecule has been linked to aging and several age-related disorders, including
renal damage. Considering the role of angiotensin in aging, melatonin might relieve angiotensin-
II-induced stress by enhancing the mitochondrial calcium uptake 1 pathway, which is crucial in
preventing the mitochondrial calcium overload that may trigger increased production of reactive
oxygen species and oxidative stress. This review highlights the role and importance of melatonin
together with angiotensin in aging and age-related diseases.
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1. Introduction

Aging is a gradual process in an organism characterized by a progressive decline of
physiological functions, including homeostatic mechanisms, at all levels [1]. The aging
process may lead to an increased risk of fatigue, disease, and death [2]. In recent years,
researchers have become increasingly interested in finding ways of slowing the aging
process [3–5]. However, it is important to note that aging is not a disease. Angiotensin
has numerous functions including blood pressure control and body fluid and electrolyte
balance, and can contribute to aging by stimulating the formation of free radicals that
provoke mitochondrial disruption and cellular damage [6–8]. The functional integrity of
the cell structure can be compromised by the presence of these free radicals in the cell
membranes. Melatonin, a hormone with a strong antioxidant effect, helps preserve the
cell membrane by neutralizing the highly reactive free radicals that damage the cells [9].
Therefore, elucidating the factors and mechanisms of aging may help ease age-related
complications. Herein, we review available studies on the current role and importance of
melatonin and angiotensin in aging and age-related diseases.

2. Mechanism of Aging

Aging is a universal phenomenon that begins in early adulthood and continues
throughout life [10,11]. The cellular and molecular hallmarks of aging have been described,
and the interconnection between these aging hallmarks helps to reduce damage in the
organism [10]. Tissue aging is associated with enhanced senescent cells at the cellular
level while early aging is associated with more senescent cells, trans-differentiated cells,
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and inflammatory cells [12,13]. Genomic instability, however, contributes significantly
to the advancement of cell aging, and age-related cancer, as well as neurodegenerative
and vascular diseases [14,15]. Some molecules dubbed as ‘aging genes’ and ‘longevity
genes’ may be implicated in the process of aging. However, the roles played by these
molecules in physiological and pathological aging are yet to be fully elucidated [16,17].
Furthermore, impairment of the defense and repair genes observed at the molecular level
may be involved in the entire process of aging.

There is significant evidence which suggests that telomeres are the most common
targets for cell senescence and chronic DNA damage response in aging, while failure
to maintain a minimum telomere length triggers cell replicative senescence [18,19]. Dif-
ferences in telomere length have been linked to different diseases such as dyskeratosis
congenita and liver cirrhosis. These diseases have been suggested as being associated
with telomerase gene mutations that replace lost telomeres [10]. Investigations aimed
at identifying why the shortest telomeres are chosen for repair have revealed that accu-
mulated telomeric repeat-containing RNA (TERRA) forms RNA–DNA hybrids (R-loops)
at short telomeres, and that high TERRA levels and R-loops at short telomeres result
from the failure of RNA degradation at specific sites. These findings suggest that the
rate of replicative senescence is determined by the telomere length-dependent control of
TERRA R-loops [20–22].

Aging can also be triggered by loss of lysosomal dysfunction, which is closely linked
with the process of autophagy, an intracellular self-cleansing mechanism that degrades
unwanted or damaged components that accumulate within the cell. Accumulation of
potentially toxic molecules such as denatured RNA may lead to permanent loss of distinct
cell functions, which is indicative of cellular degeneration [23–27]. Emerging evidence
has suggested that defective stem cell autophagy contributes to aging and degenerative
diseases characterized by a decline in stem cell regenerative ability [28]. Dysfunctional
stem cells in aged mice maintained a low metabolic state and high autophagy levels
with long-lasting robust regenerative ability, suggesting that autophagy may slow cellular
metabolism to sustain stem cell viability and regenerative ability in aging [29].

