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Developments in microarray and high-throughput sequencing (HTS) technologies have resulted in a rapid expansion of
research into epigenomic changes that occur in normal development and in the progression of disease, such as cancer. Not
surprisingly, copy number variation (CNV) has a direct effect on HTS read densities and can therefore bias differential
detection results. We have developed a flexible approach called ABCD-DNA (affinity-based copy-number-aware differ-
ential quantitative DNA sequencing analyses) that integrates CNV and other systematic factors directly into the dif-
ferential enrichment engine.

[Supplemental material is available for this article.]

All normal cells carry the same DNA sequence, yet distinct cell

types result from gene expression patterns that are controlled by

a combination of genetic and epigenetic mechanisms. In cancer,

genetic and epigenetic changes result in altered gene expression

patterns, such as up-regulation of oncogenes and down-regulation

of tumor-suppressor genes (Jones and Baylin 2007; Stratton 2011).

Specifically, mutations in the DNA sequence or changes in copy

number can alter how these genes are regulated or expressed, as

can nonsequence epigenetic features such as chemical (e.g., DNA

methylation or histone modifications) or structural makeup (e.g.,

nucleosome occupancy). Advances in microarray and especially

high-throughput sequencing (HTS) technologies have driven

a deeper exploration of genetic and epigenetic phenomena,

resulting in several large data collection projects (Jones et al. 2008;

Bernstein et al. 2010; International Cancer Genome Consortium

2010; Stratton 2011) as well as many smaller scale studies. Statis-

tical and computational tools for processing and interpreting these

data sets are maturing, and altogether these give exciting prospects

for the understanding, detection, prevention, and treatment of

cancer and other diseases.

Recently, we highlighted that comparisons between cancer

and normal epigenomes need to be informed by genomic changes

(Robinson et al. 2010b,c). Specifically, copy number variation

(CNV) has a direct effect on read densities of affinity (or enrich-

ment)-based assays (e.g., chromatin immunoprecipitation [ChIP]

and methylated DNA capture [MBDCap]); we refer to these tech-

niques collectively as qDNA-seq, since they all provide a quanti-

tative epigenetic readout at a specific loci. In these assays, a subset

of target DNA fragments are captured, prepared, sequenced, and

mapped to a reference genome. Enrichment levels are interpreted

as the relative abundance across two populations having the

property of interest. Consider comparing enrichment levels be-

tween two prostate cell lines: normal epithelial (PrEC) cells and

cancer (LNCaP) cells. There is significant CNV between PrEC and

LNCaP cells, as shown in Figure 1A (see also Supplemental Fig. S1).

The CNV imbalance leads directly to changes in read density

that are not reflective of true changes in methylation (e.g., from

MBDCap-seq data). Using Illumina HumanMethylation 450k ar-

rays as an independent assessment of changes in DNA methylation

that should be unaffected by CNV (Houseman et al. 2009), Figure

1, B through E, highlights both false-positive and false-negative

detections using existing algorithms; these examples are accurately

detected by our ABCD-DNA (affinity-based copy-number-aware

differential quantitative DNA sequencing analyses) approach (de-

tails below). Interestingly, because the prominent copy number

state of LNCaP cells is four (Fig. 1A; Supplemental Fig. S1), depth-

adjusted read densities are approximately ‘‘neutral’’ (in terms of

sampling captured DNA) when LNCaP and PrEC cells have four

and two copies, respectively; this further imbalance can be ad-

justed through ‘‘normalization’’ (adjustments for depth and di-

versity) in the statistical modeling.

There are now a large number of tools for absolute analysis of

qDNA-seq data; methods are available for the detection of short

distinct events (e.g., MACS) (Zhang et al. 2008), enriched regions

(e.g., RSEG) (Song and Smith 2011), ChromaBlocks (Hawkins et al.

2010), or both simultaneously with ZINBA (Rashid et al. 2011)).

However, none of the tools are designed explicitly for differential

analyses or for when replication is available. Recently, a framework

called DiffBind was developed to post-process output from abso-

lute algorithms into merged regions and perform differential

analysis based on read densities (Ross-Innes et al. 2012).

A separate class of methods are available to directly detect

differential regions, often without the use of input or other control

samples (for list of assays and acronyms, see Table 1). For example,

Bock et al. (2010) detected changes in read density using Fisher’s

exact test; CNV is deemed unimportant in their analysis despite no

CNV typing. Another strategy, ChIPDiff, assumes beta-binomially

distributed tiled bin counts and uses a hidden Markov model
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(HMM) to combine adjacent differential regions (Xu et al. 2008).

Similarly, RSEG scans for differential regions using an HMM with

a difference-of-negative-binomials emission distribution (Song

and Smith 2011). Other tools are emerging for differential analy-

ses, such as DBChIP (Liang and Keles 2011) or collecting existing

Unix-based tools (Bardet et al. 2011), but none of these are

explicitly CNV aware. Though specific to DNA methylation,

Batman, which transforms read densities into absolute methyla-

tion estimates, was recently made CNV aware by first dividing

read densities by copy number before differential analysis (Down

et al. 2008; Feber et al. 2011). However, this transformation takes

measurements off the count scale, which may affect the sensi-

tivity of subsequent statistical analyses.

