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Background: Immunoglobulin products (for intravenous, intramuscular and subcutaneous administration) 

prepared from geographically diverse plasma pools were tested for activity against common human coro- 

naviruses (HCoVs). Products from plasma obtained from Germany, Czech Republic, Slovak Republic, USA 

and Spain were tested for antibodies to common HCoVs: 229E, OC43, NL63 and HKU1. As these products 

are manufactured from pooled plasma from thousands of donors, the antibodies therein are representa- 

tive of HCoV exposure in the population at large. 

Methods: Immunoglobulin products were tested for antibodies to four common HCoVs by enzyme-linked 

immunosorbent assays (ELISAs). Neutralization assays were conducted using HCoV-229E cultured on to 

MRC5 cells. 

Results: ELISAs showed that when expressed as specific activity (anti-HCoV activity/mg immunoglobulin), 

similar activity against the four common HCoVs was seen across the immunoglobulin products regardless 

of concentration or geographic origin. Highest anti-HCoV activity was seen against HCoV-229E, followed 

by HCoV-OC43, HCoV-NL63 and HCoV-HKU1. The neutralization assays showed similar potency for two 

immunoglobulin products prepared by different processes. 

Conclusions: To the authors’ knowledge, this is the first demonstration of antibodies to common HCoVs 

in immunoglobulin products. These results may explain the cross-reactivity seen with pre-pandemic im- 

munoglobulin products and severe acute respiratory syndrome coronavirus-2, and contribute to differ- 

ences in severity of illness between patients. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

I

(

c

C

a

m

f

2

e

(

i

m

0

w

b  

d

i

r

2

C

r

m

t

c

s

h

1

l

ntroduction 

Before the severe acute respiratory syndrome coronavirus-2 

SARS-CoV-2) pandemic, relatively little attention was paid to the 

lassical endemic human coronaviruses (HCoVs) ( Li et al., 2021 ). 

ommon HCoVs are globally distributed ( Anthony et al., 2017 ), 

nd are responsible for a large proportion of respiratory infections, 

ost of which are mild for immunocompetent individuals. To date, 

our main subtypes of common HCoVs have been identified: HCoV- 

29E ( Hamre and Procknow, 1966 ), HCoV-NL63 ( Van Der Hoek 

t al., 2004 ), HCoV-OC43 ( McIntosh et al., 1967 ) and HCoV-HKU1 

 Woo et al., 2005 ). HCoV-229E and HCoV-OC43 were discovered 

n 1966 and 1967, respectively, and HCoV-NL63 and HCoV-HKU1 
∗ Corresponding author. Immunotherapies Unit, Bioscience Research & Develop- 

ent, Scientific Innovation Office, Grifols, Carrer Palou, 3, Polígon Industrial Llevant, 

8150 Parets del Vallès, Barcelona, Spain. Tel.: + 34 935 710 933. 

E-mail address: josemaria.diez@grifols.com (J.M. Díez). 

i

o  

p

w

m

ttps://doi.org/10.1016/j.ijid.2021.12.329 

201-9712/© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Soc
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ere identified in 2005. None of these viruses have been found to 

e maintained within an animal reservoir ( Su et al., 2016 ). In ad-

ition, there are two known coronaviruses of animal origin that 

nfect humans and have led to limited outbreaks: severe acute 

espiratory syndrome coronavirus (SARS-CoV) in China in 2002–

003; and Middle East respiratory syndrome coronavirus (MERS- 

oV) which has been responsible for an ongoing outbreak of severe 

espiratory disease in the Middle East since 2012. 

Due to the ubiquity of these viruses, antibodies against com- 

on HCoVs are expected to be widely distributed in the popula- 

ion. Nevertheless, as far as is known, few systematic epidemiologi- 

al surveys have been performed at population level, and no global 

urveys have been undertaken ( Killerby et al., 2018 ). Studies have 

nvestigated the proportion of infections in some specific groups 

f patients ( Gaunt et al., 2010 ; Ruetalo et al., 2021 ). Since a large

roportion of infections occur in childhood, it remains unknown 

hether the antibodies persist in the adult population and at what 

agnitude. Moreover, distinct antibody reservoirs against endemic 
iety for Infectious Diseases. This is an open access article under the CC BY-NC-ND 
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Table 1 

Plasma collection periods of the products tested for antibodies to common human coronaviruses. 