3. Free Radicals in Aging Process

Free radicals are highly reactive atoms or molecules with one or more unpaired
electrons in their outer shell [30]. According to the ‘free radical theory of aging’, the
deleterious effects of free radicals on cell components and connective tissues can lead to
aging and age-related degenerative diseases [31,32]. When oxygen molecules split into
single atoms with unpaired electrons, they form unstable free radicals that seek to bind
with other atoms or molecules. Superoxide, alkoxyl radicals, hydroxyl radicals, as well as
hydrogen peroxide are reactive radical and non-radical oxygen derivatives described as
reactive oxygen species (ROS). Reactive nitrogen species (RNS) are a group of molecules
derived from nitric oxide and superoxide through the enzymatic activity of inducible nitric
oxide synthase and NADPH oxidase, respectively [33–35]. These radicals are generated
in cells by gaining or losing a single electron, thus acting as oxidants or reductants [36].
Oxidants are produced as a result of regular cellular utilization of oxygen and several
cytosolic enzyme activities in the mitochondria.

Superoxide anions generated during oxidative phosphorylation in the mitochondria
are rapidly converted to hydrogen peroxide by superoxide dismutase (SOD). In specific
circumstances marked by the presence of transition metals, highly reactive hydroxyl ion
can be formed through the Haber–Weiss or Fenton-type reaction [30]. These hydroxyl
radicals have high reactivity (especially with phospholipids, a main component of the cell
membrane) [37–39]. Alkoxyl radicals generated from the reduction of peroxides are less
reactive than hydroxyl radicals and are substantially more reactive than peroxyl radicals.
As a result, they are particularly suitable for assessing the efficiency of antioxidants as well
as the reactivity of ROS with any radical species [40]. However, the reaction between nitric
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oxide radicals and superoxide produces peroxynitrite, a known cytotoxic compound and
biomarker of nitro-oxidative stress [41].

An imbalance characterized by the enhanced generation of ROS/RNS and diminished
antioxidant defenses triggers oxidative stress (OS), cell damage, and ultimately aging [42].
In addition, ROS/RNS are involved in cell signaling, the extraction of energy from organic
compounds, and immune defense [43]. Regardless of their source, ROS/RNS can cause
oxidative changes by reacting with several biologically active molecules including DNA,
proteins, carbohydrates, and lipids. Hence, ROS/RNS can serve as potent biomarker
of OS [44–46].

3.1. Advanced Glycation End Products

Several oxidative modifications in lipids and nucleic acids have been described, in-
cluding the oxidative breakdown of free amino groups of proteins to produce potentially
toxic substances that have been linked to aging [47]. The reactive carbonyl groups of
a reducing sugar react with nucleic acids, lipids, and free amino groups (especially of
arginine and lysine residues) to form advanced glycation end products (AGEs) such as
glucosepane, carboxyethyl-lysine, and hydroimidazolone [48,49]. The primary source of
AGEs in humans (including endogenous AGEs) are continuously generated in the body, in
particular in diabetics with impaired glucose metabolism and exogenous AGEs derived
from smoking and dietary foods processed at high temperature [41]. Poly-unsaturated
fatty acids (PUFAs), such as arachidonic and linoleic acids, are important targets for lipid
peroxidation induced by hydroxyl and peroxyl radicals. Several reactive aldehydes such as
malondialdehyde (MDA) and trans-4-hydroxy-2-nonenal (4-HNE) are produced during the
lipid oxidation process [49]. It has been reported that the increased consumption of dietary
AGEs can cause the buildup of AGEs which may have a negative impact on the body due
to their ability to enhance OS and inflammation [48]. AGEs increase inflammation and
OS by binding to the receptor for advanced glycation end products (RAGE), which are
expressed in the heart, skeletal muscle, skin, and lungs. The binding of AGEs to these
receptors promotes the activation of the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase and nuclear factor-kappa B (NF-κB) pathway, increases the production
of ROS, and also prolongs cellular dysfunction and tissue damage [50].

3.2. Antioxidants

The antioxidant defenses neutralize the deleterious effects of ROS and RNS formed by
a variety of exogenous and endogenous agents including NADPH oxidase, a known source
of radical superoxide anion [42]. A widely proposed approach for lowering ROS involves
scavenging free radicals and boosting antioxidant defenses. Antioxidants serve as free
radical scavengers, preventing oxidative changes that can cause a variety of diseases [31].
The antioxidant defense system consists of exogenous antioxidants derived from diets
and endogenous antioxidants which may be enzymatic or nonenzymatic compounds
located in the cytoplasm [32]. Several antioxidant enzymes including catalase, SOD, and
certain peroxidases convert ROS into more stable molecules in eukaryotic cells through
a complex chain reaction [51]. SOD is believed to be one of the most potent intracellular
enzymatic antioxidants that catalyze the dismutation of superoxide radicals. The three
forms of SOD isoenzymes found in humans include cytosolic copper-zinc-dependent SOD
(CuZn-SOD), extracellular SOD (EC-SOD), and mitochondrial manganese-dependent SOD
(Mn-SOD), which plays an important role in detoxifying the free radical superoxide formed
during mitochondrial respiration [52]. Other biologically active antioxidant enzymes such
as glutathione peroxidase, catalase, and glutathione reductase spontaneously convert
hydrogen peroxide into water and oxygen [51].

