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Layer‑selective magnetization 
switching in the chirped photonic 
crystal with GdFeCo
O. V. Borovkova1,2*, D. O. Ignatyeva1,2 & V. I. Belotelov1,2

Here we propose a magnetophotonic structure for the layer-selective magnetization switching with 
femtosecond laser pulses of different wavelengths. It is based on a chirped magnetophotonic crystal 
(MPC) containing magnetic GdFeCo and nonmagnetic dielectric layers. At each operating wavelength 
the laser pulses heat up to necessary level only one GdFeCo layer that leads to its magnetization 
reversal without any impact on the magnetization of the other layers. Moreover, magneto-optical 
reading of the MPC magnetization state is discussed. Lateral dimensions of the considered MPC can be 
made small enough to operate as a unit cell for data storage.

Up-to-date technologies require modern information devices to process large amounts of data at high rates. 
Methods of the ultrafast magnetism are very promising in this respect since they allow controlling the magneti-
zation of a magnetic material by the femtosecond laser pulses at a picosecond time scales1–10.

Ferrimagnetic alloy of gadolinium-iron-cobalt (GdFeCo) is one of the most promising materials for further 
development of the information storage devices, since it allows to perform a single-shot all-optical magnetiza-
tion switching during a few picoseconds11–13 in the area of pulse action on the GdFeCo film. The magnetization 
state of the remagnetized area determines the value of the recorded information bit, one direction for ‘0’, and 
another direction for ‘1’. A mechanism of all-optical switching originates from the ultrafast spin dynamics of 
the exchange-coupled Gd and FeCo sublattices which are thrown out of balance due to the light-induced ther-
mal heating of the spin sublattices14,15. If the delivered energy exceeds the threshold, the magnetizations of the 
two sublattices are reversed at the picosecond timescales due to the difference of the relaxation times for these 
sublattices16. Thus, ultrafast all-optical magnetization switching depends on the amount of energy delivered by 
the optical pulse17 and is characterized by a threshold femtosecond pulse intensity required for the magnetiza-
tion switching18,19.

Nowadays many efforts are put to study how to control the process of all-optical switching via tailoring the 
properties of the femtosecond pulse19–21 and via the additional patterning of the magnetic structure and surface 
plasmon excitation22–25. The latter is responsible for strong light localization24–26 which enables layer-selective 
all-optical switching in a bilayer heterostructure of GdFeCo that has been demonstrated recently24. However, the 
disadvantage of the SPP-assisted selectivity24 is that it intrinsically requires large amounts of metal to support 
SPP which cause about 20% non-resonant absorption in each layer. Consequently, plasmonic-based approach 
could not be extended to multilayered structures with large number of GdFeCo layers in a multilayer stack. At 
the same time, recent studies showed the advantage of all-dielectric 1D and 2D periodic magnetic nanostructures 
for local and efficient light-spin interaction10,27,28.

In this work, we propose a design of nanostructure where the parameters of the dielectric rather than metal 
layers determine the spatial light distribution and the resonances of the absorption in the GdFeCo layers. We 
propose to use the photonic crystals, which are all-dielectric structures that allow to reconfigure the electromag-
netic field distribution by the frequency detuning29,30. The magnetophotonic crystal (MPC) structures31–34, i.e., 
the multilayer nanostructures containing the magnetic layers were shown to perform tunable localization of light 
at the resonant frequencies enabling the enhancement of the optomagnetic interaction in a magnetic material34.

The proposed magnetophotonic crystal with thin smooth or patterned layers of GdFeCo ferrimagnetic alloy 
that provides the local magnetization control and targeted remagnetization of the single layers of the multilayer 
structure. By the frequency tuning of the input femtosecond laser pulses one can select the magnetic layer of 
GdFeCo in which the energy of the laser pulse is mostly concentrated and exceeds the magnetization reversal 
threshold, while in others it is 1.5–2 times lower. In other words, the proposed MPC allows to ‘turn on’ one 
certain magnetic layer of the structure and leave all other layers ‘turned off ’.
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As GdFeCo material is perspective for data storage applications allowing a significant increase of the writ-
ing speed, the proposed structure can be implemented for the purposes of the record density increase in such a 
device. Usually, the magnetic bit cells are arranged in the plane of a single magnetic layer. Using the proposed 
MPC, bit cells can be arranged in several magnetic layers separated by the submicron dielectric spacers and 
addressed individually. This configuration is quite simple for fabrication and doesn’t require a precise position-
ing of the laser pulse.