We propose a flexible and general statistical framework called

ABCD-DNA that explicitly adjusts for CNV in differential epi-

genome analyses. First, we describe the statistical framework,

which necessarily involves considerations for the estimation of

CNV and normalization. Second, we illustrate the effects of CNV

on various algorithms for differential analysis across multiple

qDNA-seq data sets. By use of independent truth (DNA methyl-

ation levels), we demonstrate improved differential detection

performance using CNV-aware analyses. Third, we compare the

performance of ABCD-DNA and competing methods, demon-

strating that the proposed framework is competitive against

existing approaches and flexible, irrespective of CNV compen-

sation. All methods are freely available in public software proj-

ects, and R scripts to reproduce all analyses are provided.

Results

A general framework for CNV-aware differential qDNA-seq
analyses

We propose the following framework:

1. Generate read counts at regions of interest (e.g., at detected peaks,

tiled regions genome-wide, or proximal to transcription starts);

2. Estimate copy number offsets from an external data source (see

‘‘Copy Number Analyses’’ below);

Figure 1. CNV causes false positives and false negatives to various algorithms; ABCD-DNA can recover them. (A) The landscape of CNV between LNCaP
(black) and PrEC (gray) cells inferred by PICNIC algorithm (using Affymetrix SNP 6.0 data; see Methods). Using Illumina 450k array data to gauge true
differential methylation (see tracks ‘‘LNCaP 450k’’ and ‘‘PrEC 450k’’), four CNV-induced false-positive (FP) or false-negative (FN) regions in MBDCap-seq
data (see tracks ‘‘LNCaP_MBD2’’ and ‘‘PrEC_MBD2’’) using existing algorithms are shown. Detected differential regions for four methods (ChIPDiff,
DiffBind, RSEG, our new approach ABCD-DNA) are shown in black. (B) FN for all algorithms except ABCD-DNA; the change in depth-normalized read
density is not particularly strong, but combined with the knowledge that this is a ‘‘low’’ copy region (LNCaP = 2), ABCD-DNA expects fewer reads. Hence,
the effective difference is made larger and therefore deemed differential by ABCD-DNA. Similarly, C is amplified in cancer beyond ‘‘neutral’’ (LNCaP = 5),
thus ABCD-DNA expects higher read density (if methylated) and correctly increases the effective change. D is similarly amplified, which causes existing
algorithms to overstate the differential methylation (i.e., a FP); note the upstream differentially methylated region that all algorithms detect, whereas only
ABCD-DNA correctly attributes the downstream change in read density to CNV. (E) Lower copy in LNCaP cells, resulting in lower read depth and FPs for all
methods except ABCD-DNA.
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3. Estimate normalization offsets based on CNV-neutral loci (See

‘‘Normalization’’ below);

4. Perform differential analysis of count data (e.g., using edgeR)

using offsets.

Formally, the strategy for CNV-aware differential analyses can

be encapsulated in a generalized linear model (GLM), where tools

applicable to genome-scale data sets have recently become avail-

able (Anders and Huber 2010; Zhou et al. 2011; McCarthy et al.

2012). Specifically, let Yij be the read count for region of interest i in

sample j (i = 1,. . .,r and j = 1,. . .,n where r is the number of regions

and n is the number of samples). The read density observed at any

genomic region is modified by systematic effects, such as ‘‘effec-

tive’’ sequencing depth, copy number, and underlying biological

factors of interest, as well as sampling and biological variability.

Offsets impose a higher or lower expected mean based on the

systematic factors, such as copy number state, depth of sequenc-

ing, and sampling rates due to the diversity of the library se-

quenced; these are estimated in advance and treated as fixed in the

downstream analysis. We model the logarithm of expected value of

Yij as follows:

log E Yij

� �� �
= Oij + BiX;

where Oij is an rxn matrix of offsets that match the count matrix,

X is an rxk matrix that captures the experimental design (condi-

tions, covariates), and Bi is a rxk matrix of region-specific co-

efficients. Oij can be decomposed into log(CNij) + log(1Dj) where

CNij is a matrix of offsets for copy number and Dj represents

sample-specific offset vector, both of which can be calculated as

suggested above. To make inferences regarding differential en-

richment, hypothesis tests can be formulated (e.g., likelihood ratio

test) on the parameters of interest within the Bi matrix (e.g., cancer

versus normal); tools for this are readily available (e.g., edgeR)

(Robinson et al. 2010a). For specification of all the modeling details

(e.g., distributional assumptions, statistical testing), see the Sup-

plemental Material.