Nonenzymatic antioxidants such as thioredoxin, tocopherol (vitamin E), and ascorbic
acid (vitamin C), including some essential components of the antioxidant defense systems
such as selenium and NADPH, also act as scavengers of ROS. The most frequently used
antioxidant vitamins, tocopherol and ascorbic acid, are believed to reduce or preventive
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oxidative damage caused by ROS [53]. Melatonin acts as a direct scavenger to detoxify
ROS/RNS, thereby protecting different biomolecules from free radical-induced oxidative
and nitrosative damage [54].

A progressive decline in ROS scavengers shifts aged cells towards a pro-oxidant profile
which may result in the inability to buffer ROS formed in both normal and pathologic
conditions [55]. Studies have shown that increased mitochondrial ROS levels play a
mechanistic role in the aging of genetically altered animals [56,57] and that animals deficient
in SOD show mitochondrial dysfunctions which trigger oxidative damage and other traits
akin to early aging [58,59]. Mice deficient in cytoplasmic copper/zinc SOD are unable
to detoxify ROS, and so they have high ROS levels but show a normal lifespan [60].
Mice that overexpress mitochondrial catalase, on the other hand, are less susceptible
to OS and live longer [61]. In worms, high cytoplasmic or mitochondrial ROS levels
are linked to shorter and longer lifespans, respectively [62,63]. When an antioxidant
reacts with a free radical, an oxidized form of the antioxidant is formed, which may
also enhance the activity of the endogenous defense systems [64]. Therefore, several
antioxidants have physiologically lowering mechanisms and, in some instances, their
oxidized forms may induce the effect of hormesis as an adaptive response to increase
cellular defense by activating the endogenous antioxidant defense systems [65]. However,
there are contradictory reports on the association between supplementation with natural
or synthetic antioxidants and desired health benefits [66–68].

4. Angiotensin and the Aging Process

The renin-angiotensin-aldosterone system (RAAS) has been shown to influence longe-
vity in different animal species including rodents and nematodes [69]. Studies have
shown that an increased activation of intrarenal RAAS triggers the enhanced production
of ROS, glomerular sclerosis, tubulointerstitial fibrosis, and altered sodium levels [70,71].
Angiotensin II (Ang II), an active component of RAAS, acts through the angiotensin II
type 1 (AT1) receptor to activate NADPH oxidase which triggers the production of ROS
and OS damage [72] (Figure 1). Because of its pro-oxidant properties, Ang II may play a
role in organ aging since Ang II-induced ROS promotes early vascular aging associated
with structural and functional alterations in blood vessels that contribute to age-related
vascular disorders [73].
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cytokines, advanced glycation end products (AGEs) and preventing telomere shortening.
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Benigni et al. (2009) studied the effects of disrupted Agtr1a gene encoding AT1a,
an AT1 receptor isoform in mouse and reported that AT1a knockout mice had fewer
vascular disorders and outlived their genetically matched wild-type counterparts [74].
RAAS inhibition has been shown to be crucial in preventing cardiac remodeling and
heart failure. Inhibition of AT1 receptors and RAAS reverses age-related fibrosis, severe
myocardial hypertrophy, and cerebrovascular damage caused by the buildup of oxidative
substances in the blood vessels of animals [75–78]. The serum antibodies that target
the AT1 receptor have been shown to contribute to vascular allograft rejection in kidney
transplant patients; however, treatment with losartan, an AT1 receptor antagonist, blocked
the agonistic AT1 receptor response to the antibodies [79].

RAAS also contributes to the pathophysiology of other age-related diseases such as
dementia, cancer, osteoporosis, and diabetes [80]. RAAS plays a role in the development of
insulin resistance, which is a common feature of type 2 diabetes [81]. Results from different
randomized clinical trials showed that inhibition of RAAS by angiotensin converting
enzyme inhibitors and AT1 receptor blockers improves insulin sensitivity and lowers the
incidence of type 2 diabetes [82]. Insulin signaling is regulated by Ang II-induced AT1
receptor activation. Activation of AT1 receptor increases the growth and proliferative
actions of insulin while inhibiting its metabolic actions [81,83].

