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Abstract

Background: Commonly-occurring disease etiology may involve complex combinations of genes and exposures resulting in
etiologic heterogeneity. We present a computational algorithm that employs clique-finding for heterogeneity and
multidimensionality in biomedical and epidemiological research (the ‘‘CHAMBER’’ algorithm).

Methodology/Principal Findings: This algorithm uses graph-building to (1) identify genetic variants that influence disease
risk and (2) predict individuals at risk for disease based on inherited genotype. We use a set-covering algorithm to identify
optimal cliques and a Boolean function that identifies etiologically heterogeneous groups of individuals. We evaluated this
approach using simulated case-control genotype-disease associations involving two- and four-gene patterns. The CHAMBER
algorithm correctly identified these simulated etiologies. We also used two population-based case-control studies of breast
and endometrial cancer in African American and Caucasian women considering data on genotypes involved in steroid
hormone metabolism. We identified novel patterns in both cancer sites that involved genes that sulfate or glucuronidate
estrogens or catecholestrogens. These associations were consistent with the hypothesized biological functions of these
genes. We also identified cliques representing the joint effect of multiple candidate genes in all groups, suggesting the
existence of biologically plausible combinations of hormone metabolism genes in both breast and endometrial cancer in
both races.

Conclusions: The CHAMBER algorithm may have utility in exploring the multifactorial etiology and etiologic heterogeneity
in complex disease.
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Introduction

Under the common gene, common disease hypothesis[1],

commonly occurring diseases may result from the effects of

multiple genetic and environmental exposures, often involving

complex biochemical pathways. Currently, genome-wide associa-

tion studies (GWAS) are identifying common variants that confer

low risk of complex disease. The success of these efforts means that

new approaches will be required to follow up on these gene

discovery efforts to better evaluate higher-order relationships

among genotypes and other risk factors. A number of methods

have already been proposed that could begin to achieve this

goal, including recursive partitioning[2,3] and related methods

such as those implemented in the FlexTree program[4]; random

forests[5]; combinatorial partitioning[6]; multifactor-dimensional-

ity reduction[7]; permutation-based procedures[8]; multivariate

adaptive regression spines[9]; boosting [10]; support vector

machines[11]; neural networks[12]; ‘‘Detection of Informative

Combined Effects’’ (DICE)[13,14]; Bayesian pathway modeling

approaches[15,16]; the Relief, ReliefF, and ‘tuned’ ReliefF (turf)

algorithms[17,18,19]; partial linear tree regression[20]; algorithms

adapted from gene expression analysis, such as Genes@Work[21];

logic regression[22]; penalized logstic regression approaches [23];

and other greedy algorithms for combinatoric searches involving

multiple genotypes [24]. Traditional machine learning techniques

[25] can also applied to problems where the number of factors

being considered is relatively small in comparison to the number of

data samples available and their running times tend to be non-

linear in the number of factors. Similarly, agglomerative clustering

approaches have also been proposed that would place a single

allele into one cluster and then combine clusters based on some

objective function. Advantages of these approaches include: the
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ability to detect effects of higher-order genotype combinations

when there is no main effect of individual genes; avoiding P-value-

based hypothesis testing (see Appendix S1, Step 3) and the

associated power/sample size limitations for exploratory purposes;

limited assumptions of interactive effects (i.e. multiplicative) of

predictor variables; and no assumption of linear effect of predictor

variables. However, most of these approaches make assumptions

about the underlying biological model of disease, require

assumptions about the identification of ‘‘purity’’ in the groupings

identified, or may miss combinations that are not consistent with

the hierarchical nature of nodes due to the use of ‘‘greedy’’

algorithms. Therefore, there is room for additional methodology

to address questions of complex disease etiology. In addition,

existing methods tend not to consider the likely heterogeneity in

etiology of disease, defined as the existence of two or more

explanations for the occurrence or pattern of disease in a

population. Previous methods have been proposed to assess

etiologic heterogeneity in complex disease [26,27,28,29].

Our goal is to develop computational methods to explore

higher-order relationships between groups of predictor variables

that discriminate between cases and controls. This approach

identifies combinations of genotypes and epidemiologic risk factors

that may identify risk groups, and identifies etiologically

heterogeneous subgroups of individuals in the population whose

risk is determined by different combinations of risk factors. To

accomplish this, we undertake an exhaustive exploration of all

possible combinations of risk factors, identify ‘‘bi-cliques’’ that

contain all individuals that have the particular risk factor

combinations, compute a Figure of merit (FOM) that quantifies

risk, build hierarchies (lattices) of bi-cliques that define risk sets.

Finally, we use this information to define groups of individuals

whose risk is defined by specific bi-cliques, thus identifying

etiologic heterogeneity in the population defined by different

combinations of the same set of variables, different variable sets, or

both. We apply this approach to both simulated data and

empirical data on candidate estrogen metabolism genotypes in

two case control studies of breast and endometrial cancer[30,31].

We present an analytical procedure that thoroughly explores the

complete space of combinations among all factors considered and

is not dependent on the order in which the variables enter the

algorithm. Unlike most hypothesis-testing strategies, a key feature

of this algorithm is that it allows the user to explore complex

etiological relationships in data rather than serve as a tool to find

the ‘‘best’’ result. We consider combinations of alleles or genotypes

that result in very large numbers of groupings. By considering bi-

cliques, we take into account many interrelationships among the

alleles and are able to make use of a procedure that only needs to

look at each combination a very small number of times, thereby

keeping the computational effort manageable despite the large

number of combinations.