Besides that, another configuration of the chirped MPC structure with the patterned GdFeCo layers is 
addressed. For the higher density of the information recording the magnetic layer can be nanostructured to 
separate bit cells in the lateral direction. The patterning of the magnetic layer can be implemented along both 
axes in the plane of the structure layers. In our work we limited ourselves by one-dimensional patterning for the 
sake of the modelling simplicity. It should be stressed that the patterned chirped MPC allows combining two 
approaches instantaneously, the bit cells arranged in plane and the bit cells arranged in different layers. It opens 
up the ample opportunities for the significant increase of the information recording density.

We also provide the method of an all-optical single-wavelength information reading in this multilayered 
structure. Thus, the designed MPC with GdFeCo layers could serve as a basis of 3D information storage devices.

A design of the chirped magnetophotonic crystals with GdFeCo layers
We propose a SiO2/TiO2 photonic crystal with thin GdFeCo layers embedded inside each pair of the dielectric lay-
ers. The optical response of such structure is determined mainly by the parameters of the dielectric layers, includ-
ing the absorption of the light in each GdFeCo layer, while the dielectric layers are considered transparent35–37 
(for the details see Supplementary S1). We have considered the structures with thin smooth layers of GdFeCo 
and have shown that they possess similar optical field distributions as in the patterned GdFeCo films of the same 
effective thickness. The decrease of the total metal amount in each GdFeCo layer due to the patterning allows 
reducing the non-resonant absorption and increasing the number of GdFeCo layers that could be individually 
addressed.

We consider a 1D chirped MPC structure composed of the four pairs of non-magnetic layers of titanium 
dioxide (TiO2) and silicon dioxide (SiO2) with the thicknesses gradually increasing deeper into the MPC (see 
Fig. 1). The thicknesses of the TiO2 and SiO2 layers are given in the Table 1. The number of the layers was chosen 
for the sake of simplicity and clarity. However, it can be easily extended for the greater numbers of the layers 
due to the transparence of the dielectric layers and the extremely small thickness of the absorptive magnetic 
layers. The suitable design of the photonic crystal can provide the light concentration and magnetization state 
switching in the even deeper layers.

The variation of the layer’s thickness deeper inside the chirped MPC structure leads to the shift of the bandgap 
corresponding to the infinite photonic crystal with the same TiO2/SiO2 layer thicknesses. Varying the frequency 
of the input pulses on may achieve that the light is efficiently reflected from the predefined pair of layers, while 
the magnitude of the electromagnetic field in the deeper layers will be significantly lower.

The energy of the EM field is mostly concentrated in the layers with higher refractive index at the long-
wavelength edge of the bandgap (and vice versa). As soon as we operate at the long-wavelength edge of the 
bandgap due to the growth of the layer’s thickness deeper inside the MPC, we expect higher concentration of 
the EM field in the TiO2 layers having greater refractive index. Actually, the refractive index of SiO2 is nSiO2

= 1.45 , and 
for TiO2 layers nTiO2

= 2.58 at � = 644nm and their thickness increase for longer wavelengths38. Therefore, we introduce the thin 
layers of GdFeCo into the TiO2 layers to provide the highest concentration of the EM field in them. The thin 
magnetic layers of GdFeCo are introduced inside the TiO2 layers so that the total thickness of the complex TiO2 
and GdFeCo layer does not change (remains as it is given in the Table 1). Substituting some parts of TiO2 by 
GdFeCo ultrathin layers makes just minor changes of the optical properties of the MPC, but at the same time it 
ensures a strong localization of light in the layers with magneto-optical response at the ‘operating’ wavelengths 
that is determined by the parameters of the dielectric TiO2/SiO2 layers.

We address two types of the GdFeCo layers. The first one is a smooth layer with the thickness of 3 nm (the 
case is presented in Fig. 1). The second type is the patterned 9 nm-thick layer. The pattern has a form of the 1D 
subwavelength grating in the plane of the layers with a period of 90 nm. Actually, such patterning of the magnetic 
layer can be implemented along both axes in the plane of the structure layers. In our work we limited ourselves 
by one-dimensional patterning for the sake of the modelling simplicity. However, we don’t impose any demands 
of continuity to another plane axis. The thickness of GdFeCo in a patterned layer is comparable to the case of 
a smooth film: 30 nm-wide stripes of 9-nm thick GdFeCo alternating with 60 nm-wide stripes of TiO2 provide 
effectively the 3 nm thickness of GdFeCo material averaged over a period of the structure. We show that optical 
properties including the absorption distributions in a smooth and patterned structures of the same effective 
thickness are very close.

