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Noncoding RNAs such as miRNAs and piRNAs have long-lasting effects on the regulation of gene expression involved in long-term
synaptic changes. To characterize gene regulation mediated by small noncoding RNAs associated with long-term memory in
Aplysia, we consider two noncoding RNAs stimulated by 5-HT into a gene regulatory network motif model, including miR-124
that binds to and inhibits the mRNA of CREBI and piR-F that facilitates serotonin-dependent DNA methylation to lead to
repression of CREB2. Codimension-1 and -2 bifurcation analyses of 5-HT regulating both miR-124 and piR-F and a negative
feedback strength for oscillation reveal rich dynamical properties of bistability and oscillations robust to variations in all other
parameters. More importantly, we verify three stimulus protocols of 5-HT in experiments by our model and find that
application of five pulses of 5-HT leads to a transient decrease of miR-124 but increase of piR-F concentrations, which matters
sustained high level of CREBI concentration associated with long-term memory. Furthermore, we perform bifurcation analyses
for the concentrations of miR-124 and piR-F as two parameters to explore dynamical mechanisms underlying the epigenetic
regulation in long-term memory formation. This study provides insights into revealing regulatory roles of epigenetic changes in

gene expression involving noncoding RNAs associated with synaptic plasticity.

1. Introduction

Learning and memory are two of the most critical brain func-
tions for acquiring new knowledge from experience and
retaining that knowledge over time [1-3]. Sensitization of
gill-withdrawal reflexes of the marine mollusc Aplysia, a
simple form of long-term memory (LTM) that is possibly
connected with serotonin (5-HT)-induced long-term facilita-
tion (LTF) of sensorimotor neuron synapses, has been exten-
sively studied for cellular and molecular mechanisms of LTM
[4, 5]. In Aplysia, cyclic AMP- (cAMP-) response element-
binding proteins (CREBs) as transcription factors (TFs) are
crucial for the regulation of the gene expression required
for neuronal plasticity and formation of LTM [6]. CREBI
functions as a transcriptional activator necessary for induc-
tion of LTF, while CREB2 is a transcriptional repressor that
poses inhibitory constraints on the induction and formation
of LTM.

Epigenetic mechanisms, which change gene expression
but not the underlying DNA, are widely known to be
involved in the formation and long-term storage of cellu-
lar information in response to transient environmental
stimuli [7-9]. There are two main types of epigenetic
modification: DNA methylation and histone modification
[10-12]. A large body of experimental evidence suggests
that small regulatory noncoding RNAs can cause long-
lasting changes in cellular phenotypes during development,
through their involvement in both autoregulatory feedback
loops [13, 14] and the transcriptional and epigenetic regula-
tion of gene expression [15, 16].

There are two classes of small RNAs regulated by neural
activity in Aplysia: microRNAs (miRNAs) and Piwi-
interacting RNAs (piRNAs), and their expression in turn
regulates transcriptional and posttranscriptional mecha-
nisms [17]. In Aplysia, the most abundant miRNA specific
to the brain is miR-124, which binds to and inhibits the
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mRNA of CREBI in the sensory neuron [18]. The brain of
Aplysia also contains another class of noncoding RNA mole-
cules, piRNA, such as piR-F, which leads to the DNA meth-
ylation as an epigenetic modification and the repression of
the promoter of CREB2 [19]. Serotonin regulates piRNA
molecules through a rise in piR-F silences CREB2 and
miRNA molecules when a drop in miR-124 activates CREBI,
which both establish stable, long-term changes in the sensory
neurons that store memory [7]. These experimental findings
reveal epigenetic mechanisms underlying regulations of the
gene expression in long-term memory storage.