Results

Simulated Data
Synthetic data were generated for analysis by the CHAMBER

(Figure 1). Simulated data were generated for eight genes to reflect

the empirical dataset described below [30,31,32] (Figure 2).

Dataset D1 had no factors that confer risk of being a case vs. a

control. Datasets D2 and D3 contain a 2-gene and a 4-gene risk

pattern, respectively. Dataset D4 simulated etiologic heterogeneity

in which disease risk was conferred by different patterns in

different subsamples. We refer to bi-cliques, which are a set of

alleles (features) together with a set of people (cases and controls)

sharing these alleles. We refer to the set of alleles as a pattern and

to the set of people as a support for the pattern. In some cases,

where only the set of alleles is focused on, we use the terms pattern

and bi-clique interchangeably.

Figure 2 shows the relationship between the patterns simulated

to have increased risk and all other patterns that were not

simulated in the data to have increased risk. In dataset D1 (no

genetic risk), very few patterns had OR.1.5 or P,0.05. In

datasets D2–D4, patterns simulated to have risk-increasing effects

are among the best in both odds ratio and P-value. The algorithm

identified those patterns that were simulated to have increased risk

(solid symbols; Figure 2), and high-scoring patterns that were not

simulated to have risk-increasing effects (i.e., higher-scoring

patterns depicted with hollow symbols; Figure 2). This phenom-

enon is expected to occur because the features that are contained

in the simulated high-risk bi-cliques are also contained in other bi-

cliques, and thus may cause those bi-cliques to have high scores as

well. This is not a limitation of the algorithm but the expected

result when considering complex relationships among risk factors.

To illustrate this point, Figure 3 depicts the frequencies of the four

partitions created by the two features G03 and G05 for cases

(inner ring) and controls (outer ring). The areas of the rings

represent the relative sizes of the case and control populations.

These data indicate that bi-cliques sharing alleles and people in

common with the high-ranking bi-cliques will also rank well. Thus,

the key to the interpretation of the algorithm is to carefully

evaluate the results and determine both the high-ranking bi-cliques

as well as their relationships with other (related) bi-cliques.

Since bi-cliques related by shared features can be almost

equivalent in their ability to select the population with the greatest

risk, we use a set covering technique[33] to identify the most

parsimonious bi-cliques that balance high risk prediction with the

complexity of the feature set. Set-covering assigns ‘‘costs’’ to

potential solutions, and minimizes the total cost of a solution based

on a cost model (Appendix S1). One element can ‘‘cover’’ another

element if it can logically do so and the cost of doing so is low

enough. For example, the genotype pattern AB can cover patterns

ABC, ABD, ABCD, etc. But there is an associated cost, namely a

possible decrease in FOM that may result from adding irrelevant

genotypes. Our model assigns a cost-to-cover based on the FOMs

of the two bi-cliques. In the following discussion, we refer to the set

of patterns we are trying to cover as the input patterns, and the set

of patterns that cover the input patterns using our cost model as

the covering patterns.

We applied the set covering procedure[33] (Appendix S1) to

simulated datasets (D2–D4). We selected all patterns having OR.1

and P-value,0.05 as the input patterns. A detailed depiction of the

analysis results for dataset D2 is presented in Table 1. As

summarized in Table 2, Dataset D2 is almost completely covered

by the single rare G03 genotype (i.e., 30 covered of 33 input).

Dataset D3 yields five covering patterns. Between them, they

account for 94/96 of the input patterns, with one of them covering

56 of the original 96 patterns. Note that some of the covering

patterns (e.g., the first) could have been covered by other patterns

(e.g., the second or the fourth), but CHAMBER determined that the

FOMs were too far apart and the cost too high to allow this result.

Dataset D4 is covered by two patterns, one for each of the risk

components (Table 2). The combined coverage is 33 covered of 38

input. Note that our set covering procedure drastically reduces (by

more than an order of magnitude) the number of patterns to be

considered for further study.

Comparison with CART Methods
To compare the CHAMBER method with another approach

that has been used to address similar research questions, we have

The CHAMBER Algorithm
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performed a classification and regression tree ( CART) analysis

using the simulation data described above and the J48 algorithm

with 10-fold cross validation for CART as implemented in the

WEKA software[34]. First, using dataset D2 that simulated a 2-

gene-risk model, (Table 2), CART split first on gene G03, which

was one of the seeded patterns in the data set. However, it was not

able to split on the other seeded pattern involving gene G05.

Indeed, after splitting on G03, CART did not consistently identify

any other seeded pattern in the data that could not be easily

trimmed from analysis.

Second, we analyzed dataset D4 (Table 2) that included the

pattern found in dataset D2 as well as a second pattern, thus

simulating etiologic heterogeneity. CART split first on gene G08,

which was not simulated to have any effect in the data set. The

second and third splits were on genes G03 and G05, respectively,

which were seeded as part of the simulated pattern in the data

(Table 2). However, no other clear patterns (splits) were identified.

Therefore, in both situations, CART did not identify the simulated

data patterns that were correctly identified by CHAMBER.