Additionally, we have investigated the tolerance of the proposed structure to the GdFeCo thickness variation 
and found that the same structure at the same wavelengths actually provides the selective light localization for 
1–6 nm thick GdFeCo layer (Supplementary S2).

Selective remagnetization of the GdFeCo layers in the chirped magnetophotonic 
crystal
If the MPC is illuminated by femtosecond pulses falling normally to the MPC layers then spatial distribution of 
the EM field in the structure depends on the input light frequency. For the addressed MPC structure, the spectral 
distributions of the averaged square of the electric field absolute value, <|E|2 > , in the TiO2 layers is given in Fig. 2. 
The spectra are given for both smooth 3 nm-thick layer of GdFeCo (Fig. 2a) and for the 9 nm-thick patterned 
layer (Fig. 2b) as well. For each of four layers one can choose the wavelength when the EM energy in that layer 
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exceeds significantly the energy in the other layers. Particularly, at the wavelengths of 644 nm, 686 nm, 832 nm, 
and 994 nm the light is mostly localized inside the first, second, third and fourth TiO2 layer of the proposed 
MPC, correspondingly. Both smooth and patterned GdFeCo layers provide the prevailing concentration of light 
in the same layer.

As it was mentioned above the femtosecond laser pulse propagating through GdFeCo layer performs ultrafast 
heating of the spin sublattices. The heating of a certain GdFeCo layer is determined by the energy of the laser 
pulse, i.e. |E|2, in that layer. The spatial distribution of |E|2 in the chirped MPC at the chosen operating wave-
lengths is given in Fig. 3. The value of |E|2 is given normalized to its maximum value at the certain wavelength. 
The spatial distributions of |E|2 as well as the spectral distribution in Fig. 2 have been numerically calculated by 
means of the rigorous coupled-wave analysis (RCWA)39,40. The choice of the method is due to the fact that it is 
suitable for the numerical analysis of both types of the GdFeCo layers addressed here, smooth and patterned 
layers.

The yellow areas in Fig. 3 correspond to TiO2 layers, the blue regions refer to SiO2 layers, and the red lines 
indicate the position of the 3 nm-thick GdFeCo layers. The positions of GdFeCo layers are chosen to coincide 
with the maximum value of |E|2 at each of four operating wavelengths, that provides the highest possible energy 
concentration inside the magnetic layer and its proper ultrafast heating as well.

Figure 1.   A scheme of the addressed chirped magnetophotonic crystal with thin GdFeCo layers. TiO2 
layers (yellow) alternate with SiO2 layers (blue). Grey areas indicate the GdFeCo layers introduced into 
TiO2. Depending on the wavelength of the input femtosecond pulse, the different GdFeCo layers experience 
remagnetization due to the heating. This process is illustrated by multi-colored rectangles. For example, if the 
structure is illuminated at wavelength �1 , then the energy absorbed in the GdFeCo-1 layer exceeds the threshold 
while it remains below the threshold for all other GdFeCo layers. As a result, only GdFeCo-1 layer is switched, 
while magnetization in all other layers remains untouched. The magnetization direction in GdFeCo layers 
is shown by small arrows. The dimensions and proportions are not respected and are chosen just for ease of 
perception (for the correct dimensions see Table 1).

Table 1.   The layer thicknesses of the addressed chirped magnetophotonic crystal.

Material

Pair 1 Pair 2 Pair 3 Pair 4

TiO2 SiO2 TiO2 SiO2 TiO2 SiO2 TiO2 SiO2

Thickness (nm) 48 270 61 292 75 317 83 330



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2239  | https://doi.org/10.1038/s41598-021-81887-0

www.nature.com/scientificreports/

The first GdFeCo layer is placed 19 nm in depth of the upper TiO2 layer and gets highest optical energy at 
λ = 644 nm (Fig. 3a). At that wavelength the EM field in the first GdFeCo layer 

(

|E|21
)

 exceeds the field in the other 
layers. In particular, the EM field in the second GdFeCo layer is |E|22 = 0.63 |E|21

 , and the EM field in the third and fourth 
GdFeCo layers does not exceed 10% of |E|21 . Therefore, operating at the wavelength of 644 nm one can guarantee 
that light is mostly localized in the first magnetic layer and the magnetization switching takes place only in this 
layer. As a result, the first GdFeCo layer becomes ‘turned on’ while the rest magnetic layers remain untouched.

