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Abstract

Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological
functions. Studies have shown that circRNAs are involved in a variety of biological processes and play an important role in
the development of various complex diseases, so the identification of circRNA-disease associations would contribute to the
diagnosis and treatment of diseases. In this review, we summarize the discovery, classifications and functions of circRNAs
and introduce four important diseases associated with circRNAs. Then, we list some significant and publicly accessible
databases containing comprehensive annotation resources of circRNAs and experimentally validated circRNA-disease
associations. Next, we introduce some state-of-the-art computational models for predicting novel circRNA-disease
associations and divide them into two categories, namely network algorithm-based and machine learning-based models.
Subsequently, several evaluation methods of prediction performance of these computational models are summarized.
Finally, we analyze the advantages and disadvantages of different types of computational models and provide some
suggestions to promote the development of circRNA-disease association identification from the perspective of the
construction of new computational models and the accumulation of circRNA-related data.
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CircRNA
Circular RNAs (circRNAs) are a class of single-stranded,
covalently closed RNA molecules, which are produced by
backsplicing from pre-mRNAs [1]. During backsplicing, a
downstream splice-acceptor site is covalently connected to
an upstream splice-donor site [1]. The first circRNA molecules,
viroids, were identified more than 40 years ago [2, 3]. Soon after,
Hsu et al. [4] discovered circRNAs in the cytoplasmic fractions of
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eukaryotic cell lines through electron microscopy. Furthermore,
circRNAs were identified to be produced from self-splicing
introns of pre-ribosomal RNA in unicellular eukaryotes [5]. Later,
researcher discovered that a small part of circRNAs stem from
protein-coding genes in archaea [6]. However, circRNAs were
initially treated as ‘junk’ yielded by splicing errors [7].

As the development of high-throughput RNA sequencing
technology and new bioinformatics algorithms, more and more
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circRNAs were discovered in eukaryotes including protists, fungi,
plants, insects and mammals [8–13]. CircRNAs are a relatively
large family of RNAs and massive circRNAs have been identified,
but studies on the classification of circRNAs and the mechanism
of loop formation have just begun. CircRNAs mainly include
exonic circRNAs (ecircRNAs), exon-intron circRNAs (EIciRNAs)
and circular intronic RNAs (ciRNAs) [14]. Among them, ecircRNAs
are produced by the exons in the back-splicing process of pre-
mRNA, which are abundant in the cytoplasm [15]. The EIciRNAs
are widely present in the nucleus, which are formed by the
combined action of exons and introns during the back-splicing
process [16]. In addition, ciRNAs are formed by introns and are
mainly localized in the nucleus [17]. Besides, circRNAs could
be generated from more than 10% of expressed gene in the
investigated cells and tissues [18, 19]. It can be learned that the
expression of circRNAs is broad. Usually, the expression level
of circRNA is low [20, 21], but some circRNAs are experimen-
tally verified to be high expressed in specific type of cells or
tissues [15, 22]. Moreover, thousands of circRNAs are abundant
in the mammalian brain and some of them are upregulated dur-
ing neurogenesis [23]. These studies demonstrate that circRNAs
should not be‘junk’ and they may have specifically biological
functions.

CircRNA function

CircRNAs are usually expressed in only a few cell types, exhibit-
ing significant specificity during tissue and developmental
stages. However, some other circRNAs show cross-species
conservation [18]. In addition, by comparison with linear exons,
the exon sequence of circRNA appears to be more conserved at
the third codon position, while the third codon is meaningless at
the protein level [21]. These indicate that in addition to encoding
proteins, circRNA has other functions.

CircRNAs as microRNA sponges

In 2013, Hansen et al. [24] found that hsa_circRNA_105055 has
more than 70 miR-7 binding sites. Further functional studies
have showed that ciRS-7 strongly restrains the activity of
miR-7, which in turn leads to an increase in the target level
of miR-7. They also demonstrated that hsa_circRNA_105055
and miR-7 have overlapping co-expression in mouse brain
tissue [24]. In addition, the sex-determining region Y (Sry)9 of
hsa_circRNA_105055 has 16 microRNA (miRNA)-138 binding sites
[24]. Moreover, researchers have demonstrated that circ-HIPK3,
circ-ITCH and mm9-circ-012559 can act as miRNA sponges [25–
27]. The above findings indicate that circRNA is very common as
miRNA sponge.

CircRNAs regulate the expression of parental genes

Different types of circRNAs have different ways of regulating
their parental genes. Specifically, ciRNAs promote transcription
of genes by binding to Pol II. Zhang et al. [17] found that knocking
out ciRNA can suppress the expression of its parental gene. For
the specific ciRNA ci-ankrd52, it aggregates into the transcrip-
tional site and acts as a positive regulator of Pol II transcription.
For EIciRNA, it binds to U1 snRNP to form EIciRNA-U1 snRNP
complexes, which further binds to Pol II, thereby promoting
transcription of the parental gene [17]. Besides, Li et al. [16]
found that EIciRNAs can regulate gene expression in the nucleus,
which mainly enhances the expression of the parental gene
in cis and affects transcriptional regulation through the inter-
action between U1 snRNA and EIciRNA. In addition, ecircRNA,
containing miRNA response elements, can bind to miRNA and

indirectly regulate the expression of its parent mRNA. Li et al. [28]
found that hsa_circRNA_001141 binds to miR-7 and miR-214 in
lung cancer cells and enhances the expression of ITCH, thereby
inhibiting the activity of Wnt/β-catenin.

Competition with pre-mRNA splicing

The pre-mRNA can undergo typical linear splicing to produce
mRNA during processing, while nonlinear splicing generates cir-
cRNA. Recent studies have found that increasing the efficiency
of linear splicing can significantly reduce the abundance of cir-
cRNA [29]. When the length of the introns flanking the circRNA
is longer, the efficiency of typical linear splicing is reduced, while
the efficiency of cyclization is increased [30]. The above findings
indicate that circRNA can compete with the pre-mRNA during
transcription.