Product Country of origin Plasma collection start date Plasma collection end date 

Flebogamma DIF 5% Germany Jun2019 Aug 2019 

Flebogamma DIF 5% Czech Republic Jan 2019 Jul 2019 

Flebogamma DIF 5% Slovak Republic Jul 2017 Feb 2020 

Flebogamma DIF 10% Spain Oct 2018 Jul 2019 

Flebogamma DIF 10% USA Jul 2019 Sep 2019 

Gamunex-C 10% USA Mar 2018 Oct 2019 

Gamastan 15-18% USA Feb 2018 Apr 2019 

Igamplia 16% USA May 2018 Nov 2019 

Xembify 20% USA Sep 2019 May 2020 
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CoVs in children and adults have been described ( Khan et al., 

021 ). As purified medicinal immunoglobulin solutions are polyva- 

ent and are prepared from donor plasma pools from thousands of 

ndividuals, they cover a broad spectrum of immunity in the gen- 

ral population, and would be expected to include anti-HCoV anti- 

odies reflecting both the proportion of infections caused by each 

ubtype and the specific antibody titer in the donor (general) pop- 

lation. 

It is important to note that coronaviruses in the same sub- 

roup, particularly betacoronaviruses such as HCoV-OC43, HCoV- 

KU1, SARS-CoV, SARS-CoV-2 and MERS-CoV, show some interac- 

ivity in antigenic responses. Cross-reactivity between SARS-CoV 

nd MERS-CoV with other human betacoronaviruses has become 

pparent ( Che et al., 2005 ; Chan et al., 2013; Patrick et al., 2006 ).

he fact that the new betacoronavirus SARS-CoV-2 is directly re- 

ated to SARS-CoV (they share more than 90% sequence homol- 

gy) ( Guo et al., 2020 ) suggests that antigenic interactivity be- 

ween them is possible, at least for some proteins. In addition, re- 

ctions to SARS-CoV-2 in pre-pandemic immunoglobulin solutions 

ave been observed ( Díez et al., 2020a ). Furthermore, these solu- 

ions have some neutralizing capacity ( Díez et al., 2020b ). Neutral- 

zation activity is primarily mediated through the spike (S) gly- 

oprotein, the primary protein involved in the binding of coron- 

viruses to host cells ( Qian et al., 2015 ; Jiang et al., 2020 ). 

In this study, immunoglobulin solutions for intravenous, intra- 

uscular and subcutaneous administration were analysed for the 

resence of antibodies to common HCoVs. This study was designed 

o detect, for the first time, common HCoV antibodies in im- 

unoglobulin solutions. The immunoglobulin solutions were ob- 

ained from plasma from different origins (Germany, Czech Repub- 

ic, Slovak Republic, USA and Spain), allowing indirect comparison 

f the epidemiology of these viruses in these geographical areas. 

ethods 

mmunoglobulin products 

The immunoglobulin solutions used in this study were all pro- 

uced by Grifols (Barcelona, Spain, and Research Triangle Park, NC, 

SA). They included intravenous solutions (Flebogamma DIF 5% 

nd 10% and Gamunex-C 10%), intramuscular solutions (Gamastan 

5–18% and Igamplia 16%) and a subcutaneous solution (Xemb- 

fy 20%). These products were obtained from plasma pools from 

ifferent origins (Germany, Czech Republic, Slovak Republic, USA 

nd Spain). The collection dates for the plasma units are shown in 

able 1 . 

mmunoassays for immunoglobulins 

Antibodies (immunoglobulins) to the common HCoVs were de- 

ected using enzyme-linked immunosorbent assay (ELISA) kits (Al- 

ha Diagnostic Intl., San Antonio, TX, USA). For the alphacoron- 

viruses, the following kits were used: RV-406100 Recombivirus 
69 
uman anti-HCoV 229E S1 IgG ELISA Kit and RV-406115 Recom- 

ivirus Human anti-HCoV NL63 S1 IgG ELISA Kit. For the betacoro- 

aviruses, the following kits were used: RV-406130 Recombivirus 

uman anti-HCoV OC43 Spike IgG ELISA Kit and RV-406145 Re- 

ombivirus Human anti-HCoV HKU1 S1 IgG ELISA Kit. The ELISAs 

ere performed according to the manufacturer’s instructions. Data 

ere analysed as suggested by the kit manufacturer. Antibody po- 

ency was calculated by multiplying the positivity ratio for the in- 

erse of the most diluted positive sample relative to the low cali- 

rator from the kit. Samples were tested in duplicate. 

eutralization assays 

Neutralization assays was performed using HCoV-229E. 

riefly, different immunoglobulin solutions (Flebogamma DIF 

nd Gamunex-C) were incubated with 100 infectious units of 

CoV-229E for 1.5 h at 37 ± 2 °C. MRC5 cells (ATCC CCL-171, Man- 

ssas, VA, USA) in confluent culture in 96-well microtiter plates 

ere infected with 200 μL per well of virus/antibody mixture. 