Recently, computational studies have identified an
abundance of motifs involving noncoding RNAs and TFs
[20-26]. For example, Zhou et al. [22] propose two partic-
ular network motifs: the miRNA-mediated double negative
feedback loop in which a TF suppresses a miRNA, and the
TF itself is negatively regulated by the miRNA, and the
miRNA-mediated single negative feedback loop in which
a TF activates a miRNA, and the TF itself is negatively
regulated by the miRNA. Nitzan et al. [24] provide a the-
oretical and numerical study of coherent mixed feedback
loops of two genes, in which a TF and a small noncoding
RNA mutually regulate each other’s expression. Hao et al.
establish a network model of the regulation between
CREBI and miR-124 stimulated by 5-HT, which is associated
with long-term memory formation in Aplysia [26]. However,
these mathematical models did not involve piRNAs, which
possibly play a role in the epigenetic regulation in gene
expression through DNA methylation.

In this paper, we construct a mathematical model charac-
terizing epigenetic regulation of gene expression by two
noncoding RNAs related to LTM in Aplysia, in which miR-
124 inhibits the mRNA of CREBI and piR-F facilitates
serotonin-dependent DNA methylation of CREB2 and
silences it. Codimension-2 bifurcation analysis in the model
indicates that the system displays complex dynamics, includ-
ing bistability and oscillation, which are robust to variations
in parameters. In addition, the system exhibits diverse
codimension-1 bifurcations such as saddle-node bifurcation,
saddle-node invariant circle bifurcation, Hopf bifurcation,
fold limit cycle bifurcation, and homoclinic bifurcation. We
further verify the model by four stimulus protocols of 5-HT
used to simulate experiments of the induction of long-term
memory in Aplysia. Finally, we consider the concentrations
of miR-124 and piR-F as parameters and perform bifurcation
analyses to reveal dynamical mechanisms underlying the
epigenetic regulation in long-term memory formation.

2. Model

We establish a regulatory motif of two transcription factors
(CREBI and CREB2) and two noncoding RNAs (miR-124
and piR-F) stimulated by 5-HT, where CREB1 and CREB2
are negatively regulated by miR-124 and piR-F, respectively
(see Figure 1). According to the epigenetic mechanism of
long-term memory in Aplysia [7], miR-124 may bind CREBI
mRNA to inhibit its translation, and piRNA facilitates
serotonin-dependent methylation and thus represses the
promotor of CREB2. Interval applications of five pulses of
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FiGure 1: Illustration of the model. The noncoding RNA piR-F is
activated while miR-124 is repressed by 5-HT. CREBI1 activates
the CREB2 gene and its own gene transcription, while CREB2
represses CREB1 gene and its own gene transcription. CREBI
mRNA (mcppp;) and miR-124 are combined into a complex (C).
Arrows and black dots denote activation and suppression,
respectively.

5-HT to the sensory neurons can reduce the expression of
several miRNAs including miR-124 [18] but upregulate
piR-F level [19]. The activator CREB1 would activate but
the repressor CREB2 would repress the expression of CREB1
gene (g-ppp;) and CREB2 gene (g.ggp,)> respectively.

The levels of CREBI mRNA, CREB2 mRNA, miR-124
mRNA, and piR-F mRNA in the cell are denoted as
mCREB1, mCREB2, miR-124, and piR-F, respectively. We
define a function of 5-HT inhibition on miR-124 through A
and a function of 5-HT promotion on piR-F through y.
CREBI mRNA and miR-124 are combined into a complex
with a rate of §, and then, the mCREB1-miR124 complex is
presumed to be degraded rather than dissociated into its
miR-124 and mCREB1 components. piR-F that leads to the
methylation of the promoter of CREB2 and inhibits CREB2
gene expression is assumed to be described as a/(f3 + [piR-F]).
CREBs in the transcription of the CREB1 and CREB2 genes
can be illustrated as (V,[CREB1]*)/([CREB1]* + K?)-
([CREB2J*)/(|[CREB2]” + K2) and (V,[CREB1]*)/([CREB1]*
+K?2) - ([CREB2]*)/([CREB2)* + K2), respectively, where
V, and V, are the feedback strengths between CREBI and
CREB2, and K, and K, are two dissociation constants of
two complexes of CREB1 and CREB2 from the promoter
regions of the CREB genes. The Hill coefficients of 2 for
[CREBI1] and [CREB2] represent the requirement for two
CREBI or CREB2 monomers to form homodimers [6, 27].
Basic transcription rates of g-ppp; and geppp, and transla-
tion rates of mcggp;, and mepgg, are denoted by g,.1, g,
kyi, and ky,, respectively. The degradation rates of miR-
124, piR-F, meppp;> Megppy» CREB1, and CREB2 are defined
byd;, d,, d,,, d,p, dy;, and d,,,, respectively.