ABCD-DNA can use alternative CNV sources; CNV linearly
affects qDNA-seq

ABCD-DNA requires preprocessed CNV information to be de-

livered to a GLM in a corresponding matrix for regions of interest

for each sample; in theory, our approach is independent of the

source of CNV information. However, in practice, the success of

the CNV adjustment will be determined by the accuracy, resolu-

tion, and scale of the CNV estimates, which can vary widely with

the platform and preprocessing algo-

rithm used (Curtis et al. 2009). Accuracy

should be facilitated by smoothing techni-

ques, such as segmentation (Venkatraman

and Olshen 2007), while resolution is

ultimately determined by probe spacing

(microarrays) or depth of sequencing

(HTS). In our analysis of PrEC and LNCaP

cells, we used the PICNIC algorithm on

Affymetrix SNP 6.0 array data, which

resulted in integer-valued CNV estimates

due to the homogenous population of the

cell lines (Fig. 1A). Supplemental Figure

S2 highlights the strong concordance be-

tween PICNIC CNV estimates and seg-

mented low-coverage genomic sequenc-

ing read densities, after adjusting for GC content and mappability

(see Methods). Therefore, only minor differences in the down-

stream differential analysis between the alternative sources of CNV

offsets should result (discussed below). Another important con-

sideration is the scale of the CNV offsets, and specifically, the re-

lationship between CNV and DNA-seq read depths; the GLM

model assumes a linear relationship between the offset and

expected mean. Supplemental Figure S3 shows M (log-fold-change

adjusting for total depth) versus A (average-log-read-density)

‘‘smear’’ plots for three qDNA-seq data sets across PICNIC-defined

CNV states, highlighting the increase in M as relative CNV in-

creases. Furthermore, approximate linearity is observed for all

qDNA-seq data sets (Fig. 2), which supports the assumption made

by ABCD-DNA in conveying such offsets to the GLM model.

Normalization to ‘‘neutral’’ regions

qDNA-seq read density at any given locus is affected by biological

factors, such as CNV, and technical factors, such as total se-

quencing depth and library diversity. Therefore, ‘‘normalization’’

is a subtle yet important aspect for allowing accurate comparison

of samples. When are read densities comparable, up to a scaling

factor? This question has been addressed in the context of RNA-seq

Figure 2. Linearity between CNV and qDNA-seq. Relative read densi-
ties scale linearly with CNV for multiple LNCaP/PrEC qDNA-seq
(MBDCap, H3K27me3, H3K4me3) data sets. Scaling factors were calcu-
lated separately as the median of log-fold changes (median of M-values)
for each CNV stratum and each data set (See Supplemental Fig. 3); these
medians were exponentiated and scaled according to the most prom-
inent CNV state (L = 4 P = 2). Note that these scaling factors are not
actually used in the ABCD-DNA method; they are shown here only to
illustrate the relationship between qDNA-seq and CNV.

Table 1. Table of acronyms for relevant assays and tools

Acronym Description Reference

MBDCap Methyl-binding domain based capture —
qDNA-seq Sequencing of captured DNA subpopulations

(i.e., quantitative)
—

GLM Generalized linear model McCarthy et al. (2012)
RSEG Identifying dispersed epigenomic domains from

ChIP-seq data
Song and Smith (2011)

ZINBA Zero-inflated negative binomial algorithm Rashid et al. (2011)
DiffBind Differential binding analysis of ChIP-seq peak data Ross-Innes et al. (2012)
DBChip Detecting differential binding of transcription

factors with ChIP-seq
Liang and Keles (2011)

Batman A Bayesian tool for methylation analysis Down et al. (2008);
Feber et al. (2011)

PICNIC Predict integral copy numbers in cancer Greenman et al. (2010)

Copy-number-aware differential analyses
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data, where not only expression level, but composition of the li-

brary and GC content affect read density (Robinson and Oshlack

2010; Hansen et al. 2012). One popular solution is to use a scaling

factor (i.e., an offset) called trimmed mean of M-values (TMM),

which allows observations to be kept on their original scale (i.e.,

counts) for statistical modeling. However, TMM normalization

does not explicitly handle CNV or the asymmetry of changes in

enrichment (e.g., DNA methylation has opposing global loss in

cancer and localized gain at CpG-rich regions). To estimate nor-

malization factors, we focus on the most prominent ‘‘neutral’’

state. Typically, this will be genomic regions with two copies.

However, as mentioned, most of the LNCaP genome has four

copies, so we define neutral as autosomal regions with two copies

for PrEC and four copies for LNCaP (Fig. 1A); this spans ;65% of

the reference genome. Figure 3 shows pairwise comparisons of

MBDCap-seq samples using only loci from this neutral state. Due

to the logarithm transform, variability of M decreases as A increases

(Robinson and Oshlack 2010). However, because of differences in

composition and global asymmetry in DNA methylation between

samples, the center of the M-values does not necessarily occur at

zero. Assuming there are regions similarly enriched in both sam-

ples, we estimate this bias from ‘‘neutral’’ regions only using the

regions of lowest variability (e.g., median of M-values for A > 99th

percentile of A-values) (see Fig. 3) and introduce a sample-specific

offset into the statistical model to compensate for expected bias in

read densities. Support for this strategy is given in Supplemental

Figure 4, where normalized data (M-values after adjustment by

estimated offsets) for ‘‘neutral’’ loci genome are shown, stratified

by CpG density. Despite the asymmetry in DNA methylation, our

normalization ensures that the M-value asymptotes are approxi-

mately zero, suggesting that read densities are comparable.