he microtiter plates were incubated at 35 ± 2 °C for 4 days, and 

ytopathic effects were observed using an inverted microscope 

Axiovert 40, ACHROPLAN 10X/0 . 25 Ph1 objective, Karl Zeiss, 

öttingen, Germany). Concentr ation–effect curves were generated, 

nd half-maximal inhibitory concentration values were calcu- 

ated using GraphPad Prism Version 9.1.0 for Windows (GraphPad 

oftware, San Diego, CA, USA). 

esults 

The immunoglobulin titers (anti-HCoV activity/mL) for the im- 

unoglobulin products are shown in Figure 1 . When expressed 

n this manner, the lower concentration of immunoglobulin (5%) 

howed less activity than the higher concentrations (10–20%). For 

roducts of similar concentration, immunoglobulin activity was 

imilar regardless of the geographic origin of the plasma pool. 

verall, the highest activity was seen against HCoV-229E and 

CoV-OC43. 

The similarity is clearer when the data are expressed as specific 

ctivity (anti-HCoV activity/mg immunoglobulin: Figure 2 ). These 

ata show that anti-HCoV activity was consistent across the prod- 

cts regardless of the total immunoglobulin concentration and the 

rigin of the plasma pool. Activity was highest against HCoV-229E 

ollowed by HCoV-OC43. A similar lower level of activity was seen 

gainst HCoV-NL63 and HCoV-HKU1. 

When the data from all the products were combined, the mean 

pecific activity against the individual virus strains ( Figure 3 ) fol- 

owed the same profile as that noted for the individual prod- 

cts ( Figure 2 ). Greatest activity was seen against HCoV-229E (885 

267units anti-HCoV activity/mg immunoglobulin), followed by 

CoV-OC43 (633 ± 76 units anti-HCoV activity/mg immunoglob- 

lin), with similar lower levels of activity observed against HCoV- 

L63 (306 ± 53 units anti-HCoV activity/mg immunoglobulin) and 
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Figure 1. Immunoglobulins against common human coronaviruses (HCoV) per product mL. Anti-HCoV activity (measured by enzyme-linked immunosorbent assay as im- 

munoglobulin anti-HCoV units per /mL of immunoglobulin product) to common HCoVs in different immunoglobulin solutions manufactured using plasma from different 

countries. The levels of antibodies (immunoglobulins) against the same virus were similar in all products with a similar immunoglobulin concentration. However, differences 

were seen between the viruses. GER, Germany; ESP, Spain; Cz, Czech Republic; SK, Slovak Republic. 

Figure 2. Immunoglobulin activity against common human coronaviruses (HCoV) per mg whole immunoglobulin. Anti-HCoV activity measured by immunoglobulin enzyme- 

linked immunosorbent assay (expressed as immunoglobulin anti-HCoV units/mg total immunoglobulin) against common HCoVs. Specific activity of the anti-HCoV antibodies 

was similar regardless of the geographic origin of the plasma pool. GER, Germany; ESP, Spain; Cz, Czech Republic; SK, Slovak Republic. 
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CoV-HKU1 (301 ± 32 units anti-HCoV activity/mg immunoglobu- 

in). 

Immunoglobulin activity results were also analysed after segre- 

ating the results by the geographic origin of the plasma into three 

roups: Central Europe (Czech Republic and Slovak Republic), Spain 

nd USA ( Figure 4 ). Immunoglobulin products had similar activity 

gainst all four HCoVs regardless of the geographic origin of the 

lasma. 

Functional characterization of the antibodies was performed 

y infectivity neutralization assays using HCoV-229E (Figure 5) . 

hen neutralization assays were performed using HCoV-229E 

n MRC5 cells, the concentration–effect curves for two types 

f intravenous immunoglobulin (IVIG) 10% produced by differ- 

nt manufacturing processes (Flebogamma-DIF 10%, origin USA; 

amunex-C 10%, origin USA) were nearly superimposable. This 

hows that the neutralization activity of the antibodies present 

n these products is essentially the same regardless of the 
70 
anufacturing process. This demonstrates that immunoglobulin 

edicinal products contain functional antibodies against common 

CoVs. 

iscussion 

To the authors’ knowledge, this is the first study to mea- 

ure the presence of antibodies to common HCoVs in therapeu- 

ic immunoglobulin solutions (intravenous, intramuscular and sub- 

utaneous administration). Anti-HCoV immunoglobulin levels were 

imilar across products for each virus regardless of the product 

oncentration or the geographic origin of the plasma. However, 

here were differences in antibody levels between viruses, with the 

ighest levels for HCoV-229E, lower levels for HCoV-OC43, and yet 

ower levels for HCoV-HKU1 and HCoV-NL63. 