CircRNA-disease associations

Previous functional analysis of circRNAs has demonstrated that
a circRNA, hsa_circRNA_105055, contains more than 70 miRNA
target sites and can act as a miRNA sponge [24]. Besides, some
studies have indicated that circRNAs can regulate protein func-
tions [16, 31]. As biological functions of circRNAs were discov-
ered, circRNAs are receiving the attention of researchers. In the
field of human health, more and more studies have shown that
circRNAs have close associations with human complex diseases
[32–34]. In the following, we will introduce several common
cancers and their associated circRNAs.

Gastric cancer

Gastric cancer, one of the top five cancers in the world [35].
In 2019, 27 510 patients were newly diagnosed with gastric
cancer and 11 140 patients died because of gastric cancer in
the USA [36]. Therefore, it is necessary to discover and explore
pathogenesis for the early diagnosis, prevention and treatment
of gastric cancer. So far, increasing experiments have shown
that circRNAs play an irreplaceable role in the development
of gastric cancer [37]. Li et al. [38] found that there were 343
differentially expressed (DE) circRNAs by comparing the gas-
tric cancer patients’ plasma and plasma of healthy control,
and then, the two techniques of reverse-transcription real-time
polymerase chain reaction (RT-PCR) [39] and RT-droplet digital
PCR (RT-ddPCR) [40] were used to determine the expression
level of circRNAs. More concretely, patients with low expression
levels of hsa_circ_0001017 or hsa_circ_0061276 in plasma have
a shorter overall survival than patients with higher expres-
sion levels [38]. In addition, circRNA-0026 regulates RNA tran-
scription, RNA metabolism and gene expression in gastric can-
cer [41]. Moreover, biological studies have found that knocking
out hsa_circ_0047905, hsa_circ_0138960 and has-circRNA7690–
15 in gastric cancer cells down-regulates the expression of the
parental gene [42]. Inhibition of the expression of these three
circRNAs can inhibit the proliferation and invasion of gastric
cancer cells [42].

Breast cancer

Breast cancer is one of the major cancer types among women
worldwide, and 12% of women are diagnosed with breast cancer
during their lifetime in the USA [43]. Common symptoms of
breast cancer include: a lump in the breast, a change in breast
shape and red or scaly skin. CircRNAs are closely related to the
formation and development of breast cancer, and recent studies
have found that the expression of some circRNAs can be used to
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prevent breast cancer [44–46]. For example, hsa_circ_0001982 in
breast cancer tissues inhibits breast cancer cell proliferation and
induces apoptosis by targeting miR-143 [44]. In addition, knock-
ing out hsa_circRNA_005239 can inhibit the proliferation and
promote the apoptosis in triple negative breast cancer [46]. There
are also some circRNAs that can be used as potential biomarkers
for breast cancer detection. For example, Yin et al. [45] found that
the expression level of hsa_circ_0001785 in plasma of breast can-
cer patients is significantly different from that in preoperative,
postoperative and healthy individuals, which demonstrates that
hsa_circ_0001785 can act as a diagnostic biomarker for breast
cancer.

Lung cancer

Lung cancer is characterized by uncontrolled growth of cells
in the lung tissue. It is reported that 85% of lung cancer is
caused by long-term smoking [47]. Other factors that cause lung
cancer include genetic factors, secondhand smoke or air pollu-
tion [48, 49]. The circRNA of hsa_circRNA_001141 in lung cancer
tissues has been shown to suppress the development of lung
cancer by enhancing the expression of its parental gene ITCH
[28], while hsa_circ_0013958 in lung cancer cells can promote
the proliferation of lung cancer cells and inhibit apoptosis [50].
Besides, Yao et al. [51] found that circRNA_100876 is abnormally
expressed in non-small cell lung cancer. In addition, the higher
the expression level of circRNA_100876, the lower the survival
rate [51]. Therefore, circRNA_100876 can be used as biomarker
for early detection and screening of lung cancer.

Pancreatic cancer

Pancreatic cancer is usually caused by uncontrolled growth,
division and spread of cells in the pancreas [52]. Symptoms
usually manifest as digestive problems including: weight loss,
indigestion, back pain, nausea and so on [53]. Studies have found
that smoking or lack of exercise and long-term heavy drinking
may lead to chronic pancreatitis [54]. Guo et al. [55] demonstrated
the dysregulation of circRNA expression in pancreatic cancer
tissues using qRT-PCR. In addition, they predicted that multiple
circRNAs have complementary sequences to miR-15a / miR-506
and different miRNA binding sites in the seed region [55]. Fur-
thermore, Chen et al. [56] found that circRNA_100782 regulates
the proliferation of BxPC3 pancreatic cancer cells by interacting
with miR-124.

There is increasing evidence that circRNAs are related with
the development and invasion of complex diseases, although
most of the action mechanisms are still unknown [57]. Besides,
circRNAs could be novel biomarkers for human cancers [58].
Therefore, identifying associations between circRNAs and dis-
eases would facilitate the diagnosis, prevention and prognosis
of human complex diseases.

Databases
Data collection about circRNAs, diseases and circRNA-disease
associations is an important premise when researchers iden-
tify novel circRNA-disease associations by bioinformatics meth-
ods. In addition, the systematic collection and management
of the information about circRNAs and circRNA-disease rela-
tionships is important for further inspection of the underlying
molecular mechanism of circRNAs. In this section, we introduce
some important databases, from which researchers could obtain
circRNA related data more conveniently. These databases can
be divided into two categories. Specifically, the first type of

databases record circRNA-disease associations (see Table 1). The
second type of databases provide comprehensive annotation
resources for circRNAs (see Table 2). More detailed introduction
of these databases can be seen from Supplementary Materials
available online at https://academic.oup.com/bib.