AT1 receptors are present in various human cancer cell lines, including prostate
and pancreatic cell lines [84,85]. Previously, it has been reported that the proliferation of
tumor cells embedded in AT1a receptor-deficient animals decreased, as well as tumor-
related angiogenesis [86]. In a mouse model of lung adenocarcinoma, Ang II increased
the proliferation of myeloid progenitor cells in the spleen, thus causing tumor-associated
macrophages to enhance tumor growth [87]. Therefore, RAAS signaling contributes to
tumor growth by promoting tumor cell proliferation, tumor-linked macrophage expansion,
and angiogenesis.

The genetic alteration of the AT1a receptor was found to increase the expression of
nicotinamide phosphoribosyl transferase (NAMPT) and Sirtuin-3 (SIRT3) in the kidneys
of aged mice [74]. Increased NAMPT expression in a nutrient-deprived medium causes
mitochondrial accumulation of nicotinamide adenine dinucleotide that activates SIRT3
in the mitochondria. Therefore, RAAS inhibition prolongs lifespan by reducing OS and
increasing the expression of anti-apoptotic genes [88].

5. Melatonin in Aging

Melatonin is a hormone with a strong antioxidant effect and is found naturally in sev-
eral living organisms including human beings [89,90]. Melatonin helps in the preservation
of cell membrane by neutralizing highly toxic hydroxyl radicals which induces lipid perox-
idation. In addition to neutralizing the radical superoxide anion, peroxynitrite anion, and
hydrogen peroxide, melatonin enhances gene expression for glutathione peroxidase and
other antioxidant enzymes [9,91,92]. Melatonin’s metabolites, such as N1-acetyl-N2-formyl-
5-methoxykynuramine and N1-acetyl-5-methoxykynuramine, have potent antioxidant and
anti-inflammatory effects [93–95]. Studies have shown that melatonin stimulates anti-
body production and modulate immune functions including anti-tumorigenic defense.
Therefore, melatonin acts as an immunomodulator in both physiological and pathologi-
cal conditions [95–97].

Disruption of the rhythmic release of melatonin has been previously linked to the
severity of chronic kidney disease (CKD) [98]. Early-stage CKD patients have been reported
to have increased oxidation of DNA, proteins, and lipids, which may contribute to organ
damage [99]. The disease progress of CKD is associated with increased OS and inflamma-
tion, which promotes the buildup of uremic toxins that exacerbates renal failure [100,101].
CKD patients undergoing hemodialysis are also at a greater risk of inflammation and
mortality [102]. Furthermore, peritoneum fibrosis is caused by OS and inflammatory
responses during peritoneal dialysis [103]. Melatonin improves CKD outcomes by inhibit-
ing RAAS [104], and long-term exogenous melatonin treatment enhances the expression
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of vasoprotective biomarkers while decreasing inflammation and OS [105]. Melatonin
and vitamin D interact through different pathways to support and maintain functional
mitochondrial integrity. Transcription factors such as runt-related transcription factor 2
(Runx2) and vitamin D receptor (VDR) regulate the expression of target genes involved in
osteoblast differentiation and bone formation [106,107]. According to Fang et al. (2020) the
indirect regulation of Runx2 by melatonin can be attributed to its ability to bind directly
to the VDR [106]. Prado et al. (2018) reported that the positive impact of melatonin on
the regulation of the VDR is mostly due to its ability to bind 1,25-dihydroxyvitamin D3
(VD3) to regulate calcium mobilization, which indirectly affects osteoblast differentiation
and bone formation [108]. Moreover, VD3 plays an antiaging role by activating the nuclear
factor-erythroid factor 2-related factor 2 (Nrf2) that regulates the expression of antioxidant
defense genes [109]. The immunomodulatory and anti-proliferative effects of vitamin D
have been demonstrated in both in vivo and in vitro studies. Activation of the VDR stimu-
lates the expression of DNA damaged-induced transcription 4, which promotes abnormal
cell differentiation by inhibiting the activation of mammalian target of rapamycin (mTOR)
via the tuberous sclerosis complex (TSC) signaling pathway [110–112]. mTOR is known to
regulate proliferation, protein synthesis, growth, and survival [113]. However, studies have
shown that by blocking mTOR signaling, rapamycin promotes mitophagy and attenuates
apoptosis and generation of ROS in the cells [114,115].