Differential calls for various assays and algorithms
are positively correlated with CNV

Figure 1, B through E, highlights loci where CNV affected read

densities, resulting in false or missed detections. To highlight that

CNV affects many algorithms genome-wide, we tested several

differential approaches: (1) DiffBind coupled with MACS output,

(2) RSEG, (3) ChIPDiff, and (4) ABCD-DNA using 500-bp tiled ge-

nomic bins. We define relative rate of peak density (RRPD) as the

number of regions detected in LNCaP divided by the number

detected in PrEC, for each CNV state (Fig. 4). Generally, higher

(lower) relative CNV results in more (less) differential region de-

tections, for all algorithms except ABCD-DNA; this positive cor-

relation is indicative of CNV alone affecting the differential calls.

Although we do not expect this curve to be completely flat (e.g.,

interactions between CNV and epigenetics), ABCD-DNA largely

removes this association.

Furthermore, CNV may impact many cancer data sets and

algorithms. For example, an independent comparison of the

LNCaP and PrEC methylome (Kim et al. 2011) by running a region

detection algorithm and simply overlapping lists is strongly af-

fected by CNV (Supplemental Fig. S5). Similarly, differentially

methylated regions detected by MeDIP-seq in breast cancer cell

lines (Ruike et al. 2010) are associated with CNV, according to their

input samples (Supplemental Fig. S6). Taken together, these results

suggest that a nontrivial fraction of differential peak detections

could be driven simply by CNV, not changes in relative biological

enrichment.

CNV offsets improve differential detection performance

To illustrate that the CNV and normalization offsets proposed

above can improve differential detection, we use an independent

readout of differential methylation on the same LNCaP and PrEC

cells. By use of Illumina HumanMethylation 450k BeadChip ar-

rays, DNA methylation estimates at individual CpG sites are

summarized as beta values (see Methods). For comparison with the

MBDCap-seq data, beta values are averaged over technical repli-

cates and regions of interest. Here, regions of interest comprise

nonoverlapping 500-bp tiled genomic segments where 450k

probes exist. The averaged beta values are used to label regions as

differentially methylated (change in beta > 0.4), not differentially

methylated (change in beta < 0.1) or indeterminate (0.1–0.4).

GLMs are fitted using the edgeR package with and without CNV

offsets (both use normalization offsets), and ranking of regions is

according to likelihood ratio test P-values. Other cutoffs for dif-

ference in beta values were tested (data not shown), and the results

presented here are representative.

Figure 5 shows receiver operating characteristic (ROC) curves

for symmetrically chosen truly differentially methylated regions (see

Methods), stratified by copy number state, comparing CNV-aware

(‘‘ABCD-DNA,’’ using either SNP arrays or genomic sequencing for

CNV offsets) and CNV-unaware GLM strategies (‘‘Naive’’); RSEG

and DiffBind (with and without input subtraction) are also com-

pared (see Methods). Taken together, these results highlight sev-

eral features of our new method: (1) Gains in performance can be

achieved for non-‘‘neutral’’ regions; (2) the magnitude of performance

gain increases as CNV increases; (3) ABCD-DNA performs equally

well, regardless of the source of CNV information (Affymetrix SNP

6.0, low coverage genomic sequencing); and (4) ABCD-DNA out-

performs competing methods.

To understand the difference that CNV compensation makes

genome-wide to differential detection calls, Supplemental Figure

S6 gives Venn diagrams showing the overlap of CNV-Aware and

Naive calls (adjusted P < 0.01) by CNV state; as expected, differ-

ential calls in the ‘‘neutral’’ regions are unaffected, while the

overlap degrades significantly as CNV increases. Furthermore, to

highlight how ABCD-DNA removes the association between dif-

ferential detection and CNV, Supplemental Figure S7 shows dif-

ferential detection Z-scores with and without CNV adjustment,

stratified by CNV and by ‘‘true’’ 450k differential status used in the

Figure 3. Normalization to ‘‘neutral’’ CNV state using estimated scaling
factors. M (depth-normalized log-fold-change) versus A (depth-normal-
ized average-log) ‘‘smear’’ plots for MBDCap-seq data are shown be-
tween technical replicates (A) and between cancer and normal (B); each
dot represents a 500-bp region of the genome. M is defined as the log-
fold-change between two samples (counts divided by library size); A is the
average of the log counts divided by library size. (Blue lines) 99th per-
centile of A-values; (red lines) scale factor estimates (median of M for re-
gions with A greater than 99th percentile).
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ROC comparisons. Naive scores increase predictably with CNV,

whereas ABCD-DNA scores are stable across all CNV states,

allowing a better separation of truly differentially methylated from

nondifferentially methylated.

Because of the asymmetry in the

DNA methylation, ROC comparisons are

sensitive to the CNV adjustments made.