We depict the gene regulatory network model by rate
Equations (1)-(6). Suitable values of all important coeffi-
cients within their biological range of experiments are
listed in Table 1. The choice of parameter values is
mostly from previous models of long-term memory in
Aplysia [6, 27] or is made to fit the experimental data.
All numerical simulations are executed through the
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TaBLE 1: Default parameter values of Equations (1)-(6).

Parameter Value Parameter Value
[5-HT] (uM) 0 g; (uM min™?) 0.055
A (M~ min™!) 0.01 8 (uM™! min™!) 0.02
g, (uM min™") 0.03 y (min™") 0.01
d; (min™) 0.01 d, (min™!) 0.01
Gy (UM min™t) 0.0002 Gy (UM min™t) 0.001
V, (uM min™) 25 V, (uM min™') 1.5

K, (uM) 1 K, (uM) 0.45
d,,; (min™") 0.005 d,, (min™') 0.005
K, (min™!) 0.1 k. (min™) 0.1

dyy (min™) 0.01 d,, (min™") 0.01
o (M) 1 B (uM) 2

Runge-Kutta method [28] as well as bifurcation analyses
are performed with XPPAUT.

d[miR-124
% = g, — A[5-HT][miR-124] - 8[miR-124] Mg
— d;[miR-124,
(1)
d[piR-F| _
TR gyt y[5-HT] - dp [piR-F, (2)
dmepgp] _ V,[CREBI]>  [CREB2J’
di 7" U [CREBIP + K} [CREB2+K;  (3)
— 8[miR-124][mcppp; ] = d,1 [Meppp1 >
d[CREB1
% = ky [mcgep: ] — d,1 [CREB1], (4)
d[mepgpo) _ V,[CREBI]>  [CREB2J?
de ™" [CREBI] + K} [CREB2J? + K? (5)
o
' B+ [piR-F| =y [Meggpa)s
d[CREB2
% = kyp[mcgep,] — ), [CREB2], (6)
3. Results

3.1. Bifurcation Analysis with respect to the Stimulus 5-HT
and the Negative Feedback Strength. Negative feedback has
the potential to evoke limit-cycle oscillations which are cru-
cial for explaining physiological rhythmicity in biochemical
systems. In our model, the activator CREBI activates expres-
sion of CREB2 gene but the repressor CREB2 in turn
represses expression of CREB1 gene, which are together able
to close a negative feedback loop with the negative feedback
strength V,. Also, the negative feedback strength V, repre-
sents the rate of CREB2 gene transcription regulated by the
noncoding RNA piR-F considered significantly in the model.
Here, focusing on the stimulus strength [5-HT] under the

physiologically relevance of negative feedback strength V,,
we explore diverse dynamics such as monostable, bistable,
and oscillatory behaviors in the ([5-HT],V,) parameter
plane through codimension-2 bifurcation analysis.

Two-parameter bifurcation diagram in the ([5-HT], V)
plane is constructed by continuation of the loci of six
different types of codimension-1 bifurcation points, namely,
saddle-node bifurcation points (SN, red solid line), saddle-
node invariant circle bifurcation points (SNIC, red dashed
line), supercritical Hopf bifurcation points (supH, blue solid
line), subcritical Hopf bifurcation points (subH, blue dashed
line), fold limit cycle bifurcation points (LPC, magenta solid
line), and homoclinic bifurcation points (HC, magenta dash-
dotted line) (as shown in Figure 2). The SN1 and SN2 bifur-
cation curves coalesce at a codimension-2 cusp point (CP),
whereas the SN1 bifurcation curve meet with the supH
bifurcation curve at a codimension-2 Bogdanov-Takens
bifurcation point (BT). The codimension-2 generalized Hopf
bifurcation point (GH) corresponds to the meeting point of
supH bifurcation curve and subH bifurcation curve at which
the LPC bifurcation curve (magenta solid) occurs.