Computational models
As the development of high-throughput sequencing technology
and bioinformatics analysis methods, more and more circRNAs
are identified. However, the function and mechanism of circR-
NAs are unclear in most cases. In addition, researchers discover
that the occurrence and development of various diseases includ-
ing cancer are associated with circRNAs. Identifying and study-
ing circRNA-disease associations is important for understanding
the function and molecular mechanism of circRNAs. In addi-
tion, circRNA-disease association identification is meaningful
for the early detection, early diagnosis and effective treatment
of diseases. However, it is time-consuming and laborious to dis-
cover novel circRNA-disease relationships directly by biological
experiments. Computational models could effectively predict
potential circRNA-disease associations for further experimental
verification, which would save many resources.

During recent years, scientists have successively proposed
some computational models for predicting potential circRNA-
disease associations based on distinct algorithms. These com-
putational models can be roughly divided into two categories,
namely network algorithm-based models and machine learning-
based models (see Table 3). In this section, we mainly intro-
duce the general steps of construction of different models and
the main advantages or limitations of these models. The main
symbols utilized throughout this sections are listed in Table 4.

Network algorithm-based models

In network algorithm-based models, circRNA similarity network,
disease similarity network and circRNA-disease association net-
work are usually utilized to construct a heterogeneous network.
Then, the corresponding algorithm is used to predict potential
relationships based on the heterogeneous network.

PWCDA

Lei et al. [77] developed the model of Path Weighed method for
predicting CircRNA-Disease Associations (PWCDA) (see Figure 1).
The same model has been used for potential miRNA-disease
association prediction before [78]. They first construct a het-
erogeneous network, which is composed of circRNA similarity
network, disease similarity network and circRNA-disease asso-
ciation network. Then, PWCDA searches all the paths between
circRNA ci and disease dj with the length less than η by depth-
first search (DFS) algorithm. The path set can be described
as {p1, p2, . . . , pk, . . . , pmi,j

}, where the variable mi,j denotes the
number of searched paths between circRNA ci and disease dj.
Finally, the predicted score between ci and dj can be calcu-
lated by accumulating all contributing scores (CS) of paths in
{p1, p2, . . . , pk, . . . , pmi,j

}. The CS(pk) of the path pk = {ek1 , ek2 , . . . , ekn }
is defined as follows:

CS
(
pk

) =
(

n∏
t=1

Wekt

)a×exp(len(pk))

(1)

https://academic.oup.com/bib
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Table 1. Databases recording circRNA-disease associations

Database Number of circRNAs Number of diseases Number of associations URL

Circ2Traits [59] 1951 105 Unknown http://gyanxet-beta.com/circdb/
Circ2Disease [60] 237 54 273 http://bioinformatics.zju.edu.cn/Ci

rc2Disease/index.html
CircR2Disease [61] 661 100 725 http://bioinfo.snnu.edu.cn/CircR2

Disease/
CircRNADisease [33] 330 48 354 http://cgga.org.cn:9091/circRNADi

sease/
Circad [62] 1338 720 1338 http://clingen.igib.res.in/circad/

Table 2. Databases providing annotation resources for circRNAs

Database Number of circRNAs Short description URL

circBase [63] 92 375 Provides information of circRNAs
including the genomic position, gene
symbols, evidence for the occurrence

http://www.circbase.org/

CircNet [64] 34 000 Provides the information of circRNA
expression profiles, circRNA-miRNA
sponge regulatory network,
circRNA-gene-miRNA regulatory network

http://circnet.mbc.nctu.edu.tw/

deepBase v2.0 [65] 14 867 Provides comprehensive expression and
evolution profiles of circRNAs.

http://biocenter.sysu.edu.cn/dee
pBase/

circRNADb [66] 32 914 Provides the information of protein-coding
potential of circRNAs

http://reprod.njmu.edu.cn/circrna
db

TSCD [67] 302 853 Provides the genomic location and
conservation of tissue specific circRNAs

http://gb.whu.edu.cn/TSCD

CSCD [68] 272 152 Records the function and regulation of
cancer-associated circRNAs

http://gb.whu.edu.cn/CSCD

CIRCpedia v2 [69] 262 782 Records the information of location,
strand, isoform, expression value,
sequencing type and conservation of
circRNAs

https://www.picb.ac.cn/rnomics/ci
rcpedia/

exoRBase [70] 58 330 Provides circRNA expression profile,
expression rank, gene symbol and spliced
length

http://www.exorbase.org/

CircFunBase [71] 7059 Provides the information of circRNA
function, GO annotations and
circRNA-associated miRNAs

http://bis.zju.edu.cn/CircFunBase/

TRCirc [72] 92 375 Contains more than 765 000 transcription
factor-circRNA relationships

http://www.licpathway.net/TRCirc

circbank [73] 140 790 Develops a new naming system based on
the host genes of circRNAs

http://www.circbank.cn/

CircRiC [74] 92 589 Provides the modules of integrative
analysis, drug response, biogenesis, and
expression landscape

https://hanlab.uth.edu/cRic/

MiOncoCirc [75] 227 056 Records circRNAs from metastases,
primary tumors, and very rare cancer types

https://nguyenjoshvo.github.io/

VirusCircBase [76] 11 924 Provides the information of the location,
genes involved in the viral circRNA, the
abundance, the detection method

http://www.computationalbiology.
cn/ViruscircBase/home.html

where Wekt
is the weight of the edge ekt in the path pk. Besides,

α is a constraint factor and len(pk) denotes the length of pk. The
decaying function α × exp(len(pk)) is used to further reduce the
CS of long paths. Then, the final association score between ci and
dj is defined as follows:

AS
(
ci, dj

) =
mi,j∑
k=1

CS
(
pk

)
(2)

In PCWDA, only paths within three steps are used to decrease the
noisy information. However, the decaying function in PCWDA is
relatively simple.