On the other hand, the second GdFeCo layer is put 40 nm inside the second TiO2 layer which ensures maxi-
mum concentration of the optical energy in this layer at λ = 686 nm. The third and fourth layers of GdFeCo are 
buried inside the corresponding TiO2 layer 21 nm and 83 nm in depth, respectively.

Figure 2.   A spectral distribution of the mean |E|2 in TiO2 layers with (a) the smooth 3 nm-thick and (b) the 
patterned 9 nm-thick GdFeCo layers inside. Dashed lines indicate the operating wavelengths.

Figure 3.   The spatial distribution of the normalized |E|2 in the chirped MPC with the smooth GdFeCo layer 
at the ‘operating’ wavelengths of (a) 644 nm, (b) 686 nm, (c) 832 nm, (d) 994 nm. Red sections of the curve 
show the magnitude of the normalized |E|2 inside the addressed GdFeCo layer and nearby. The yellow areas 
correspond to TiO2 layers, the blue regions refer to SiO2 layers, and the red and black lines indicate the position 
of the 3 nm-thick GdFeCo layers. The red ones denote the position of the remagnetized layers, and the black 
ones refer to the GdFeCo layers with untouched magnetization.
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Similarly, the spatial distribution of the normalized field |E|2 in the layers of the chirped MPC structure has 
been calculated for the case of patterned GdFeCo layers (Fig. 4). One can see that the same operating wavelengths 
provide that the intensity of light inside the targeted GdFeCo patterned layer exceeds the intensity localized in 
all other GdFeCo patterned layer.

Tables 2 and 3 give the detailed information on the ratio of the field values in different magnetic layers at 
the operating wavelengths for two addressed configurations. Table 2 refers to the MPC with smooth 3 nm-thick 
GdFeCo layers, and Table 3 presents data on the MPC configuration with 9 nm-thick patterned GdFeCo layers.

The data in the Tables 2 and 3 is given in the relative units. It means that the mean EM field |E|2 in the selected 
layer for each of the operating wavelengths is taken as 1 and the mean EM field in all others layers is compared 
with the field in the selected layer. It allows to show clearly that both types of the proposed chirped MPC allow 
to obtain a necessary excess of the EM field in the chosen GdFeCo layer compared to other magnetic layers. That 
excess is not less than 30%. That dramatic difference of the EM field energy in different magnetic layers of the 
MPC makes it possible to provide rather different levels of heating in different GdFeCo layers. Consequently, 
the considered chirped MPC structure allows to record information into each of the layers independently by 
femtosecond pulses at one of four wavelengths.

Figure 4.   The spatial distribution of the normalized |E|2 in the chirped MPC with the patterned GdFeCo layer 
at the ‘operating’ wavelengths of (a) 644 nm, (b) 686 nm, (c) 832 nm, (d) 994 nm. Red sections of the curve 
show the magnitude of the normalized |E|2 inside the addressed GdFeCo layer and nearby. As in the Fig. 3 the 
yellow areas correspond to TiO2 layers, the blue regions refer to SiO2 layers, and the red and black lines indicate 
the position of the 9 nm-thick patterned GdFeCo layers. The red ones denote the position of the remagnetized 
layers, and the black ones refer to the GdFeCo layers with untouched magnetization.

Table 2.   The relative values of the maximum of |E|2 in the magnetic layers at the operating wavelengths in case 
of the smooth 3 nm-thick GdFeCo layer.

Wavelength
Max|E|2 in 1st GdFeCo 
layer

Max|E|2 in 2nd 
GdFeCo layer

Max|E|2 in 3d GdFeCo 
layer

Max|E|2 in 4th GdFeCo 
layer Total absorption (%)