To obtain a clear insight into the codimension-two bifur-
cation diagram in Figure 2, we consider a codimension-one
bifurcation of the concentration of CREBI with respect to
the concentration of the stimulus 5-HT. The bifurcation
diagram is illustrated in Figure 3 in which panels (a)-(l) cor-
respond to V,=1.5,3.2,4,4.34,4.8,5.15,6,7.6,7.7,7.8, 12,
and 17.5, respectively, as marked in Figure 2. Diagrams for
each V, value are detailed below.

For a small value of V, as 1.5, the system changes from
bistability to monostability with the increasing [5-HT] via a
saddle-node bifurcation (SN2) on the SN2 bifurcation curve
in Figure 2 (see Figure 3(a)). As V, is increased to 3.2 and
even 4, an unstable limit cycle generated by a subcritical Hopf
bifurcation (subH) on the upper branch grows gradually and
then collides with a saddle at a homoclinic bifurcation (HC2)
point on the middle branch in Figures 3(b) and 3(c). As V, is
fixed at 4.34 (see Figure 3(d)), a stable limit cycle and an
unstable limit cycle appear pairwise around the high stable
steady state via a fold limit cycle bifurcation (LPC). Further-
more, the unstable limit cycle shrinks as well as the stable
steady states loses stability through a subcritical Hopf bifur-
cation (subH) with decreasing [5-HT]. When V, is increased
to 4.8 and 5.15, a stable limit cycle arises via a supercritical
Hopf bifurcation (supH), which grows gradually and then
collides with a saddle at HC2 point (see Figures 3(e) and
3(f)). Only difference of them is that bistability exists with a
high and a low stable steady states and a saddle between the
supH point and the SN2 point in Figure 3(e). However,
different from that in Figures 3(e) and 3(f), the destiny of
the stable limit cycle generated at the supH point as V, =6
in Figure 3(g) is that it vanishes via a saddle-node invariant
circle bifurcation (SNIC) when the stable limit cycle meets
with the saddle-node point. When V, is increased to 7.6
(see Figure 3(h)), stable limit cycles can emerge through
two supercritical Hopf bifurcations (supH) on the upper
branch, which disappear via homoclinic bifurcation (HC1)
and SNIC bifurcation, respectively. However, at V, =7.7,
7.8, and 12 (see Figures 3(i)-3(k)), the stable limit cycle
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FIGURE 2: Bifurcation diagram in the ([5-HT], V) parameter plane. The red solid line, red dashed line, blue solid line, blue dashed line,
magenta solid line, and magenta dash-dotted line depict the saddle-node bifurcation points (SN), saddle-node invariant circle bifurcation
points (SNIC), supercritical Hopf bifurcation points (supH), subcritical Hopf bifurcation points (subH), fold limit cycle bifurcation points
(LPC), and homoclinic bifurcation points (HC)), respectively. Three codimension-2 bifurcation points exist: a cusp point (CP), a
Bogdanov-Takens bifurcation point (BT), and a generalized Hopf bifurcation point (GH). (b-d) are the enlargement of (a).

generated by the supH bifurcation grows gradually with
increasing [5-HT] and then shrinks and eventually vanishes
at another supH bifurcation point. The differences of these
three bifurcation diagrams are that two saddle-node bifurca-
tions (SN1 and SN2) exist in Figures 3(i) and 3(j), where the
left supH point locates between the SN1point and SN2 point
in Figure 3(i). As V, is increased to 17.5, the system keeps
monostable in Figure 3(1).