CART appeared to only identify the strongest effects (based on

odds ratio estimates, Table 2), and consistently missed weaker

effects that were identified by CHAMBER.

Estrogen Metabolism Genotypes and Breast Cancer
We studied 225 African American (AA) and 613 European

American (EA) breast cancer cases, who were compared to 512

AA controls and 820 EA controls. In addition, we studied 44 AA

and 462 EA endometrial cancer cases compared with 329 African

American and 1,082 White controls who participated in the WISE

study. Table 3 presents the results of our empirical data analyses of

eight genes involved in estrogen metabolism. In AA breast cancer,

the highest scoring bi-clique involved the joint effect of CYP1B1*4

and UGT1A1 genotypes. The second highest scoring bi-clique also

involved these two genes, but also included CYP1A1*2C genotype.

The third bi-clique also involved genotypes of UGT1A1, but

involved the additional effect of SULT1E1 genotypes. In EA breast

Figure 1. Overview of the Bi-clique-Finding Algorithm. Step 1 involves the construction of bipartite graph to identify all relationships between
nodes (Figure 1, Phase I). In Step 2, the algorithm undertakes maximal bi-clique formation by exhaustively searching the entire space of all genotype
combinations to identify an initial set of maximal bi-cliques (Figure 1, Phase II). In the third step, a Figure of merit (FOM) is generated to prioritize
‘‘interesting’’ bi-cliques (Figure 1, Phase II). The FOM can be any measure inherent to the data. Here, we consider values of features (e.g., genotypes) in
a 262 contingency Table with affected cases and unaffected controls contingent on exposure (e.g., genotype). In the fourth step, a ‘‘lattice’’ is built by
connecting each pair of bi-cliques to their least upper bound and their greatest lower bound using principles of set union and intersection. (Figure 1,
Phase III). In the fifth step, the bi-cliques of greatest interest are identified using a parsimony principle by which ‘‘optimal’’ bi-cliques should contain
the most parsimonious set of features, and the addition of more features does not substantially improve the FOM. To achieve this, we employ the set
covering approach[33] (Appendix S1).
doi:10.1371/journal.pone.0004862.g001

The CHAMBER Algorithm
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cancer, the highest scoring bi-clique involved the joint effect of

CYP1A2 genotypes, SULT1A1 genotypes, and UGT1A1 genotypes.

In both races, the algorithm identified combinations of genes

involved in phase I catecholestrogen formation and in phase II

sulfation or glucuronidation in breast cancer etiology. CYP1A1 and

CYP1A2 genotypes are associated with the generation of

catecholestrogens, which have been associated with breast cancer

risk [35]. In addition, SULT1A1 and UGT1A1 act on both

estrogens and catecholestrogens, and therefore the potential effects

of combinations of many genotypes of phase I catecholestrogen

genes and phase II detoxification genes may identify mechanisms

by which multiple genotypes in common pathways may influence

breast cancer risk. In particular, the algorithm applied to empirical

data supports the hypothesis that the formation of catecholestro-

gens in the context of the sulfation and/or glucuronidation of these

compounds may be jointly associated with cancer risk. The

combination of catecholestrogen metabolism genotypes and

sulfation was previously identified in breast cancer risk [30] using

standard logistic regression methods.

In AA endometrial cancer, only one high-scoring bi-clique was

identified with a P-value of 0.0237. This may reflect the relatively

small sample size in this group. This bi-clique involved the joint

effect of CYP1A1*2C genotypes, CYP1B1*4 genotypes, and

SULT1E1 genotypes. CYP1A1 and CYP1B1 are involved in the

generation of catecholestrogens, while SULT1A1 is involved in the

sulfation of both estrogens and catecholestrogens. In EA

endometrial cancer, the highest scoring bi-clique was the main

effect of CYP1A1*2C genotype. This effect was previously reported

by our group[31] in analyses using traditional logistic regression

methods. Therefore, the CHAMBER approach has identified the

main effect of this genotype that was also identified by a standard

analytical approach. The second highest scoring bi-clique

observed here was the main effect of CYP3A4*1B genotypes,

which are associated with increased catecholestrogen formation,

and would therefore be expected to be associated with increased

endometrial cancer risk. This association was also observed in our

earlier paper [31]. This provides an additional assessment of the

CHAMBER algorithm’s ability to identify genotype combinations

Figure 2. Distribution of P-values and Odds Ratios for Four Simulated Datasets. Designated patterns in D2–D4 are shown as large filled
glyphs. Dataset D1 was modeled to have no factors that confer risk of being a case vs. a control. Datasets D2 and D3 contain a 2-gene and a 4-gene
risk pattern respectively. Dataset D4 simulated the situation of etiologic heterogeneity in which disease risk was conferred by different patterns in
different subsamples. The list of all discovered patterns was filtered to include only those with support.5% of cases, odds ratio.1, and P-value,0.05.
P-value was used as the FOM. Note that adding even a single high risk genotype (D2, D3) results in many patterns above the noise level (D1).
doi:10.1371/journal.pone.0004862.g002
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that may be involved in cancer risk that is an extension from our

prior main effects or first order interaction explorations of our

prior research [30].