Studies on the incidence of HCoV infections treated by a health- 

are provider have shown that the most common strain and 
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Figure 3. Levels of anti-human coronavirus (HCoV) activity against common HCoVs in immunoglobulin products. Mean anti-HCoV antibody levels (measured by immunoglob- 

ulin enzyme-linked immunosorbent assay and expressed as immunoglobulin anti-HCoV units/mg product) across all products were different for each virus (analysis of 

variance, P < 0.0 0 01), except for HCoV-HKU1 and HCoV-NL63 which showed similar antibody levels. 

Figure 4. Antibodies to common human coronaviruses (HCoVs) by plasma origin. Antibody levels (measured by immunoglobulin enzyme-linked immunosorbent assay and 

expressed as immunoglobulin anti-HCoV units/mg immunoglobulin) to common HCoVs grouped by geographic origin of the plasma pool. Differences were seen between the 

common HCoV strains studied, but there were no significant differences between products derived from plasma of different geographic origin (analysis of variance, P < 0.90). 
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revalence depend on the geographic region and the time of 

ear. Gaunt et al. (2010) found that the most prevalent strain of 

ommon HCoV in Edinburgh, Scotland varied from year to year, 

nd that respiratory infections due to common HCoVs showed 

arked seasonality. However, over the 3-year period of data col- 

ection, HCoV-OC43 and HCoV-NL63 were the most frequently de- 

ected common HCoVs ( Gaunt et al., 2010 ). Similar seasonality 

nd variation in the predominant viral strain from year to year 
71 
ere found in a study conducted in the USA ( Killerby et al., 

018 ). 

A study in France found that HCoV-229E and HCoV-HKU1 

ere the most common HCoVs causing respiratory infections 

 Lepiller et al., 2013 ). In Japan, HCoV infections were most com- 

only caused by HCoV-NL63 and HCoV-HKU1, with peak preva- 

ence in the winter months and annual variation in the relative 

revalence of the different common HCoV strains ( Matoba et al., 
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Figure 5. HCoV-229E virus neutralization. Neutralization of HCoV-229E was measured in a cytopathic assay in MRC5 cells. Concentration–effect curves (mg 

immunoglobulin/mL-neutralization %) were generated for virus neutralization and half-maximal inhibitory concentration (IC 50 ) values were calculated. The IC 50 for 

Flebogamma-DIF was 0.503 mg immunoglobulin/mL which was very similar to the IC 50 for Gamunex-C (0.553 mg immunoglobulin/mL). 
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common HCoVs with SARS-CoV-2. 
015 ). One paediatric study in China found that HCoV-229E and 

CoV-OC43 had the highest prevalence among the common strains 

ausing respiratory infections ( Lin et al., 2020 ), while another 

tudy found HCoV-NL63 to be the most prevalent ( Zhang et al., 

021 ). Co-infection with other respiratory viruses was also a com- 

on finding ( Gaunt et al., 2010 ; Lepiller et al., 2013 ; Lin et al.,

020 ). 

A global systematic review and meta-analysis of data from 

995 to 2020 in paediatric and adult patients showed that HCoV- 

C43 was the most prevalent common HCoV (estimated preva- 

ence 2.40%), followed by HCoV-NL63 (1.60%), HCoV-HKU1 (1.04%) 

nd HCoV-229E (0.97%). These data were collected almost exclu- 

ively in developed countries (97%) ( Li et al., 2021 ). 

Given the above studies showing differences in the prevalence 

f common HCoV strains in different parts of the world, it is some- 

hat surprising that all the immunoglobulin samples in this study 

howed a similar pattern of anti-HCoV activity. This could be ex- 

lained by the seasonal variability of the prevalence of common 

CoVs (i.e. the predominance of one strain in a given winter sea- 

on followed by the predominance of a different strain in the fol- 

owing winter season), and that the plasma pool likely reflects 

CoV exposure over time in the donors. In addition, three of the 

pidemiological studies cited previously were conducted in Asia 

 Matoba et al., 2015 ; Lin et al., 2020 ; Zhang et al., 2021 ), while the

mmunoglobulin products tested in this study were from Central 

urope, Spain and the USA. The predominance of different HCoV 

trains varies in different geographical areas over time. 