The above analyses show that our model possesses abun-
dant dynamical properties such as monostability, bistability,
and oscillations, which themselves can make diverse transi-
tions via complicated bifurcation mechanisms as shown in
the codim-1 and -2 bifurcation diagrams.

3.2. Bistability and Oscillations in the Model Are Robust to
Variations in Parameters. In Figure 2, saddle-node bifurca-
tion and Hopf bifurcation for the parameter [5-HT] and
the negative feedback strength V, produce bistable and oscil-
latory dynamical behaviors, respectively, which are always
important in the system dynamics with physiological signifi-
cance. Therefore, it is necessary to discuss if the regions of
bistability and oscillations in the parameters plane ([5-HT],

V,) are robust to variations in other parameters. One way
to investigate the robustness of system dynamics is to vary
the values of the other parameters in the system and observe
changes in size and location of the regions where particular
dynamics exist [6]. Figure 4 displays the two-parameter
bifurcation curves after changing each parameter value with
+10% in the model in the ([5-HT], V,) plane. Only the loci
of the saddle node bifurcation points and the Hopf bifurca-
tion points (subH and supH) are clearly displayed; however,
both the fold limit cycle bifurcations (LPC) and the homocli-
nic bifurcations (HC) are too close to the Hopf bifurcation
points to be hardly distinguished in the parameter planes
([5-HT], V,). As shown in Figure 4, varying the values of
the parameters makes the regions of bistability and oscilla-
tions change a little in both the size and the location, since
it only moves the loci of the saddle-node points and the
Hopf points. Indeed, the regions of bistability and oscilla-
tions are robust to variations of all the parameters.

3.3. Validation of the Model via Four Experimental Protocols
under 5-HT Stimulation. In experiments, five pulses of
treatment with 5-HT induce long-term facilitation (LTF) of
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respectively, as marked in Figure 2.

synapses between sensory neurons and motor neurons in
Aplysia, which correlates with long-term memory (LTM)
formation, whereas one or three pulses do not [4, 29]. Empir-
ically, sustained high level of CREBI is often associated with
memory storage [30], because the transcription factor
CREBI plays essential roles in the maintenance of LTM by
activating a set of downstream genes to promote synaptic
facilitation. Moreover, with exposure to five spaced pulses
of 5-HT, the level of miR-124 begins to decrease, then slowly
reaccumulates, and finally returns to baseline for a long time
[18]. In contrast, the piR-F level with exposure to 5-HT is
firstly upregulated and then drops back to baseline after
stimulation [19].

Therefore, we focus on the dynamics of CREBI1 as well
as in four stimulus protocols for one (a), three (b), four
(c), and five (d) short pulses applied in our model as pre-
sented in Figure 5. Application of 5-HT leads to a tran-
sient decrease in [miR-124] but increase in [piR-F],
which both return to their original levels after stimulation.
It is worthy to notice that the five pulses of 5-HT in
Figure 5(d) make [miR-124] lower but [piR-F] higher than
the pulses depicted in Figures 5(a)-5(c). In fact, only five
short pulses can induce sustained high level of [CREBI]
(see Figure 5(d2)), while one, three, or four short pulses
fail to do it (see Figures 5(a2), 5(b2), and 5(c2)). These
simulation results are qualitatively in accordance with
experimental findings.

3.4. Dynamical Mechanisms Underlying the Epigenetic
Regulation in Long-Term Memory Formation. To explore
individual ability of miR-124 and piR-F to regulate the
CREBI level stimulated by 5-HT, we provide bifurcation
analyses of [CREB1] versus [5-HT] at different values of
[miR-124] (see Figure 6) and of [piR-F] (see Figure 7) to find
appropriate ranges of [miR-124] and [piR-F] that allow the
system to switch between two steady states. Generally, the
existence of an irreversible bistable switch, that is, the system
is bistable at basal level ([5-HT] = 0uM) but monostable with
a high steady state at stimulation level ([5-HT]=10uM).
Therefore, the stimulus with enough duration makes the sys-
tem transit from the low steady state to the high one and then
keep high after stimulation. We will establish appropriate
ranges of miR-124 and piR-F for state switching according
to these dynamical features.