Etiologic Heterogeneity
When more than one pattern is found to have a strong effect on

disease risk, it is relevant to ask whether the patterns represent

variations of the same risk factor, or distinct risk factors (i.e.,

etiologic heterogeneity). Simulated dataset D4 was designed to

model etiologic heterogeneity. Two disjoint genotype combina-

tions were simulated (i.e., D2 and D3, Figure 2 and Table 2), such

that enhanced risk could come from the D2 or D3 patterns. The

effect of each risk-conferring pattern was simulated such that no

additional risk was assigned to individuals who had both risk

patterns. For D4 (Figure 2), one of the bi-cliques of interest (G03,

G05) ranked first, but the second bi-clique (G01, G02, G04, G06),

with comparable odds ratio and P-value, was ranked tenth.

Etiologic heterogeneity in a ranked list of patterns was also

evaluated. Figure 4 shows the ORs and P-values for all pairwise

combinations of the patterns with OR.1 and P,0.05, as found in

D4 (black dots). Notie that the odds ratios and P-values for both

designated patterns alone in dataset D4 (filled blue) are worse than

the scores for the same patterns alone in the single-risk D2 and D3,

respectively (hollow blue). This is because the 262 table for one

pattern is skewed by the risk assigned to the other pattern, and vice

versa. In D3, the people who do not have the pattern found in D3

but do have the pattern found in D2 had a 90% chance of being

controls. When the pattern found in D2 also confers risk as in D4,

those same people have only an 80% probability of being controls.

Thus, counts are shifted from the on-diagonal quadrant to the off-

diagonal quadrant of the 262 table, thereby reducing the OR.

In Figure 4, the score for the designated pattern pair ‘‘D2 or

D3’’ in dataset D4 (red) is much higher than its individual

components (filled blue). In fact, ‘‘D2 or D3’’ has the best score of

all individual (green) and paired (black) patterns in dataset D4.

The pair of patterns ‘‘D2 or D3’’ would not have been identified as

the designated pattern by considering D2 and D3 alone because

D3 ranked low for reasons discussed above. We were able to

identify as ‘‘interesting’’ the signal from D3 by examining pattern

pairs for high scores compared with the individual components.

We also evaluated the potential for etiologic heterogeneity in the

empirical dataset. We observed a combination in the AA breast

cancer results that suggested the presence of etiologic heteroge-

neity. The three highest ranking patterns were A: (UGT1A1 =

*1*28 and CYP1B1*4 = AG), B: (UGT1A1 = *1*1 and CYP1B1*4 =

AA and CYP1A1*2C = AA) and C: (UGT1A1 = *1*1 and SUL-

T1E1 = GG). We examined these 3 patterns for pairwise FOM

and support overlap. Pairs AB and AC scored noticeably higher

than their components, and had no support overlap, suggesting

separate etiologies. Pair BC scored slightly lower than its

components, and had 67% support overlap, suggesting that B

and C are parts of the same etiology. Bi-clique B has three genes,

bi-clique C has two genes, and they share one gene. Thus, the BC

pair is consistent with a four-gene motif having two paths

Figure 3. Dataset D2 partitioned by the 2 genes in the
designated pattern for cases (inner band) and controls (outer
band). The solid white sector represents the single feature G03 without
G05. The checkered sector represents G03 with G05. So the checkered
and white sector together represent all the people with G03. One can
see that generalizing the description of the risky pattern from G03 and
G05 to simply G03 identifies all the people with the high risk 2-gene
pattern, while picking up only a small fraction of low risk false positives.
Frequencies are rounded to 1%, and the ‘‘,’’ symbol represents logical
‘‘not’’.
doi:10.1371/journal.pone.0004862.g003

Table 1. Relationships among top-ranking Bi-cliques from Simulated Dataset D2.

Rank G01 = 0.783 G03 = 0.0782 G05 = 0.8388 G08 = 0.8821 Fisher’s Exact Test P-value

1 T T 5.5961027

2 S S S 7.5561027

3 T T T 1.0761026

4 S S S S 1.7261026

5 T T 2.1161026

6 T 2.5961026

7 S S S 2.6261026

8 R R 3.1661026

Genes are labeled with their frequencies used for simulating the dataset. The designated high risk pattern, marked R, is ranked 8th. Some specializations of R, marked S,
are also high risk. Thus, bi-cliques ranked 2, 4, and 7 are specific instances of bi-clique 8, and include 78%, 69%, and 88%, respectively, of the same individuals as bi-
clique 8. All confer an approximately two-fold enhanced risk of disease. These patterns all contain the rare allele (7.8%) for G03, plus common alleles of G01, G05, and
G08. Thus, the chance of having the designated genotype pattern if the individual has G03 = 0.0782 is 84%, regardless of the genotypes at the other loci. Stated
differently, 84% of the individuals in bi-cliques 1, 3, 5, and 6 have the simulated combination of risk-conferring alleles. G03 is the single gene selected by our set
covering algorithm to be the most parsimonious description of all the significant risky patterns. Note that patterns containing G03 but not G05, marked T, involve very
common genes combined with G03. This makes the population at risk from these patterns a large subset of the population described by G03 alone. Similar effects are
seen in datasets D3 and D4.
doi:10.1371/journal.pone.0004862.t001
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connecting common endpoints (a two-gene path in parallel with a

three-gene path) with one shared segment (Figure 5).