λ = 0.644um 1 0.6286 0.0710 0.0866 75

λ = 0.686um 0.3519 1 0.2011 0.1812 52

λ = 0.832um 0.4040 0.5605 1 0.7235 43

λ = 0.994um 0.0982 0.0896 0.0824 1 9
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Magnetization probing of the chirped magnetophotonic crystal
Now we discuss a method to probe the magnetization state of the magnetic layers in the proposed chirped 
magnetophotonic structure. There are various complicated methods for depth-resolved magnetization probing, 
for instance, by means of X-rays41 etc. However, the method proposed here is based on the measurement of the 
Faraday effect32–44 at a single wavelength of laser diode and could be easily implemented in data reading devices. 
The chosen parameters of the structure provide not only the heating above the threshold in different layers at the 
different operating wavelengths, but also different Faraday rotation angles by the magnetic layers. This difference 
lies in a root of magnetization probing approach proposed earlier in Ref.45 for the two-layer structure, however 
its extension to the N-layered structure requires performance of the measurements at N different wavelengths 
that is not convenient. We show that by measuring the magnitude of the Faraday effect at a certain wavelength, 
it is possible to determine the magnetization of each of the layers of the chirped MPC. We consider the Faraday 
rotation that is a polarization rotation of a transmitted light, however, exactly the same approach can be imple-
mented to the polar Kerr effect measurements of the polarization rotation of the reflected light.

We determine the sensitivity of the observed total Faraday rotation to the magnetization of the j-th GdFeCo 
layer as follows

where �j is a Faraday rotation angle of the linearly polarized light coming through the chirped MPC with mag-
netized j-th GdFeCo layer, N is a total number of the GdFeCo layers in the chirped MPC (here N = 4). In the 
Fig. 5 the layer sensitivity Sj

(

j = 1, 4
)

 versus the probing light wavelength is shown.
The Faraday effect of the chirped MPC depends strongly on the index number of the magnetized layer that 

means that the layer contributions to the observed total Faraday rotation are completely different. This fact 
allows for probing the magnetization of all four magnetic layers of the structure by measurement of the Faraday 
effect at a certain wavelength if 2N magnetization states of the N-layered structure correspond to the 2N different 
Faraday rotation angles. To provide such conditions, the operating probe wavelength should satisfy the following 
conditions. Firstly, the rotation angle of the polarization plane is noticeably different for each of the magnetic 
layers. Secondly, no combination of sums of Faraday angles from different magnetized layers is equal to another 
Faraday angle or other combination of sums. In other words, the Faraday rotation from one or several magnet-
ized GdFeCo layers is different from the Faraday rotation provided by other magnetized layers of the chirped 
MPC. This method allows us to determine the magnetization state of each of the magnetic layers, that is, it will 
allow reading the information recorded in such 3D nanostructure.

This method could be understood using an example of toy model of the sensitivity ratios S1:S2:S3:S4 taken as 
1:2:4:8 (so that S1 = 1

15
, S2 =

2
15
, S3 =

4
15
, S4 =

8
18

 according to the normalization provided by the Eq. (1)) (see 
Table 4). Total Faraday rotation of the MPC is equal to � = �0(S1m1 + S2m2 + S3m3 + S4m4) , where mj = ±1 
denotes the magnetization direction of j-th layer, and �0 is the Faraday rotation angle corresponding to collinear 
magnetizations of the layers. Obviously, different 16 combinations of 〈m1m2m3m4〉 numbers correspond to 16 different val-
ues of �/�0 which are in the range of 1

15
(−15,−13,−11, . . . 11, 13, 15) . This is similar to the binary code of �

�0
 as 〈m1m2m3m4〉  (see Table 5).

Let us show how this method could be implemented in the considered MPC structure. The most convenient 
way, of course, is to operate at the wavelengths of the laser diodes. In this case there is no need in the wavelength-
resolved measurements, but one can probe the magnetization of the GdFeCo layers exploring the Faraday effect 
at a certain wavelength. For example, the Nd laser diodes with the output wavelength of 1.064um are widespread 
and available with various output powers. The analysis given below shows that the magnetization state can be 
defined uniquely from the value of the Faraday rotation angle measured at a fixed wavelength.

In the Table 4 the layer sensitivities Sj
(

j = 1, 4
)

 are given for three wavelengths corresponding to the output 
wavelength of the industrial laser diodes, 0.980um, 1.064um, and 1.083um. For a comparison, the values cor-
responding to the toy model in the example mentioned above are also provided.

In order to unambiguously probe the magnetization of a particular magnetic layer of the structure, it is neces-
sary to ensure that two conditions are met. First, the Faraday rotation experienced by the probing light is different 
in case of magnetization of different GdFeCo layers. Second, no combination of the sums of values of Faraday 
rotations in different layers gives a magnitude of Faraday rotation of the plane of polarization in other layers. 
Analyzing the data given in Table 4 one can make sure that the first condition is met, since for any wavelength 
the sensitivity to magnetization of different layers is noticeably different. The validity of the second condition is 
discussed in Supplementary S3.