When [miR-124] is small as 2uM (blue), the system is
always monostable with a high steady state. As [miR-124] is
increased to 4.64M (green), there exists an irreversible switch
due to only one saddle-node bifurcation point in the physio-
logical range of the parameter [5-HT]. Therefore, [CREB1]
transits from low to high through the saddle-node bifurca-
tion point as [5-HT] increases and still remains high even
when [5-HT] decreases to the basal level afterwards. For
[miR-124] = 7uM (pink), neither reversible switch nor irre-
versible switch exists since [5-HT] is unable to trigger a
transition between the low and the high stable steady
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states with bistability. When [miR-124] is at a very high
level as 10uM (red), the system is invariably monostable
with a low steady state. Furthermore, Figure 6(b) shows
the range of [miR-124] between two dash-dotted line that
enables the system to transit from low to high under 5-HT
stimulation (see shaded part). The system with bistablility
stays in the low-level steady state before stimulation
([5-HT] =0uM), and then, it reaches the only high-level
steady state at the stimulation [5-HT]|=10puM and persists
high even after stimulation.

Unexpectedly, as [piR-F] is so small as 0.01uM (green) or
0.4uM (red), a subcritical Hopf bifurcation accompanied
with only unstable limit cycle appears upper branch of the
S-shaped bifurcation curve as shown in Figure 7(a). Thus, a
reversible switch exists since the system is bistable between
the subcritical Hopf bifurcation point and the saddle-node
bifurcation point at coalescence of the lower stable node
and the middle saddle. As [5-HT] increases, the CREBI1 level
becomes high via the saddle-node bifurcation. If thereafter
[5-HT] decreases, the level of [CREB1] will be low via the
subcritical Hopf bifurcation. However, as [piR-F] is large as
2uM (blue), an irreversible switch leads to the sustained high
level of [CREBI1] in the system. Figure 7(b) illustrates the
range of [piR-F] on the right of the dash-dotted line that
enables the system to transit from low to high under 5-HT
stimulation (see shaded part in Figure 7(b)).

Thereby, the existence of irreversible and reversible
switches, which decides whether the high [CREB1] level for
long-term memory can be maintained or not, depends on
chosen values of the parameters [miR-124] or [piR-F]. Thus,
appropriate levels of miR-124 and piR-F are required for
long-term memory formation.

To further investigate the synergistic mechanism of the
epigenetic regulation through miR-124 and piR-F in the gene
regulatory network, we consider [miR-124] and [piR-F] as
parameters to perform a two-parameter bifurcation analysis
in Figure 8. The ([miR-124], [piR-F]) parameter plane is
divided into four regions by the saddle-node bifurcation
and the Hopf bifurcation curves, that is, high stable region
with one high-level stable steady state, low stable region with
one low level stable steady state, bistable region with two sta-

ble steady states and a saddle, and excitable region with a low
stable steady state, a high unstable steady state, and a saddle.
As shown in Figure 8, ([miR-124], [piR-F) = (5.4749uM, 3u
M) (red dot) locates in the bistable region, and the system
stays in the low stable steady state before stimulation. One
pulse, three pulses, and five pulses of 104M 5-HT cause the
system to reach the high stable region with the value of
([miR-124], [piR-F]) as (3.3695uM, 3.4877uM) (red dia-
mond), (1.8054uM, 4.2139uM) (red star), and (1.4192uM,
4.7007uM) (red square), respectively. However, only the
accumulative effects of a stimulus protocol with five pulses
of 5-HT can push the system to the attraction domain of
the high-level steady state at [5-HT] = 0uM, but one or three
pulses cannot. Therefore, with a starting point in the bistable
region, the application of five pulses of 10uM 5-HT is able to
trigger the transition of the CREBI1 concentration from a
low- to a high-level steady state, and the high-level state per-
sists even when 5-HT returns to OuM.