Discussion

The CHAMBER algorithm described here is an exploratory

technique that searches the complete space of all combinations of

putative risk factors and identifies the subset of features that are

most likely to be of etiological interest. In both our simulated and

empirical datasets, we show that the discovery of high-dimensional

combinations and heterogeneity in the etiology of a complex

disease may require not only computationally sophisticated

algorithms but also careful examination and interpretation of the

results of those algorithms to understand disease etiology. While in

theory the CHAMBER algorithm can be applied with an

unlimited number of genes and other risk factors, limited only

by computational constraints, the main utility of this model may

be to explore the effects of multiple genotypes and detect etiologic

heterogeneity in complex disease. In addition, while the

applications provided here focus on genetic variation, the

application of both genes and environmental exposures can be

explored using this algorithm. Given the numerous successes of

genome-wide association studies, CHAMBER may be a useful tool

for following up on the large number of ‘‘hits’’ from these scans.

Here, we illustrate this potential by applying the model in a

situation where main effects of genes had been previously

identified, and use the CHAMBER algorithm to detect novel

higher-order effects.

A key principle of association studies involving complex

diseases, and a feature accounted for by CHAMBER, is that

there is no one ‘‘correct’’ solution but instead there may be a set of

solutions that describe the relationship between risk factors (e.g.,

genotypes) and disease. In our simulation results, the ‘‘correct’’

solution was in fact identified based on the simulated data.

However, in real-life situations, it is possible that the algorithm

may identify more than one highly ranked pattern, particularly

when the signal from a bi-clique is weak. The results are

nonetheless valuable in guiding subsequent validation studies

and correlative laboratory experiments. Central to the application

of this algorithm is to recognize when two bi-cliques actually

represent the ‘‘same’’ allelic/genotypic combination. One metric

used here is the percentage of people two bi-cliques have in

common. For example, assume a bi-clique containing alleles A and

B is associated with increased risk in a sample of 500 cases. If the

number of cases with this pattern is 80 (i.e., 16% of all cases), the

‘‘signal’’ in this bi-clique may not be very strong. Nevertheless,

pattern AB may rank very high using this algorithm, but its

ranking may not be substantially different than the ranking of a bi-

clique that contains A only. Assuming A and B are in linkage

equilibrium, this would not be surprising if allele B were also

frequent in the sample. Thus, we expect that the majority of the

people who have pattern A also have pattern AB. These

observations imply that when higher-order combinations exist in

data, the algorithm may identify bi-cliques that include subsets of

the alleles found in the higher-order combinations. Thus, to fully

interpret the results of the CHAMBER algorithm requires not

only the identification of high-ranking bi-cliques, but also an

understanding of the lattice of relationships among bi-cliques.

We have compared the CHAMBER method with our

previously published results analyzed by logistic regression [30]

and by analyzing our simulated data by classification and

regression trees (CART). In our earlier analysis of pairwise

interaction using traditional logistic analysis methods, three

significant first order interactions were observed. In European

Americans, interactions between phase I CYP1A1 genotypes and

phase 2 sulfotransferase genotypes were observed in both AA and

EA groups. Similar interactions were also observed in the present

analyses using the CHAMBER approach, although additional

Table 2. Summary of Results of Set Covering Algorithm for Simulated Datasets.

Dataset Designated Risk Pattern Covering Pattern Coverage OR P

D2 G03 = 0.0782 & G05 = 0.8388 G03 = 0.0782 30/33 (91%) 2.33 2.59E-06

None 3/33 (9%)

D3 G01 = 0.783 & G02 = 0.2784 &
G04 = 0.4529 & G06 = 0.7125

G02 = 0.2784 & G04 = 0.4529 &
G06 = 0.7125

9/96 (9%) 1.98 1.06E-04

G04 = 0.4529 56/96 (58%) 1.39 3.98E-03

G02 = 0.1919 & G07 = 0.3285 8/96 (8%) 1.78 8.42E-03

G02 = 0.2784 & G06 = 0.7125 14/96 (15%) 1.38 1.37E-02

G08 = 0.8821 7/96 (7%) 1.56 3.84E-02

None 2/96 (2%)

D4 G03 = 0.0782 & G05 = 0.8388 G03 = 0.0782 9/38 (24%) 1.76 2.37E-03

G01 = 0.783 & G02 = 0.2784 &
G04 = 0.4529 & G06 = 0.7125

G02 = 0.2784 & G04 = 0.4529 24/38 (63%) 1.44 1.29E-02

None 5/38 (13%)

The set covering algorithm was run on the bi-cliques found in the three simulated datasets. The fraction of input patterns covered by each covering pattern is shown. In
dataset D2, 30 of the 33 input patterns could be covered by the single pattern G03 = 0.0782. This is consistent with the data in Table 1, where the common thread of
G03 was seen in all eight top patterns. The number of interesting patterns in D2 has been reduced from 30 to 1. Dataset D3 has a more complex risk (four genes), and
five patterns were needed to cover 94 of the 96 bi-cliques found in D3. Note that the first cover (3 genes, P<0.0001) could itself be covered by the second cover (1 gene,
P<0.0040) or the fourth cover (two genes, P<0.0137). However, the cost model (Appendix S1, Step 5) determined that the difference in P values between these was too
large to generalize the three-gene cover pattern to a more parsimonious, but less significant, one- or two-gene cover pattern. Dataset D4, with risk from both the D2
and D3 patterns in the same population, is covered by two simpler patterns. Note that the first D4 cover is the same as the D2 cover. The other D4 cover is a simpler
version of the top D3 cover. This slight difference is not unexpected since, for reasons discussed in the text and Appendix S3, the odds ratios and P values are different
in the heterogeneous population D4 than in the homogeneous populations D2 and D3.
doi:10.1371/journal.pone.0004862.t002
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Table 3. Results of the CHAMBER Algorithm for the Detection of High-Dimensional Combinations: Estrogen Metabolism Genes in
a Population-Based Case-Control Study of Breast and Endometrial Cancer.