Probes on the 450k arrays are biased to-

ward CpG-rich regions, and since these

regions often gain methylation in cancer,

there is a performance advantage to always

increasing the log-fold-change, which can

confound the interpretation of the CNV

compensation. To eliminate this bias, our

results above (Fig. 6) used randomly se-

lected truly differentially methylated

regions such that the same number in-

creased and decreased. However, Supple-

mental Figure S8 highlights ROC com-

parison where this symmetry was not

ensured; in this situation, we overstate

(understate) performance for lower (higher)

relative CNV, as expected.

ABCD-DNA outperforms CNV-aware
Batman

Next, we compared ABCD-DNA against

the CNV-aware Batman for the differen-

tial analysis of MeDIP-seq data. In the

original analysis, read densities were first

preprocessed (divided by CNV, explicitly

assuming a direct unit slope relationship)

to adjust for CNV before using Batman

(Feber et al. 2011). Their data set com-

prises MeDIP-seq, Affymetrix SNP 6.0,

and Illumina HumanMethylation 27k

arrays for three pooled populations: (1)

cancer versus normal (malignant periph-

eral nerve sheath tumors versus normal

Schwann cells), (2) benign versus normal

(benign neurofibromas versus Schwann cells), and (3) cancer versus

benign. We use the 27k array data as independent ‘‘truth’’ for our

performance evaluation (as above, change in beta > 0.4 defines

differentially methylated, and change in beta < 0.1 is deemed

Figure 4. Association between differential peak detection and CNV across LNCaP/PrEC qDNA-seq data sets using various algorithms. The relative rate
of peak detection (RRPD), defined as the ratio of the number of regions detected in LNCaP (L) cells to the number of regions detected in PrEC (P), within
each CNV stratum is shown for ChIPDiff, RSEG, DiffBind (with and without input subtraction), and ABCD-DNA. DiffBind is based on MACS-detected
regions. (A) MBDCap-seq; (B) H3K27me3-seq; and (C ) H3K4me3-seq. Due to lack of replication, DiffBind was not run on H3K4me3-seq.

Figure 5. ABCD-DNA outperforms competing approaches. ROC curves (sensitivity versus 1� spec-
ificity) are shown for various differential region detection algorithms operating on MBDCap-seq data,
using 450k array data as an independent source of truly and nontruly differentially methylated regions.
‘‘Naive’’ uses offsets to account for (effective) sequencing depth but not CNV; ‘‘ABCD-DNA’’ uses either
Affymetrix SNP 6.0 or genomic sequencing to estimate CNV offsets. ‘‘RSEG’’ denotes running rseg-diff
with different sensitivity cutoffs. ‘‘DiffBind,’’ which operates on MACS-detected regions, was run both
with and without input subtraction. Each panel shows ROC curves for the respective CNV stratum
(between LNCaP and PrEC cells), as indicated in the panel title; the number of such regions is shown in
parentheses. In the ‘‘L = 4 P = 2’’ panel, Naive and both ABCD-DNA curves almost completely overlap,
as do the two DiffBind curves (with and without input subtraction).
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nondifferentially methylated). We estimated CNV offsets from

their Affymetrix SNP 6.0 data using PICNIC and normalization

offsets using CNV-neutral regions, as above. Notably, because these

are sample mixtures, the CNV estimates could be non–integer-

valued. Figure 6 shows ROC curves for the three comparisons

using three differential detection approaches: (1) the CNV-aware

Batman (‘‘Batman’’) (Down et al. 2008; Feber et al. 2011), (2)

count-based analysis with only normalization offsets (‘‘Naive’’),

and, (3) count-based analysis with normalization and CNV offsets

(‘‘ABCD-DNA’’). Overall, these results suggest that two gains in

performance can be made: (1) count-based methods outperform

CNV-aware Batman on two out of three comparisons, perhaps

suggesting that modeling the data on its count scale followed by

direct comparison of read densities performs well; and (2) directly

integrating CNV information gives a performance advantage. In

addition, Batman is specific to methylated DNA capture assays,

whereas ABCD-DNA can be applied to other qDNA-seq assays.

Discussion
CNV affects read densities for various qDNA-seq assays. For dif-

ferential comparisons between cancer and normal epigenomes,

results can be both driven and masked by CNV, thus leading to

false positives and reduced power (Fig. 1). Cancer qDNA-seq data

sets are on the rise, and many will ultimately be affected by CNV.

We present a straightforward solution that explicitly models CNV

in a well-established count-based framework. Our method, called

ABCD-DNA, estimates CNV and normalization offsets and includes

them directly in a GLM, similar to recent approaches applied to RNA

sequencing data (Hansen et al. 2012). Thus, we enable a strategy

that jointly accounts for effective sequencing depth and CNV,

within statistical models that handle biological replication. We

verified the approximately linear relationship between CNV and

qDNA-seq on multiple cell line data sets, suggesting that offsets are

presented on an appropriate scale to modify the mean response.