4. Discussion

In Aplysia, noncoding RNAs including miR-124 and piR-F
as important regulators inhibit CREB1 mRNA and repress
the promoter of CREB2, respectively, which reveal epigenetic
mechanisms for regulating gene expression underlying long-
term memory storage [7]. In this work, we develop a gene
regulatory network model of two transcription factors
(CREB1 and CREB2) regulated by two noncoding RNAs
(miR-124 and piR-F). The two-parameter bifurcation dia-
gram on the (([5-HT], V,) parameter plane demonstrates
diverse dynamical behaviors in the system and the existence
of three codimension-2 bifurcation points including a cusp
point, a Bogdanov-Takens bifurcation point, and a general-
ized Hopf bifurcation point. Besides that, varying the stimu-
lus strength [5-HT] at different values of the negative
feedback strength V, generates various codimension-1 bifur-
cations such as saddle-node bifurcation, saddle-node invari-
ant circle bifurcation, Hopf bifurcation, fold limit cycle
bifurcation, and homoclinic bifurcation. Furthermore, the
robustness analysis of system dynamics indicates that
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FiGure 5: Time courses of [CREB1] (the second column), [miR-124] (the third column), and [piR-F] (the fourth column) under different
stimulus protocols (the first column): one pulse (a), three pulses (b), four pulses (c), and five pulses (d) of 10uM stimulus for 5 min and
the interpulse interval (from the end of one pulse to the onset of the next) of 15 min. Other parameter values are given in Table 1.

bistability and oscillations are robust to variations of all the
parameters.

We validate the model by the numerical simulations
on the experimental results in four stimulus protocols of
one, three, four, and five short pulses of 5-HT. Simulation
results illustrate that application of five pulses of 5-HT
leads to a transient decrease in [miR-124] and increase
in [piR-F] and induces sustained high level of [CREBI],
which are in accordance with the experimental findings.
Moreover, dynamical mechanisms of the epigenetic regula-

tion in long-term memory formation are explored through
bifurcation analyses considering [miR-124] and [piR-F] as
parameters. When the system is bistable at basal level of
5-HT and monostable with a high steady state at stimula-
tion level of 5-HT, the application of five pulses of 5-HT
is able to trigger the transition of the CREBI1 concentra-
tion from a low- to a high-level steady state, which persists
high after stimulation. This confirms that five pulses of 5-HT
can induce the sustained high level of CREBI associated with
long-term memory formation.
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The bifurcation analyses of the model reveal divergent
dynamics such as bistability and oscillation. We explicate
the dynamical mechanisms underlying the epigenetic regula-
tion in long-term memory formation through bistable
switches in the model. Our results support the idea that the
existence of irreversible and reversible switches, which
decides whether the high [CREBI] level for long-term
memory can be maintained or not, depends on the levels of
[miR-124] or [piR-F] as controlling parameters. Therefore,
bistability as a crucial dynamic property for long-term
memory formation in Aplysia may be useful for further
experimentation. In addition, noncoding RNAs may also

induce oscillatory behaviors in other biological systems
[31, 32]. The results of oscillatory dynamics produced
from our model is expected to be helpful to the experi-
mentalists for researches of other systems involving non-
coding RNA regulation.

The simplified gene regulatory motif proposed in this
study allows us to investigate dynamical mechanisms for
epigenetic control of memory-related synaptic plasticity.
However, experimental phenomena indicated that piR-F
level exposure to 5-HT that leads to a time delay needs more
time (about 3-4 hr) to be upregulated to a peak before drop-
ping back to baseline [19]. Moreover, random fluctuations in
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gene expression exist universally in all kinds of organisms
[33, 34], which have not been considered in this work. Thus,
future studies will focus on time delay and stochastic dynam-
ics in noncoding RNA-mediated regulation of synaptic
plasticity.
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