Groupa
Exposed
Cases

Exposed
Controls

Unexp.
Cases

Unexp.
Controls N OR P-value COMT CYP1A1 CYP1A2 CYP1B1 CYP3A4 SULT1A1 SULT1E1 UGT1A1

AAa Breast
Cancer

11 4 146 365 526 6.88 0.0005 AG *1*28

49 71 106 294 520 1.91 0.0022 AA AA *1*1

41 59 118 312 530 1.84 0.0062 GG *1*1

57 95 112 292 556 1.56 0.0173 *1*1

15 17 128 333 493 2.30 0.0206 CC AG

58 108 115 308 589 1.44 0.0403 GG AA GG

28 46 131 349 554 1.62 0.0441 AC GG GG

19 29 108 296 452 1.80 0.0471 GG AA GG

EAb Breast
Cancer

53 39 344 482 918 1.90 0.0025 AA GG *1*28

51 38 530 740 1359 1.87 0.0030 AG

78 73 399 589 1139 1.58 0.0060 GA AG

41 34 463 662 1200 1.72 0.0153 AC AG

99 105 378 557 1139 1.39 0.0207 GG AA

115 122 313 435 985 1.31 0.0419 AA GG

AA Endo-
metrial Cancer

13 56 22 221 312 2.33 0.0237 AA AA AG

EA Endo-
metrial Cancer

43 58 388 960 1449 1.83 0.0031 AG

394 918 21 92 1425 1.88 0.0055 AA

113 210 269 681 1273 1.36 0.0149 AC AA

35 45 285 621 986 1.69 0.0182 AA AA GG

43 67 297 687 1094 1.48 0.0371 GG *1*28

aAA = African American.
bEA = European American.
doi:10.1371/journal.pone.0004862.t003

Figure 4. The designated pattern pair in dataset D4 is the highest scoring of all pairs. One of the components of the designated pattern
(filled blue) could not be identified among the individual patterns in dataset D4 (green dots). The same two components (unfilled blue) scored much
higher in single risk datasets D2 and D3.
doi:10.1371/journal.pone.0004862.g004
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potential higher order effects were detect by CHAMBER that

were not seen in our earlier work (no prior multigene analyses of

endometrial cancer have been undertaken).

The analysis of our simulated data (cases D2 and D4) using

recursive partitioning as implemented as CART was not able to

identify simulated patterns of higher order genetic associations

when the lower order effects were weak. In particular, it only

identified one of the 2 alleles seeded into D2 and did not identify

any of the alleles in the 4-allele pattern seeded into D4. This result

is not unexpected because CART is a greedy algorithm, which, as

usually implemented, picks alleles one at a time that may affect the

phenotype under study. In cases where the main effects derive

from combinations of alleles and individual alleles do not give a

strong signal, CART may miss important higher order effects.

This was observed in the comparison of CHAMBER and CART

provided here: CART may not be able to identify groups of alleles

that are not individually identifiable. Even when they are, these

effects could be masked by other alleles sending a stronger signal.

However, CART (and other methods) may be an appropriate

choice to identify combinations of alleles that are identifiable

individually and in cases where they have a larger effect together.

Based on the results presented here, we believe the CHAMBER

algorithm has value beyond other methods that have been

proposed in this field. Our algorithm belongs to a broad class of

algorithms called branch-and-bound methods, where an exhaus-

tive decision tree of potentially exponential size (all combinations

of variable values) is explored. CART has this property in that the

nodes of the trees utilized in CART are explored in order of an

objective function, with the best (strongest) effects being identified

first. The tree is built and pruned by applying constraints which

may include feasibility and objective function value. In the case of

CART, one constraint is that the search proceeds greedily, at each

step picking the best next step. This dramatically speeds up the

search but also fails to explore much of the solution space. There

are many situations in which this approach may succeed.

However, CART approaches may miss higher-order relationships

when there are no lower order effects (e.g., if the lower-order

effects do not split out early in the construction of the tree). Unlike

CART, CHAMBER is not a greedy algorithm (although it is

possible to include greedy algorithm features), so it will find every

combination. For problems of modest size, it explores the entire

space of solutions. For larger problems, it carries out a directed

search which, while pruned to respect realistic limitations on

memory and running time, still carries out a search that is far more

thorough than a greedy algorithm. While CHAMBER does not

always carry out an exhaustive search of the solution space, which

is potentially exponential in size, it does carry out a thorough

search of the space in most realistic instances. In particular, it

examines adding features to candidates in all possible orders, not

just accepting one feature at a time as a greedy algorithm would

do. When forced to prune the search space due to limitations on

memory and time, it uses a directed search which favors good

solutions over distinctly poorer ones. If the objective function is

well behaved, in the sense that good solutions tend to contain good

partial solutions, it will explore all attractive regions of the solution

space and while it may miss the global optimum owing to the

increasing coarseness of the search, it will not miss an entire good

region. This together with the clustering (set covering) that is done

following the original search, has proven sufficient to reveal the

good candidate solutions in the problems we have studied.