BRWSP

Lei et al. [79] proposed a computational model (see Figure 2) of
Biased Random Walk to Search Paths on a multiple heteroge-
neous network (BRWSP) to predict circRNA-disease associations.
Firstly, they construct the multi-layer heterogeneous network by

http://gyanxet-beta.com/circdb/
http://bioinformatics.zju.edu.cn/Circ2Disease/index.html
http://bioinformatics.zju.edu.cn/Circ2Disease/index.html
http://bioinfo.snnu.edu.cn/CircR2Disease/
http://bioinfo.snnu.edu.cn/CircR2Disease/
http://cgga.org.cn:9091/circRNADisease/
http://cgga.org.cn:9091/circRNADisease/
http://clingen.igib.res.in/circad/
http://www.circbase.org/
http://circnet.mbc.nctu.edu.tw/
http://biocenter.sysu. edu.cn/deepBase/
http://biocenter.sysu. edu.cn/deepBase/
http://reprod.njmu.edu.cn/circrnadb
http://reprod.njmu.edu.cn/circrnadb
http://gb.whu.edu.cn/TSCD
http://gb.whu.edu.cn/CSCD
https://www.picb.ac.cn/rnomics/circpedia/
https://www.picb.ac.cn/rnomics/circpedia/
http://www.exorbase.org/
http://bis.zju.edu.cn/CircFunBase/
http://www.licpathway. net/TRCirc
http://www.circbank.cn/
https://hanlab.uth.edu/cRic/
https://nguyenjoshvo.github.io/
http://www.computational biology.cn/ViruscircBase/home.html
http://www.computational biology.cn/ViruscircBase/home.html
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Table 3. List of different types of circRNA-disease prediction models

Model name Core algorithm Model type Source code

PCWCDA DFS algorithm Network algorithm-based model Unavailable
BRWSP Biased random walk algorithm Network algorithm-based model Unavailable
KATZHCDA KATZ Network algorithm-based model Unavailable
KATZCPDA KATZ Network algorithm-based model Unavailable
IBNPKATZ Bipartite network projection

algorithm and KATZ
Network algorithm-based model Unavailable

NCPCDA Network consistency projection Network algorithm-based model Unavailable
DWNCPCDA DeepWalk and network

consistency projection
Network algorithm-based model Unavailable

LLCDC LLC and label propagation
algorithm

Network algorithm-based model Unavailable

CD-LNLP Label propagation algorithm Network algorithm-based model Unavailable
DWNN-RLS Regularized least squares of

kronecker product kernel
The first type of machine learning-based
model

Unavailable

RWRLCDA Random work and logistic
regression

The first type of machine learning-based
model

Unavailable

MRLDC Manifold regularization-learning The first type of machine learning-based
model

Unavailable

iCircDA-MF Matrix factorization The first type of machine learning-based
model

Unavailable

GMCDA Graph-based multi-label learning The first type of machine learning-based
model

Unavailable

iCDA-CMG Collective Matrix completion The first type of machine learning-based
model

Unavailable

NMFIBAC Non-negative matrix factorization The first type of machine learning-based
model

Unavailable

SIMCCDA Speedup inductive matrix
completion

The first type of machine learning-based
model

https://github.co
m/bioinformati
csAHU/SIMCCDA

PreCDA PersonalRank algorithm The first type of machine learning-based
model

https://github.co
m/wythit/PreCDA

ICFCDA Collaboration filtering The first type of machine learning-based
model

Unavailable

RWRKNN Random walk with restart and
KNN

The second type of machine
learning-based model

Unavailable

iCDA-CGR SVM The second type of machine
learning-based model

Unavailable

GBDTCDA GBDT The second type of machine
learning-based model

Unavailable

DFPUCDA DF The second type of machine
learning-based model

https://github.co
m/xzenglab/Dee
pDCR

CNNCDA CNN The second type of machine
learning-based model

Unavailable

GCNCDA Graph Convolutional Network The second type of machine
learning-based model

Unavailable

AE-DNN Autoencoder and DNN The second type of machine
learning-based model

Unavailable

AE-RF Autoencoder and RF The second type of machine
learning-based model

https://github.co
m/Deepthi-
K523/AE-RF

utilizing the information of circRNA similarity matrix CS, disease
similarity matrix DS, gene similarity matrix GS, circRNA-disease
association matrix CD, circRNA-gene interaction matrix CG as
well as gene-disease association matrix GD. The heterogeneous
network is represented as follows:

A∗ =
⎛
⎜⎝ CS CG CD

CGT GS GD
CDT GDT DS

⎞
⎟⎠ (3)

To avoid the biases caused by larger values in A∗, a normalized
multi-layer heterogeneous network denoted by NMH =
D−(1/2)A∗D−(1/2) is further established, where D is the degree
matrix of A∗.

Secondly, a biased random walk algorithm is employed to
search paths between circRNAs and diseases in the heteroge-
neous network. Specifically, the random walker starts from the
investigated circRNA node u and first randomly moves to one
neighbor of u. Then, the walker continues to walk to the next
node. Here, ck is employed to denote the node accessed by the

https://github.com/bioinformaticsAHU /SIMCCDA
https://github.com/bioinformaticsAHU /SIMCCDA
https://github.com/bioinformaticsAHU /SIMCCDA
https://github.com/wythit/PreCDA
https://github.com/wythit/PreCDA
https://github.com/xzenglab/DeepDCR
https://github.com/xzenglab/DeepDCR
https://github.com/xzenglab/DeepDCR
https://github.com/Deepthi-K523 /AE-RF
https://github.com/Deepthi-K523 /AE-RF
https://github.com/Deepthi-K523 /AE-RF
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Table 4. The main symbols utilized throughout the Computational models section