By use of an independent readout of DNA methylation on two

data sets, we demonstrated that ABCD-DNA is competitive against

existing differential approaches and integrating CNV through

offsets can further improve performance. In addition, the ABCD-

DNA framework is flexible and extensible. Because a matrix of

offsets is matched to the matrix of read densities, there is a facility

for analyzing data sets with sample-specific, possibly noninteger,

copy number. For example, patient studies, where each has a dif-

ferent copy number profile, could be analyzed. Furthermore,

through the offset matrix, the method can adjust for not only CNV

and effective sequencing depth, but other technical factors that

affect read density, such as GC content or antibody efficiency

(Cheung et al. 2011; Egelhofer et al. 2011; Hansen et al. 2012);

further study is required to adequately demonstrate this capability

for qDNA-seq data sets. Meanwhile, ABCD-DNA can handle rep-

lication and complicated experimental designs, since these are

already features of the employed model (McCarthy et al. 2012). In

principle, ABCD-DNA can make use of any accurate source of CNV

information; however, the success of the CNV adjustment is ulti-

mately reliant on the accuracy, resolution, and scale of these esti-

mates. Furthermore and perhaps most importantly, ABCD-DNA

can be applied to differential analysis of various qDNA-seq data

sets, including ChIP-seq.

One potential disadvantage of our approach is the reliance on

regions of interest, such as regions tiled along the genome; the

positioning of these regions could have some effect. An alternative

strategy would be to consider overlapping bins tiled at high den-

sity, in combination with principled techniques for smoothing,

such as HMMs, to assemble differential regions; this work is be-

yond the scope of the proof of principle presented here. In addi-

tion, ABCD-DNA does not currently have a facility for in-

corporating ‘‘input’’ or control samples; on our evaluation data set,

DiffBind’s explicit input subtraction did not convincingly improve

performance, and other reports have challenged the appropriate-

ness of such controls (Cheung et al. 2011). Further study is required

to make general recommendations on this matter.

The main implication of our results is that CNV information,

at least for cancer studies, is required for interpretation of qDNA-

seq read densities. Failing to account for CNV may result in false

positives and false negatives (e.g., Fig. 1B–E) and could have sig-

nificant impact on downstream analyses. For example, if CNV

is responsible for a significant fraction of naively determined

differentially enriched regions, downstream analyses, such as

Figure 6. ABCD-DNA outperforms CNV-aware Batman. ROC curves (sensitivity versus 1 � specificity) for three pairwise comparisons are shown for
a MeDIP-seq data set (Feber et al. 2011), where Illumina HumanMethylation 27k data is used as an independent source of truly and nontruly differentially
methylated regions. ‘‘Batman’’ refers to the CNV-adjusted read densities before running the Batman algorithm and taking differences in methylation
estimates. ‘‘Naive’’ refers to a count-based analysis, without accounting for CNV. ‘‘ABCD-DNA’’ refers to a count-based analysis, with additional offsets to
account for CNV (estimated from Affymetrix SNP 6.0 data using the PICNIC algorithm). Comparisons are as follows: (A) cancer versus normal; (B) cancer
versus benign; and (C ) benign versus normal.
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functional category analysis or pathway analysis, may be con-

founded by CNV; that is, enriched pathways may largely be a re-

flection of CNV, not from changes in the epigenetic factor of in-

terest. Since ABCD-DNA adjusts expected read density by number

of copies, the method can also facilitate detection of changes in

allele specificity; however, partitioning the reads by allele using

genotypes is a more direct approach for this (Statham et al. 2012).

Unfortunately, the requirement for CNV information im-

poses a potentially costly burden for researchers studying cancer

epigenomes, since every sample will need to be CNV typed; this

would consume sequencing resources and precious DNA. In prac-

tice, the effect of CNV on qDNA-seq can be large or small, de-

pending on the type and severity of the cancers being studied. In the

comparison of LNCaP and PrEC cells, the magnitude of CNV change

is moderate (most often, changes from four copies to three or five),

but a large proportion of the genome (;35%) is affected, so sig-

nificant improvements can be made. Depending on the cancer

and the severity, copy number aberrations may be larger in

magnitude than our data set, and affect larger (or smaller) pro-

portions of the genome (Baudis and Cleary 2001). So, the gains to

be made from CNV-aware analyses depend on the data set.

However, from our initial results, there is generally only gains to

be made after integrating CNV. Furthermore, while the main

motivation to develop ABCD-DNA is to compensate for CNV, we

have shown that it performs well relative to existing approaches,

so the framework may benefit differential qDNA-seq analyses

outside of the cancer field.

Methods

Estimating CNV from Affymetrix SNP 6.0 microarrays
The PICNIC tool (Greenman et al. 2010), specifically designed for
the analysis of Affymetrix SNP 6.0 arrays, was used to estimate
absolute copy number genome-wide using default parameters.
These regional estimates were matched to the read densities in tiled
bins along the genome and used directly as offsets in the down-
stream CNV-aware GLM count modeling.

Estimating CNV from genomic sequencing

Since read depths in genomic DNA sequencing are affected by
local GC content and mappability, we implemented a R routine in
the Repitools package (Statham et al. 2010) called absoluteCN()
that calculates read density, GC content, and mappability in
bins genome-wide. Bins with mappability <75% are removed;
a smooth curve is fit to the mode of depth versus GC content. This
relationship is removed for each bin by dividing out the fit at the
bin’s GC content and then scaled according to knowledge of the
most prominent copy state (here, LNCaP = 4 and PrEC = 2). Read
densities are then segmented using CBS (Venkatraman and
Olshen 2007).