Compared with methods such as agglomerative clustering, our

approach may be computationally more intensive, but it has the

ability to search the solution space much more thoroughly and also

allows us to recognize multiple clusters containing the same allele.

This aspect of the CHAMBER approach corresponds to the

realistic situation where an allele may be part of multiple

pathways.

Furthermore, CHAMBER can find patterns that have a weak

effect or are rare. However, combinations of risk factors (e.g.,

alleles) that are both rare and have weak effects may be missed.

This is likely to be a limitation of most analytical methods. Finally,

we do not compare our results against a common reference group.

The FOM considered here is the comparison of a specific

genotype combination vs. not having that combination. Since we

don’t compare to a single reference group, we cannot necessarily

compare FOMs directly. FOMs can be compared across a single

run in order to implement the set-covering algorithm, but it is not

appropriate to compare FOMs across runs. Instead, we use the

FOM as a measure of the strongest (e.g., most interesting) effect

among all possible bi-cliques.

CHAMBER can be easily modified to meet individual research

needs. First, CHAMBER was able to search the entire space of bi-

cliques in our examples because the number of genotypes was

limited. When the number of genotypes is large (e.g., in a genome-

wide association study), CHAMBER can search the combinatorial

space effectively, but may not be able to do so exhaustively. In

those cases, computational constraints may be a limiting factor,

and it may be important to consider several different FOMs in

order to gain confidence that the search was sufficiently thorough.

The growth of the number of candidate bi-cliques can be limited

by carrying out a directed search[36], which can concentrate on

expanding the most promising candidates. This approach is very

flexible as we can set up a priority queue based on a figure of merit

that combines the quality of the candidate (e.g., P value and odds

ratio) and its position in the solution space. Note that, unlike

classical search algorithms such as CART, this approach does not

rely on the preceding nodes in a tree and is capable of searching

the solution space uniformly or in a highly directed fashion.

Second, we use the number of exposed cases (‘‘support’’) to filter

our analyses. Other reference groups can be used without loss of

generality. For example, unexposed controls are often used in

epidemiological studies, and filtering to remove potentially

underpowered bi-cliques can be done. This ‘‘in-line’’ filtering is

used to reduce the computational load and output complexity by

avoiding exploring branches of the solution space that are deemed

a priori to be uninteresting. For example, the analyst may choose

Figure 5. Motif suggested by pattern pair ‘‘BC’’ for a 3-gene
pattern (‘‘B’’) and a 2-gene pattern (‘‘C’’) sharing 1 gene in a
serial/parallel motif.
doi:10.1371/journal.pone.0004862.g005
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the limits that can be put on the bi-clique support to meet the

needs of a particular anlaysis. Third, CHAMBER allows the user

to adjust the stringency of the analysis by altering (or removing) the

filter and parameter values. Similarly, while we consider

CHAMBER to be an exploratory algorithm, the use of P-values

may require correction for multiple testing by a variety of standard

means [37]. Finally, the algorithm was explored by using a

pathway of candidate genes. However, CHAMBER can also be

used in studies of multiple exposures and/or genes.

Methods

Algorithm
Our approach assumes here a case-control sample ascertained

using appropriate epidemiological study design methods. The basis

for this approach are discrete math principles of graph theory [38],

and have been previously described by Mushlin et al. [36]. We

define a node to be a person or a value of a characteristic, which is a

risk factor (e.g., genotype). A bin is a set of values (e.g., an allowed

value or collection of values) of a characteristic. We refer to the

values of the data associated with each person as features. An edge is

a connector between a person node and a bin node containing one

or more features. Adjacency refers to two nodes connected by an

edge. There are two ways to represent the relationships of interest:

An adjacency matrix (also known as an edge table) is a matrix of

relationships between nodes. A graph is a pictorial representation of

the relationship among nodes. Using these definitions, a clique is a

sub-graph in which all nodes are connected. A bi-clique is a sub-

graph where all nodes of one kind (e.g., people) are connected to

all nodes of another kind (e.g., genotypes). In a bi-clique, all people

nodes are connected to all bin nodes, but people nodes are not

connected to other people nodes, and bin nodes are not connected

to other bin nodes.

The goal of CHAMBER is to reveal all possible bi-cliques of

interest and to prioritize bi-cliques that are of greatest interest. In

many cases, such as those presented in this paper, we do. (We

detect and report pruning as it occurs.) It is inevitable that we will

generate some false positives. It is important, however, to note the

difference between bi-cliques that are totally false and bi-cliques

which are either overly specific (too many features) or overly

general (too few features). By clustering solutions (set covering), we

select the most parsimonious feature set to represent a collection of

nested bi-cliques. False Discovery Rate analysis can be used to

estimate false positives of the traditional sort. In the end, domain

knowledge can be used to prune some of the false positives. Finally,

we do not claim that Chamber is sufficient alone to completely

solve the problem. In the end, the most promising candidates must

be evaluated in the laboratory. We do claim that Chamber can

significantly reduce the number of candidates to so examine,

without eliminating useful ones to explore.