Melatonin exerts indirect antiarrhythmic effects through its cardiorenal protective
actions. This was illustrated using rat model of unilateral ureteral-obstruction (UUO).
Results from the study showed that melatonin’s protective effect against myocardial re-
modeling contributed to its action against ventricular fibrillation induced by UUO. By
increasing the heat shock protein 70 (Hsp70) and VDR and decreasing AT1, melatonin
reduced fibrosis, oxidative stress, and myocardial cell death [108]. In addition, Gubin et al.
(2016) studied the effects of melatonin in age-dependent alterations in heart rhythms and
reported that night-time administration of melatonin attenuated morning rise in heart rate
in both normotensive and hypertensive subjects [116].

In most vertebrates, melatonin synthesis declines with age. This decline could be
attributed to the decrease in the number of β-adrenergic receptors in the pineal gland as well
as a decrease in the expression of AANAT/SNAT genes [117,118]. Old cells generate more
RNS/ROS, but the endogenous antioxidative effect of melatonin counteracts RNS/ROS
production in aging cells [119]. Pinealectomy-induced suppression of melatonin enhanced
aging due to the buildup of reactive molecules [120]. In contrast, transplanting young pineal
glands into aged animals and exogenous melatonin supplement significantly increased
the lifespan of animal models [121]. Melatonin has been shown to reduce telomerase
activity in cultured cancer cells and prevent metastases in an athymic animal model [122].
These findings support the view that melatonin inhibits thioretinaco ozonide loss from
mitochondria during carcinogenesis by preventing mPTP pore opening [123]. Akbulut et al.
(2009) studied the effects of melatonin on age-related variations in telomerase activity and
the rate of cellular proliferation in gastric mucosa. They concluded that melatonin slows
gastric mucosal aging by stimulating telomerase activity and inhibiting lipid peroxidation
and cellular proliferation [124].

Melatonin and angiotensin interact at different levels from the site of synthesis to
the sites of action. The pineal and pituitary glands have been shown to have high Ang
II-forming activities due to the presence of human chymase in the brain, thus suggesting the
presence of a local RAAS in the pineal gland [125]. A precursor of RAAS, angiotensinogen
is present at a very low level in the pineal glial cells, whereas AT1b receptors are expressed
in pinealocytes [126]. The synthesis of melatonin from tryptophan is a four-step process that
involves a number of enzymes including tryptophan hydroxylase (TPH), the rate-limiting
enzyme in serotonin biosynthesis. Ang II modulates the synthesis and activities of TPH, by
acting on AT1 receptors in pinealocytes [127]. Ji et al. (2016) studied the protective effects
of melatonin on podocytes of diabetic nephropathy model animals. Results from that
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study showed that treatment with melatonin suppressed angiotensin II-induced podocyte
damage by improving mitochondrial activity [128].

Melatonin acts through the MT1 and MT2 receptors to induce vasoconstriction and
vasodilation, respectively [129]. However, a significant decrease in melatonin levels has
been observed in cardiovascular diseases. These findings suggest that angiotensin and
melatonin have counteractive actions in the cardiovascular system, possibly due to the
direct free radical scavenging, antioxidant activity, and sympatholytic effect of melatonin.
Yang et al. (2021) reported that melatonin may protect against cardiac hypertrophy by
activating the mitochondrial calcium uptake 1 (MICU1) pathway to produce more MICU1,
an important molecule that maintains homeostasis during Ang-II-induced stress [130].
Considering the role of angiotensin in aging, melatonin modulates both MICU1 and
angiotensin levels, and this may contribute to its protective effect [1,130,131].

6. Conclusions

Free radicals derived from either endogenous or exogenous sources can cause oxida-
tive modifications of the major biological macromolecules, leading to increased oxidative
stress. Angiotensin triggers the production of free radicals by activating the angiotensin II
type 1 receptors. Free radical-induced oxidative stress is presumed to contribute to aging
and several diseases associated with aging. Melatonin can enhance the expression and
activities of some antioxidative enzymes, block a possible pro-oxidative enzyme pathway,
bind metals that release free radicals, stimulate the immune system, and ultimately prolong
longevity (Figure 1).
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