Symbol Definition and description

A∗ Adjacency matrix of heterogeneous network
Wcg Weight matrix of circRNA graph
Wdg Weight matrix of disease graph
Lc Laplacian matrix of circRNA graph
Ld Laplacian matrix of disease graph
CS CircRNA Similarity matrix
CSS CircRNA Semantic Similarity matrix
CFS CircRNA Functional Similarity matrix
CES CircRNA Expression Similarity matrix
CTS CircRNA Topological Similarity matrix
RCS Reconstructed CircRNA Similarity matrix
DS Disease Similarity matrix
DSS Disease Semantic Similarity matrix
DTS Disease Topological Similarity matrix
RDS Reconstructed Disease Similarity matrix
KC GIP Kernel similarity matrix of CircRNA
KD GIP Kernel similarity matrix of Disease
GS Gene Similarity matrix
CD CircRNA-Disease association matrix
CG CircRNA-Gene interaction matrix
GD Gene-Disease association matrix
AS The predicted circRNA-disease Association Score matrix
ci CircRNA i
dj Disease j
Nc The number of circRNAs
Nd The number of diseases
N(ci) The neighbors of ci

N(dj) The neighbors of dj

Figure 1. The workflow of PWCDA to infer potential circRNA-disease associations based on DFS algorithm to search paths on a heterogeneous network.
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Figure 2. The flowchart of BRWSP to predict circRNA-disease associations based on biased random walk to search paths on a multiple heterogeneous network.

walker on its kth move. The strategy of selecting the next node
is described as follows:

P (ck+1 = x|ck = v, ck−1 = t) =⎧⎪⎨
⎪⎩

�(t, v, x) ∗ NMH (v, x)∑
i∈Nei(v) NMH

(
v, i

) , if x ∈ Nei(v) and x /∈ {c0, c1, . . . , ck}
0, otherwise

(4)

�(t, v, x) =
{

q, if x ∈ Nei(v) and x ∈ Nei(t)
1 − q, otherwise

(5)

where P(ck+1 = x|ck = v, ck−1 = t) represents the transition
probability from the current node v to the next node x when the
last visited node is the node t. Besides, Nei(v) and Nei(t) denote
the neighbors of the current node v and the last visited node t in
the heterogeneous network, respectively. For the parameter q, if
q is assigned a larger value, the biased random walk algorithm
tends to select the nodes near the investigated node. Otherwise,
the biased random walk algorithm tends to select the nodes
away from the investigated node. It can be seen from Eq. (4) that
the next accessed node will be chosen from the neighbors of
the current nodes based on their probability. The random walker
keeps moving until the investigated disease node is accessed.
pk = {nk1 , nk2 , . . . nki

, . . . , nkL+1 } is used to denote one path between
circRNA nk1 and disease nkL+1 , where nki

represents the node
(circRNA, disease or gene) of pk and L is the length of pk. To search
more paths between investigated circRNA and disease, the above
process will be repeated. Only paths with lengths less than L will
be left. The set {p1, p2, . . . , pmi,j

} is utilized to denote the searched
paths, where mi,j is the number of paths between circRNA ci and
disease dj.

Finally, the association score AS(ci, dj) between circRNA ci and
disease dj can be computed as follows:

AS
(
ci, dj

) =
mi,j∑
k=1

⎛
⎝len(pk)∏

t=1

Wnkt
,nkt+1

⎞
⎠

a×exp(len(pk))

(6)

where Wnkt
,nkt+1

denotes the weight of the edge connecting the
node nkt and nkt+1 . In addition, α is a decay factor and len(pk) is
the length of pk.

KATZHCDA

Fan et al. [80] established a calculation model (see Figure 3) of
KATZ-based Human CircRNA-Disease Association prediction
(KATZHCDA). KATZ measure is a network-based method, which
computes similarity of nodes in a heterogeneous network
to solve the problem of association prediction [81, 22]. In
KATZHCDA, the authors first compute the integrated similarity
for circRNAs and diseases, which are denoted by the matrices
of CS and DS, respectively. Besides, the association matrix CD
is employed to denote the information of circRNA-disease
associations, and CD(i, j) is equal to 1 if circRNA ci is associated
with disease dj, otherwise 0. Secondly, circRNA similarity
network, disease similarity network as well as circRNA-disease
association network are combined to construct a heterogeneous
network whose adjacency matrix can be described as follows:

A∗ =
[

CS CD
CDT DS

]
(7)

The number of walks between circRNA nodes and disease nodes,
as well as the length of walks are two key similarity metrics in
the heterogeneous network. Because the contribution of longer
walks is lower than that of shorter walks, the parameter γ

is utilized to control the contribution of walks with different
lengths. The final association score between ci and dj can be
defined as follows:

AS
(
ci, dj

) =
K∑

L=1

γ LA∗L (
i, j

)
(8)

where the variable L denotes the length of walk and the vari-
able K is the user specified parameter. Equation (8) can be
transformed into the matrix form

AS =
∑
L≥1

γ LA∗L = (I − γ A∗)−1 − I (9)

where AS can be used to predict potential circRNA-disease
associations. As walks with longer length may be insignificant,
the variable K is normally set as 2, 3 and 4, respectively. One
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Figure 3. The flow diagram of KATZHCDA to predict human circRNA-disease associations based on KATZ algorithm.

advantage of KATZHCDA lies that it can predict circRNA-disease
association scores for all diseases simultaneously. Besides,
KATZHCDA can predict associated circRNAs for new diseases
without any known associations.

KATZCPDA

Deng et al. [83] developed the model of KATZCPDA based on the
KATZ method and the information of circRNA, protein and dis-
ease. Because the number of circRNA-disease associations val-
idated by experiments is insufficient, they first obtain inferred
circRNA-disease relationships by utilizing protein-circRNA asso-
ciation network and protein-disease association network based
on the principle of gilt-by-association, that is biological objects
are more likely to be associated if they have the same or related
behavior [84]. Then, they construct a heterogeneous network by
integrating the circRNA similarity network denoted by matrix
CS, the disease similarity network denoted by matrix DS and
the circRNA-disease association network denoted by CD, which
combines the experimentally confirmed circRNA-disease asso-
ciations and inferred circRNA-disease associations. The hetero-
geneous network can be represented as follows:

A∗ =
[

CS CD
CDT DS

]
(10)

Next, the final circRNA-disease association matrix is obtained
in the similar way as KATZHCDA. KATZCPDA introduces the

bridge of protein to obtain inferred circRNA-disease relation-
ships, which increases the number of associations and the quan-
tity of heterogeneous network.