The five steps outlined below, in Figure 1, and Appendix S1 are

analogous to those of tree-building and pruning seen in recursive

partitioning algorithms[2], but are not limited by the order in

which branches are added or removed from the tree. Figure 1

provides an overview of the algorithm.

We chose to select for further analysis those bi-cliques with

‘‘good’’ P-values that implied risk and that had a ‘‘well-behaved’’

262 Table. This was achieved by selecting bi-cliques with P-

value,0.05, odds ratio.1, and Nmin = 2, where Nmin is the

smallest cell in the 262 Table. For each selected group of

discovered bi-cliques, a cost matrix is constructed as input to the

set covering algorithm[33] (Appendix S2) The output is a list of

explanatory feature sets used and a list of the bi-cliques they

explain. This list of explanatory feature sets is taken to be the most

parsimonious description of the many overlapping patterns

detected in the original dataset.

Finally, etiologic heterogeneity is inferred based on the

disjointedness of the identified patterns (Appendix S3). In

particular, patterns with distinct groups of people and distinct

groups of features suggest distinct etiologies. Two (or more) distinct

groups of features may also be present in a single group of people

who have a significantly higher risk than people having either of

the groups of features alone. A measure of the overlap in support

(or features) between two bi-cliques is the Jaccard index[39],

H = [C1>C2]/[C1<C2], where C1 is the support (or feature) set of

bi-clique 1 and C2 is the support (or feature) set of bi-clique 2.

Small values of H suggest distinct etiologies.

Simulated Data Example
Simulated data were generated using a macro program coded in

SAS v 9.0 in order to evaluate the behavior of the CHAMBER

algorithm in candidate gene association studies involving high-

dimensional data. Simulated data were generated for eight genes

assumed to be in Hardy-Weinberg equilibrium. These simulated

data were intended to reflect frequently encountered empirical

allele and genotype frequencies, including unknown (missing)

genotypes. Specifically, we generated these simulated data to

reflect the data observed in the WISE study [30,31,32]. For each

dataset, 500,000 individuals were generated to model a variety of

genetic risk scenarios involving one or more genotypes conferring

an enhanced risk of disease. We specified disease risk for all

possible multi-locus genotypes in the simulated cohorts. A baseline

disease risk of 10% was assigned to all genotype categories. The

multi-locus combined risk for each of the combinations of

genotypes at up to 8 loci was updated to specify the relative risk

associated with a given joint genotype. Case/control designation

was assigned by comparison of the combined computed disease

risk to a random number generated from the standard uniform

distribution. Case status is determined by determining probability

of disease for those with a particular genotype combination to be

20% or greater. A random number is then assigned to each

individual, and if that number is less than 0.2, then we assign is

‘‘case’’ status; those with combined risks greater than the random

number were assigned control status. Random sampling with

replacement of the simulated cohort was performed to create

subsets of case/control groups which were used as input to the bi-

clique finding algorithm.

Empirical Data example: The WISE Study
To further evaluate the ability of the bi-clique-finding model to

identify combinations among genotypes as they may influence

disease risk, we employed data from the WISE study, a

population-based study of breast and endometrial cancer risk

[31,40]. From the total WISE sample set, we have studied 225

African American and 613 White breast cancer cases, who were

compared to 512 African American controls and 820 White

controls. In addition, we studied 44 African American and 462

White endometrial cancer cases compared with 329 African

American and 1,082 White controls who participated in the WISE

study. Using genes involved in the downstream metabolism of

estrogen, we chose one SNP in each of eight genes that are

thought to have a functional effect on hormone metabolism and/

or cancer risk in order to illustrate the CHAMBER algorithm. The

variants studied were: COMT Val158Met (rs4680), CYP1A1

Ile462Val (*2C; rs1048943), CYP1A2*1F (rs762551), CYP1B1,

(Asn452Ser, *4; rs1800440), CYP3A4*1B (rs2740574), SULT1A1

Arg213His (*2; rs9282861), SULT1E1 -64G.A Promoter Variant

The CHAMBER Algorithm
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(rs3736599), and variants in UGT1A1 (*28). These variants were

assayed as previously described [31].

CART Analysis
We implemented CART analysis using the Java version of

Quinlan’s C4.5 algorithm [41] called J48, as implemented in the

WEKA software [34]

Software
The software is written in Java and should run with little or no

modification on most OS’s. The data format is simple flat files (e.g.,

.csv files) with defined row and column semantics. There is a

command line interface to all the programs, and the overall process

involves running a small number of programs in sequence. IThe

method will easily scale to dozens of SNP’s, a useful range for

candidate gene studies, follow up of GWAS results, or other similar

studies in which genotypes have strong main effects or when main

effects are weak or non-existent but important higher order effects

exist. The computational complexity is near-linear in the number of

candidate partial solutions explored, but that number can grow

exponentially with the number of SNPs. In-line filtering, such as

support or feature count thresholds, can be used to extend the

practical range. If the landscape of solutions can be estimated, the

FOM measure can be selected to optimize the candidates kept in the

queue with respect to that landscape. Beyond that, it is necessary to

decompose the problem into (possibly overlapping) sets of SNPs and

to then make multiple runs. By iterating through promising

solutions, it is possible to explore somewhat larger problem spaces.

Parallel processing could be used to advantage in exploring such

decomposed problems. CHAMBER as currently implemented is

not intended for genome wide studies.
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