Choosing regions for ROC analysis ‘‘symmetrically’’

Because the truly differentially methylated regions for the LNCaP
versus PrEC comparison are biased toward hypermethylation, we
randomly selected the same number of truly hypermethylated and
truly hypomethylated regions for the ROC analysis.

ROC analysis using RSEG

To generate ROC curves for RSEG, we ran rseg-diff repeatedly with
different values of the -cdf-cutoff parameter (between 0.01 and

0.40). For each of the truly differentially methylated and non-
differentially methylated regions, the score used for ROC analysis
was the maximum cdf-cutoff such that the region was deemed
differentially enriched, if at all. For descriptions of the commands
used for each tool, see the Supplemental website.

ROC analysis using DiffBind

To generate ROC curves for DiffBind, we set a high P-value
threshold when calling dba.report(), thus giving scores for the full
list of inputted regions. The score used for ranking was the P-value.
Furthermore, whether to subtract input reads was controlled by
the bSubControl=FALSE argument in the call to dba.analyze().
Otherwise, default parameters were used.

Processing of Illumina HumanMethylation 450k array data

The HumanMethylation 450k arrays were processed using the
R/Bioconductor ‘minfi’ package using bg.correct = TRUE and
normalize = ‘‘controls’’, to generate beta values. Differences in beta
values were used to determine the truly differentially methylated
regions.

Reproducibility of analyses and figures in this manuscript

All data and R code used for the generation of figures in this man-
uscript are available from http://imlspenticton.uzh.ch/robinson_
lab/ABCD-DNA/ with further description in the Sweave-based
Supplemental Material.

Data sets used

The following data sets (with NCBI Gene Expression Omnibus
accession numbers) were used for the main comparisons:

1. MBDCap-seq, Affymetrix SNP 6.0 arrays, and low-coverage ge-
nomic DNA sequencing on LNCaP and PrEC cells and MBDCap-
seq of SssI (fully methylated DNA; GSE24546) (Robinson et al.
2010c), as well as H3K27me3-seq (GSE38683) and H3K4me3-
seq (GSE38682) on the same cell lines.

2. Illumina HumanMethylation 450k bead array on LNCaP and
PrEC (GSE34340).

3. From the Feber et al. (2011) study, MeDIP-seq, Affymetrix SNP
6.0 arrays, and Illumina HumanMethylation 27k were available
for pools of malignant peripheral nerve sheath tumors, normal
Schwann cells, and benign neurofibromas.

Additional analyses to investigate the association between CNV
and differential region detection:

1. For Ruike et al. (2010) MeDIP-seq and input-seq data, reads were
downloaded from the DDBJ Sequence Read Archive (accession
DRP000030) and remapped to the human hg18 genome. A list
of differential regions was obtained from Yoshinao Ruike (pers.
comm.); analysis of the association between their correspond-
ing input-seq read densities and detected differential regions
was performed using a custom R script.

2. For Kim et al. (2011) M-NGS data, the list of differentially meth-
ylated regions was obtained from Mohan Dhanasekaran (pers.
comm.); using our SNP array data (same cell lines), associations
were made to their detected regions using a custom R script.

Data access
A detailed description of the implementation details for ABCD-DNA
is given in the Supplemental Material. Software to run ABCD-DNA
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is freely available within the Bioconductor Repitools package
(Statham et al. 2010).
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Gnirke A, Stunnenberg HG, Meissner A. 2010. Quantitative comparison
of genome-wide DNA methylation mapping technologies. Nat
Biotechnol 28: 1106–1114.

Cheung M-S, Down TA, Latorre I, Ahringer J. 2011. Systematic bias in high-
throughput sequencing data and its correction by BEADS. Nucleic Acids
Res 39: 1–9.

Curtis C, Lynch AG, Dunning MJ, Spiteri I, Marioni JC, Hadfield J, Chin S-F,
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Herrero J, Tomazou EM, et al. 2008. A Bayesian deconvolution strategy
for immunoprecipitation-based DNA methylome analysis. Nat
Biotechnol 26: 779–785.

Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P,
Alekseyenko AA, Cheung M-S, Day DS, Gadel S, Gorchakov AA, et al.
2011. An assessment of histone-modification antibody quality. Nat
Struct Mol Biol 18: 91–93.

Feber A, Wilson GA, Zhang L, Presneau N, Idowu B, Down TA, Rakyan VK,
Noon LA, Lloyd AC, Stupka E, et al. 2011. Comparative methylome
analysis of benign and malignant peripheral nerve sheath tumors.
Genome Res 21: 515–524.

Greenman CD, Bignell G, Butler A, Edkins S, Hinton J, Beare D, Swamy S,
Santarius T, Chen L, Widaa S, et al. 2010. PICNIC: An algorithm to
predict absolute allelic copy number variation with microarray cancer
data. Biostatistics 11: 164–175.