IBNPKATZ

Zhao et al. [85] raised a novel circRNA-disease association pre-
diction model (see Figure 4) by Integrating Bipartite Network
Projection algorithm and KATZ measure (IBNPKATZ). Firstly, in
the bipartite network projection algorithm, resource scores of
circRNAs are used to be the association scores for a given disease.
Specifically, a hierarchical clustering algorithm is utilized to
construct circRNAs’ bias ratings which denote the association
degree between diseases and their associated circRNAs from
circRNAs’ perspective. For disease di, the bias rating of its related
circRNA cj can be computed as follows:

r
(
di, cj

) = ncr
(
cj

)
T

(
di

) (11)

where ncr(cj) is the number of circRNAs in the cluster cr including
cj and T(di) denotes the number of circRNAs related with di.
For di, the initial resource score of its related circRNA cj can be
calculated by normalizing the bias rating of cj as follows:

r̂
(
di, cj

) = r
(
di, ci

)
T

(
di

)
∑Nc

k=1 r
(
di, ck

) (12)
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Figure 4. The workflow of IBNPKATZ to infer circRNA-disease associations based on bipartite network projection algorithm and KATZ algorithm.

where Nc is the number of circRNAs. Then, circRNAs associated
with di allocate their resource score to their associated diseases
as follows:

Rcd
(
di, cj

) = r̂
(
di, cj

)
∑Nd

k=1 r̂
(
dk, cj

) × r̂
(
di, cj

)
(13)

where Nd is the number of diseases. Next, the diseases distribute
their received resource score to their associated circRNAs as
follows:

Rdc
(
di, cj

) = r
(
di, cj

)
∑Nc

k=1 r
(
di, ck

) ×
∑Nc

k=1
Rcd

(
di, ck

)
(14)

The final resource score of cricRNA cj for given disease di can
be computed as follows:

Rfin
(
cj|di

) =
Nd∑

k=1

Rdc
(
dk, mj

)
(15)

Similarly, the final resource score Rfin(di|cj) of disease di for
circRNA cj could be obtained. Finally, the predicted circRNA-
disease association score based on the bipartite network projec-
tion algorithm is defined as

SBNP
(
di, cj

) = Rfin
(
cj|dj

) + Rfin
(
di|cj

)
2

(16)

Secondly, the authors utilize KATZ measure on the het-
erogeneous network, constructed by using information of
integrated circRNA similarity, integrated disease similarity

and known circRNA-disease relationships, to predict circRNA-
disease association score SKATZ(di, cj) in the similar way as
KATZHCDA. Finally, the circRNA-disease association scores of
SBNP(di, cj) and SKATZ(di, cj) are integrated as the final association
score

AS
(
di, cj

) = SBNP
(
di, cj

) + SKATZ
(
di, cj

)
2

(17)

Combination of two different prediction algorithms con-
tributes to the ideal predictive performance of IBNPKATA.

NCPCDA

Li et al. [86] raised a calculation model (see Figure 5) of Network
Consistency Projection for inferring CircRNA-Disease Associa-
tion (NCPCDA). In NCPCDA, the binary matrix CD denotes the
circRNA-disease associations. Besides, CS and DS represent inte-
grated similarity matrices of circRNAs and diseases, respectively.
The circRNA similarity and disease similarity are defined as
follow:

CS
(
ci, cj

) =
{

KC
(
ci, cj

)
if CFS

(
ci, cj

) = 0
CFS

(
ci, cj

)
otherwise

(18)

DS
(
di, dj

) =
{

KD
(
di, dj

)
if DSS

(
di, dj

) = 0
DSS

(
di, dj

)
otherwise

(19)

where KC and KD denote the Gaussian interaction profile (GIP)
kernel similarity matrices of circRNAs and diseases, respectively.
Besides, the matrices CFS and DSS are circRNA functional sim-
ilarity matrix and disease semantic similarity matrix, respec-
tively. NCPCDA is made up of circRNA space projection CSP and
disease space projection DSP, which are defined as

CSP
(
i, j

) = CS
(
i, :

) × CD
(
:, j

)∥∥CD
(
:, j

)∥∥
2

(20)



10 Wang et al.

Figure 5. The flowchart of NCPCDA for circRNA-disease association prediction based on the circRNA space projection and disease space projection.

DSP
(
i, j

) = CD
(
i, :

) × DS
(
:, j

)∥∥CD
(
i, :

)∥∥
2

(21)

where CS(i, :) and CD(i, :) are the ith rows of CS and CD, respec-
tively. Besides, DS(:, j) and CD(:, j) are the jth columns of DS
and CD, respectively. In the end, the final associations score
AS(ci, dj) between circRNA ci and disease dj can be calculated by
integrating and normalizing CSP and DSP as follows:

AS
(
ci, dj

) = CSP
(
i, j

) + DSP
(
i, j

)∥∥CS
(
i, :

)∥∥
2 + ∥∥DS(:, j)

∥∥
2

(22)

No parameters appear in NCPCDA, which reduces the com-
plexity of prediction process. However, the similarity of circRNA
is calculated only based on known circRNA-disease associations,
which leads to the failure of NCPCDA for predicting associated
diseases for cirRNAs without any known related diseases.