It was also surprising that the antibody profile in the im- 

unoglobulin products (highest levels in HCoV-229E and HCoV- 

C43) did not match the prevalence of HCoVs in the longitudi- 

al meta-analysis (HCoV-OC43 most prevalent, HCoV-229E least 

revalent; Li et al., 2021 ). This may be because the geographic 

ource of the plasma used to produce these products is reflec- 

ive of these specific regions and not representative of worldwide 

revalence. Another factor that could contribute to the apparent 

isparity may be that the published studies represent clinical sam- 

les from patients that sought medical attention, while the im- 

unoglobulin products represent a population that included indi- 

iduals who had milder infections and did not seek medical at- 

ention. In other words, the epidemiology reflects patients with 

ore symptomatic infections, while the immunoglobulin products 

nclude asymptomatic individuals, as well as patients with mild in- 

ections and symptomatic infections. 
72 
In addition, these studies demonstrated that these antibodies 

ad neutralizing activity against HCoV-229E in MRC5 cells. Neu- 

ralization activity is an important factor in the use of plasma- 

erived products employed in the treatment and/or prevention of 

iral diseases. The neutralizing capacity in this study was demon- 

trated with two different products with different manufactur- 

ng methods. This finding suggests that the ubiquity of anti-HCoV 

inding activity is accompanied by neutralization activity. HCoV- 

29E was employed to demonstrate neutralization activity of the 

ntibodies detected by ELISAs. Direct extrapolation cannot be made 

o the other common HCoVs, but it is logical that the antibodies 

ould also have neutralization activity against them. 

It is also important to note that coronaviruses in the same sub- 

roup, particularly betacoronaviruses such as HCoV-OC43, HCoV- 

KU1, SARS-CoV, SARS-CoV-2 and MERS-CoV, show some inter- 

ctivity in antigenicity. Cross-reactivity between SARS-CoV and 

ERS-CoV and other human betacoronaviruses has been reported 

 Che et al., 2005 ; Chan et al., 2013; Patrick et al., 2006 ). The fact

hat SARS-CoV-2 is closely related to SARS-CoV ( > 90% sequence 

omology) ( Guo et al., 2020 ) suggests that antigenic interactivity 

etween them is possible, at least for some proteins. 

In addition, reactivity to SARS-CoV-2 in pre-pandemic im- 

unoglobulin solutions has been observed recently ( Díez et al., 

020a ). As demonstrated in this study, these solutions have the 

apacity to neutralize common HCoVs such as HCoV-229E. Fur- 

hermore, these solutions have demonstrated some neutralizing ca- 

acity towards SARS-CoV-2 ( Díez et al., 2020b ). The worldwide 

resence of these common HCoVs may affect the current SARS- 

oV-2 pandemic. Pre-existing immunity to common HCoVs may 

ave a role in both humoral and cellular responses to SARS-CoV- 

 ( Díez et al., 2020b ; Anderson et al., 2021 ; Meyerholz and Perl-

an 2021 ), and could explain, in part, the differences in severity 

f illness between patients. 

This observed reactivity between pre-pandemic IVIG and SARS- 

oV-2 occurs despite the low protein sequence homology between 

he SARS-CoV-2 S protein and common HCoVs (HCoV-OC43: 30% 

dentity, 41% similarity; HCoV-HKU1: 29% identity, 40% similarity). 

owever, despite low overall homology, higher homology was ob- 

erved in the C-terminal regions of the S proteins. This region is 

nstrumental in the insertion of the fusion protein into the cell 

embrane of the host cell ( Hicks et al., 2021 ). The C-terminus ho- 

ology could underly potential cross-reactivity of antibodies of the 
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As shown in Table 1 , the majority of the pooled plasma 

sed in the manufacture of the products tested in this study 

as collected prior to the COVID-19 pandemic. Two products 

ontained plasma collected in the early stages of the pandemic 

until May 2020). A study examining the presence of anti- 

ARS-CoV-2 antibodies in immunoglobulin products demonstrated 

hat these antibodies were not detected until late 2020 (prod- 

cts produced in September and October 2020) ( Romero et al., 

021 ). This suggests that the observed activity against com- 

on HCoVs was not due to cross-reactivity with anti-SARS-CoV-2 

ntibodies. 

In conclusion, this study demonstrated the presence of anti- 

odies to common HCoVs in parenteral immunoglobulin products. 

he level of anti-HCoV activity for each virus was similar regard- 

ess of the geographic origin of the plasma. Neutralization activity 

as demonstrated against a representative strain of HCoV (HCoV- 

29E) in MRC5 cells. These findings may help to explain the pre- 

iously evidenced cross-reactivity and neutralization activity for 

ARS-CoV-2 observed with pre-pandemic immunoglobulin prod- 

cts ( Díez et al., 2020a ,b), and differences in severity of illness be-

ween patients. 
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