Hansen KD, Irizarry RA, Wu Z. 2012. Removing technical variability in RNA-
seq data using conditional quantile normalization. Biostatistics 13: 204–
216.

Hawkins RD, Hon GC, Lee LK, Ngo Q , Lister R, Pelizzola M, Edsall LE, Kuan
S, Luu Y, Klugman S, et al. 2010. Distinct epigenomic landscapes of
pluripotent and lineage-committed human cells. Cell Stem Cell 6: 479–
491.

Houseman EA, Christensen BC, Karagas MR, Wrensch MR, Nelson HH,
Wiemels JL, Zheng S, Wiencke JK, Kelsey KT, Marsit CJ. 2009. Copy
number variation has little impact on bead-array-based measures of
DNA methylation. Bioinformatics 25: 1999–2005.

International Cancer Genome Consortium. 2010. International network of
cancer genome projects. Nature 464: 993–998.

Jones PA, Baylin SB. 2007. The epigenomics of cancer. Cell 128: 683–692.
Jones PA, Archer T, Baylin SB, Beck S, Berger S, Bernstein BE, Carpten J, Clark

S, Costello J, Doerge R, et al. 2008. Moving AHEAD with an international
human epigenome project. Nature 454: 711–715.

Kim JH, Dhanasekaran SM, Prensner JR, Cao X, Robinson D, Kalyana-
Sundaram S, Huang C, Shankar S, Jing X, Iyer M, et al. 2011. Deep
sequencing reveals distinct patterns of DNA methylation in prostate
cancer. Genome Res 21: 1028–1041.

Liang K, Keles S. 2011. Detecting differential binding of transcription factors
with ChIP-seq. Bioinformatics 28: 1–2.

McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of
multifactor RNA-Seq experiments with respect to biological variation.
Nucleic Acids Res 40: 1–10.

Rashid N, Giresi PG, Ibrahim JG, Sun W, Lieb JD. 2011. ZINBA integrates
local covariates with DNA-seq data to identify broad and narrow regions
of enrichment, even within amplified genomic regions. Genome Biol 12:
R67. doi: 10.1186/gb-2011-12-7-r67.

Robinson MD, Oshlack A. 2010. A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biol 11: R25.
doi: 10.1186/gb-2010-11-3-r25.

Robinson MD, McCarthy DJ, Smyth GK. 2010a. edgeR: A Bioconductor
package for differential expression analysis of digital gene expression
data. Bioinformatics 26: 139–140.

Robinson MD, Statham AL, Speed TP, Clark SJ. 2010b. Protocol matters:
Which methylome are you actually studying? Epigenomics 2: 587–598.

Robinson MD, Stirzaker C, Statham AL, Coolen MW, Song JZ, Nair SS,
Strbenac D, Speed TP, Clark SJ. 2010c. Evaluation of affinity-based
genome-wide DNA methylation data: Effects of CpG density,
amplification bias, and copy number variation. Genome Res 20: 1719–
1729.

Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ,
Brown GD, Gojis O, Ellis IO, Green AR, et al. 2012. Differential oestrogen
receptor binding is associated with clinical outcome in breast cancer.
Nature 481: 389–393.

Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G. 2010. Genome-wide
analysis of aberrant methylation in human breast cancer cells using
methyl-DNA immunoprecipitation combined with high-throughput
sequencing. BMC Genomics 11: 137. doi: 10.1186/1471-2164-11-137.

Song Q, Smith AD. 2011. Identifying dispersed epigenomic domains from
ChIP-Seq data. Bioinformatics 27: 870–871.

Statham AL, Strbenac D, Coolen MW, Stirzaker C, Clark SJ, Robinson MD.
2010. Repitools: An R package for the analysis of enrichment-based
epigenomic data. Bioinformatics 26: 1662–1663.

Statham AL, Robinson MD, Song JZ, Coolen MW, Stirzaker C, Clark SJ. 2012.
Bisulphite-sequencing of chromatin immunoprecipitated DNA
(BisChIP-seq) directly informs methylation status of histone-modified
DNA. Genome Res 13: 22: 1120–1127.

Stratton MR. 2011. Exploring the genomes of cancer cells: Progress and
promise. Science 331: 1553–1558.

Venkatraman ES, Olshen AB. 2007. A faster circular binary segmentation
algorithm for the analysis of array CGH data. Bioinformatics 23: 657–
663.

Xu H, Wei C-L, Lin F, Sung W-K. 2008. An HMM approach to genome-wide
identification of differential histone modification sites from ChIP-seq
data. Bioinformatics 24: 2344–2349.

Zhang Y, Liu T, Meyer C, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum
C, Myers RM, Brown M, Li W, et al. 2008. Model-based analysis of ChIP-
Seq (MACS). Genome Biol 9: R137. doi: 10.1186/gb-2008-9-9-r137.

Zhou Y-H, Xia K, Wright F. 2011. A powerful and flexible approach to the
analysis of RNA sequence count data. Bioinformatics 27: 2672–2678.

Received February 13, 2012; accepted in revised form August 17, 2012.

Robinson et al.

2496 Genome Research
www.genome.org