DWNCPCDA

Li et al. [87] developed the DeepWalk and Network Consistency
Projection-based algorithm to predict CircRNA-Disease Associa-
tion (DWNCPCDA). In most of circRNA-disease association pre-
diction models, the circRNA similarity and disease similarity are
usually calculated by multiple biological information of circRNAs
and diseases. In this study, the authors construct circRNA topo-
logical similarity matrix CTS and disease topological similarity
matrix DTS only based on circRNA-disease association network.
More formally, the DeepWalk algorithm [88] is utilized to learn
circRNA representations stored by the matrix CR and disease

representations stored by the matrix DR based on the circRNA-
disease association network. DeepWalk obtains local informa-
tion of input graph by truncated random walk and utilizes them
to learn latent representations of vertices in the input graph [88].
Then, similarity between circRNAs or diseases can be computed
as follows:

CTS
(
ci, cj

) =

d∑
k=1

CR
(
ci, k

) × CR
(
cj, k

)
√

d∑
k=1

CR
(
ci, k

)2

√
d∑

k=1
CR

(
cj, k

)2

(23)

DTS
(
di, dj

) =

d∑
k=1

DR
(
di, k

) × DR
(
dj, k

)
√

d∑
k=1

DR
(
di, k

)2

√
d∑

k=1
DR

(
dj, k

)2

(24)

where the variable d is the dimension of representations of
circRNAs and diseases.

After obtaining CTS and DTS, network consistency projection
method, which have been used in the prediction model of
NCPCDA, is adopt to calculate circRNA-disease association
matrix AS. Although similarity of circRNA and disease is
computed only based on the circRNA-disease association
network, DWNCPCDA still achieves good predictive accuracy,
which demonstrates the excellent ability of DeepWalk in
learning latent representations of circRNAs and diseases.

LLCDC

Ge et al. [89] proposed a computational model of LLCDC (see
Figure 6) to predict potential circRNA-disease associations
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Figure 6. The framework of LLCDC to predict potential circRNA-disease associations based on LLC and label propagation algorithm.

based on locality-constrained linear coding (LLC) and label
propagation algorithm. Firstly, they calculate circRNA semantic
similarity matrix CSS based on GO terms of circRNA-related
genes. Besides, disease semantic matrix DSS is calculated based
on MeSH descriptors of diseases. Secondly, they also calculate
cosine similarity matrices of circRNAs and diseases based on
circRNA-disease association information and further utilized
LLC to obtain reconstructed circRNA similarity matrix RCS and
reconstructed disease similarity matrix RDS based on above two
cosine similarity matrices. Thirdly, label propagation algorithm
is employed to obtain the initial predicted circRNA-disease
association matrix AS1 based on circRNA semantic similarity
network by the following iterative equation:

AS1 (t + 1) = θ × CSS × AS1(t) + (1 − θ) CD (25)

where AS1(0) = CD and θ are used to control the utilization
of similarity and association information. AS1(t) denotes the
association matrix obtained in the tth iteration. The iterative
equation will be conducted until AS1 converges. In a similar way,
label propagation algorithm is carried out based on DSS, RCS
and RDS to obtain association matrices AS2, AS3 and AS4, which
are combined as the finally predicted association matrix AS as
follows:

AS = 1
4

(
AS1 + AS2 + AS3T + AS4T)

(26)

CD-LNLP

Zhang et al. [90] put forward a computational method to infer
CircRNA-Disease associations based on a Linear Neighborhood
similarity measure and Label Propagation algorithm (CD-LNLP).
The information of associations between Nc circRNAs and Nd

diseases is recorded in the binary matrix CD. In CD-LNLP, linear
neighborhood similarity (LNS) measure is utilized to construct
circRNA similarity matrix CS and disease similarity matrix DS.
In LNS, the ith row vector of CD is considered as the feature
profile of circRNA ci. The basic idea of LNS is that each feature
profile of circRNA can be reconstructed by the linear combina-
tion of feature profiles of neighbors of the circRNA, which can be
formulated as follows:

min
CS

1
2 ‖CD − (C ∗ CS) CD‖2

F + μ

2

Nc∑
i=1

‖(C ∗ CS)i.‖2
1

s.t. (C ∗ CS) e = e, CS ≥ 0
(27)

where ∗ is the Hadamard product. The matrix C with the size of
Nc × Nc is an indicator matrix, whose element C(i, j) is equal to
1 if circRNA cj is one of the K nearest neighbors (by Euclidean
distance) of circRNA ci; otherwise, C(i, j) = 0. Besides, (C ∗ CS)i.

is the ith row of C ∗ CS. In addition, e is a Nc × 1 vector and all
elements in e are 1. The first item of above formula is the loss
function of LNS. The second item is used to achieve row sparsity
of C∗CS. The constraint condition is used to ensure that the sum
of similarity values between any circRNA and its neighbors is
equal to 1. By utilizing Lagrange multiplier method to solve the
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optimization problem, they obtain the update rule for CS

CS
(
i, j

) =

⎧⎪⎨
⎪⎩

CS
(
i, j

) (
CDCDT+eeT

)
i,j(

(C∗CS)CDCDT+μ(C∗CS)eeT
)

ij

i �= j

0 i = j
(28)

In a similar way, disease similarity matrix DS can be obtained.
Next, a label process [91] is employed to predicted potential
circRNA-disease relationships, which can be formulated as fol-
lows:

AScicRNA = (1 − α) (I − αCS)
−1CD (29)

ASdisease = (1 − α) (I − αDS)
−1CDT (30)

where the Nc ×Nd matrix AScircRNA and the Nd ×Nc matrix ASdisease

are the predicted association matrix based on circRNA similarity
and disease similarity, respectively. Finally, the integrated asso-
ciation scores between circRNAs and diseases can be computed
as follows:

AS = ρAScircRNA + (1 − ρ) AST
disease (31)

where the parameter ρ is utilized to regulate the weight of
AScircRNA and ASdisease. The application of LNS measure con-
tributes to the effectiveness of CD-LNLP. However, the similarity
of diseases and circRNAs is calculated only based on circRNA-
disease association network.