(1)
Sj =

∣

∣�j

∣

∣

N
∑

k=1

|�k|

Table 3.   The relative values of the maximum of |E|2 in the magnetic layers at the operating wavelengths in the 
case of the patterned 9 nm-thick GdFeCo layer.

Wavelength
Max|E|2 in 1st 
GdFeCo layer

Max|E|2 in 2nd 
GdFeCo layer

Max|E|2 in 3rd 
GdFeCo layer

Max|E|2 in 4th 
GdFeCo layer Total absorption (%)

λ = 0.644um 1 0.6530 0.0894 0.0916 74

λ = 0.686um 0.4686 1 0.2286 0.1831 62

λ = 0.832um 0.3274 0.3572 1 0.6932 48

λ = 0.994um 0.1642 0.1596 0.1497 1 12
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From analysis of the Table 5 one can made sure that the layer sensitivity values have a difference between 
themselves by at least 2% at the wavelengths of 0.980um, 1.064um, and 1.083um. This makes it possible to check 
that all of the possible 16 magnetization states provide the different Faraday rotation angles. Consequently, the 
proposed method of magnetization probing gives unambiguous results in the designed chirped MPC structure 
at any of these frequencies.

Conclusions
To sum up, a design of the MPC structure providing a selective magnetization switching in the different magnetic 
layers at different frequencies is proposed. The MPC contains the thin layers of GdFeCo as magnetic counterparts. 
By illuminating the MPC by femtosecond laser pulses at the certain frequencies we create the conditions for 
the highest concentration of the electromagnetic field in the necessary layer of the structure while in the other 

Figure 5.   A layer sensitivity of the observed total Faraday rotation to the magnetization of a certain GdFeCo 
layer of the chirped MPC.

Table 4.   The layer sensitivity at three certain wavelengths, 0.98um, 1.064um, and 1.083um and in a toy model.

Wavelength S1 S2 S3 S4

Toy model 0.0667 0.1333 0.2667 0.5333

λ = 0.980 μm 0.2344 0.1673 0.0593 0.5390

λ = 1.064 μm 0.4888 0.1750 0.0332 0.3030

λ = 1.083 μm 0.5512 0.1947 0.0405 0.2136

Table 5.   The total Faraday rotation observed in the MPC with different magnetization states schematically 
shown by arrows at three wavelengths of 0.98um, 1.064um, and 1.083um and for a toy model.

λ μm

↑ 
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↓

↑ 
↑ 
↓
↓

↓ 
↑ 
↓
↓

↑ 
↓ 
↓
↓

↓ 
↓ 
↓
↓

Toy model − 1.00 − 0.87 − 0.73 − 0.6 − 0.47 − 0.33 − 0.2 − 0.07 0.07 0.2 0.33 0.47 0.6 0.73 0.87 1.00

0.980 − 1.00 − 0.53 − 0.66 − 0.20 − 0.88 − 0.41 − 0.55 − 0.07 0.07 0.55 0.41 0.88 0.20 0.66 0.53 1.00

1.064 − 1.00 − 0.02 − 0.65 0.32 − 0.93 0.04 − 0.58 0.39 − 0.39 0.58 − 0.04 0.93 − 0.32 0.65 0.02 1.00

1.083 − 1.00 0.10 − 0.61 0.49 − 0.92 0.18 − 0.53 0.57 − 0.57 0.53 − 0.18 0.92 − 0.49 0.61 − 0.1 1.00
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GdFeCo layers the intensity is at least 1.5 times smaller. Thus, one can achieve selective all-optical magnetization 
reversal in a single layer of the multilayered stack determined by the laser frequency without any impact on the 
other layers. The magnetic layers of the MPC are separated from each other by the non-magnetic layers, and 
can be patterned, so, they can serve as the unit cells for information storage. We also provide a mechanism of 
single-wavelength reading of the information stored in such a multilayered stack. The approach was demonstrated 
for the 4 layers of SiO2, TiO2 and GdFeCo for the sake of simplicity, however it could be extended to the larger 
number of layers by the proper design of the chirped photonic crystal.
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of the selective sensing of the magnetization state of the photonic crystal with multiple magnetic layers was sup-
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