Machine learning-based models

Machine learning algorithms have been successfully used in
many fields of association prediction [92–101]. In the last few
years, researchers utilized different machine learning methods
to construct prediction models for the identification of potential
circRNA-disease associations. These machine learning-based
models can be further roughly divided into two types. The
first type of models can obtain the predictive association
matrix by directly solving specific optimization problem, such
as regularized least squares, manifold regularization learn-
ing, matrix decomposition and inductive matrix completion
algorithm-based models. In addition, the second type of models
train classifier to infer circRNA-disease association, such as
logistic regression-, K-Nearest Neighbor (KNN)-, Support Vector
Machines (SVM)-, Random Forest (RF)-, Gradient Boosting
Decision Tree (GBDT)-, Deep Forest (DF)-, Convolutional Neural
Network (CNN)-, Graph Neural Network (GNN)- and Deep
Neural Network (DNN)-based models. When feature vector of
a sample is input into classifier, the classifier can output an
association score for the sample. Furthermore, some prediction
models combine different algorithms to improve the prediction
accuracy.

The first type of machine learning-based models

DWNN-RLS

Yan et al. [102] developed a computational model, called as
DWNN-RLS (see Figure 7) to infer potential circRNA-disease
associations based on regularized least squares of kronecker
product kernel (RLS-kron). In DWNN-RLS, the matrix CD is
utilized to denote the information of known circRNA-disease
relationships. In addition, the disease similarity matrix DS is
obtained by integrating disease GIP kernel similarity matrix KD
and disease semantic similarity matrix DSS. In this study, the
authors first utilize DWNN (decreasing weight KNN) method to

calculate the initial association score between new circRNA ci

and disease dj as follows:

ASinitial
(
ci, dj

) =

∑
cl∈N(ci)

KC (ci, cl) × CD
(
cl, dj

)
∑

cl∈N(ci)
KC (ci, cl)

(32)

where the new circRNA ci means that ci has no known associated
disease. In addition, N(ci) is the set of all neighbors of ci. Similarly,
the initial association score between new disease dj and circRNA
ci can be calculated as follows:

ASinitial
(
ci, dj

) =
∑

dl∈N(dj)
KD

(
di, dl

) × CD
(
ci, dl

)
∑

dl∈N(dj)
KD

(
di, dl

) (33)

where N(dj) represents the set of all neighbors of di. Then, they
employ the RLS-kron method to infer new associations between
circRNAs and diseases as follows:

vec
(
AST

)
= K(K + λI)−1vec

(
CDT

)
(34)

where the kernel K = KC⊗DS is the Kronecker product of KC and
DS. As KC and DS are real symmetric matrices, the two matrices
can be decomposed as follows:

KC = ∨c ∧c ∨T
c (35)

DS = ∨d ∧d ∨T
d (36)

where the columns of the matrices of ∨c and ∨d are the eigenvec-
tors of KC and DS, respectively. Besides, ∧c and ∧d are diagonal
matrices whose diagonal elements are the eigenvalues of KC
and DS, respectively. Thus, the finally predicted circRNA-disease
association matrix can be computed as follows:

AS = ∨cZT ∨T
d (37)

vec(Z) = (∧c ⊗ ∧d) (∧c ⊗ ∧d + λI)−1vec
(
∨T

dCDT ∨c

)
(38)

RWLRCDA

Ding et al. [103] built a computational model based on Random
Walk and Logistic Regression to infer CircRNA-Disease Associ-
ations (RWLRCDA). Specifically, they first calculate the circRNA
similarity matrix CS and construct circRNA similarity network
where vertex ci and cj are connected by an edge with the weight
value of CS(ci, cj). Subsequently, aiming to obtain the global rela-
tionship information of each circRNA, the authors treat each
circRNA as seed node in turn and utilize the random walk with
restart algorithm on circRNA similarity network to obtain related
circRNAs for the seed node with corresponding probability. Next,
they extract three features, namely pos, neg and label, for each
pair of circRNA ci and disease dj. Specifically, Ck(i) denotes the
set of top-k circRNAs related with ci. The pos value is the sum
of probability of circRNAs which are in Ck(i) and related with dj.
Similarly, The neg value is the sum of probability of circRNAs
which are in Ck(i) and not related with dj. The label value is 1 or
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Figure 7. The workflow of DWNN-RLS to infer potential circRNA-disease associations based on regularized least squares of kronecker product kernel.

0. Finally, logistic regression is utilized to predict the association
score for circRNA-disease pair as follows:

AS(x) = exp (w × x)

1 + exp (w × x)
(39)

where x is the feature vector consisting of three features (pos, neg
and label) of the circRNA-disease pair and w is the weight vector
which can be trained by maximizing the posterior association
probability of circRNA-disease training samples as follows:

w = arg max

(
m∏

i=1

p
(
yi|xi

))
(40)

p
(
yi = 1|xi

) = exp (w × xi)

1 + exp (w × xi)
(41)

p
(
yi = 0|xi

) = 1
1 + exp (w × xi)

(42)

where m is the number of training samples. Besides, xi and
yi are the feature vector and label of the ith circRNA-disease
sample. RWLRCDA can predict associations for new diseases or
new circRNAs. However, RWLRCDA utilizes too little information
of diseases.

MRLDC

Xiao et al. [103] developed a manifold regularization-learning
framework, called MRLDC, for predicting human disease-
associated circRNAs (see Figure 8). They construct a circRNA-
disease bilayer heterogeneous network by connecting circRNA-
circRNA, disease-disease and circRNA-disease through edges
weighted by the matrices CS, DS and CD, respectively. Besides,
they construct circRNA graph and disease graph to inspect the
geometrical structure of circRNA data and disease data. The
weight matrix Wcg of circRNA graph is formulated as follows:

Wcg
(
i, j

) = Wc
(
i, j

) · CS
(
i, j

)
(43)

Wc
(
i, j

) =
{

1, if ci ∈ Ck and cj ∈ Ck

0, otherwise
(44)

where Ck represents the kth cluster obtained by using Clus-
terONE [105] based on circRNA similarity network. Besides, D′

c

is a diagonal matrix, where (D′
c)ii = ∑

jWcg(i, j). The matrix Lc =
D′

c − Wcg denotes the graph Laplacian matrix of circRNA graph.
Similarly, the graph Laplacian matrix Ld of disease graph can be
obtained. Then, to obtain the low-rank feature matrices of circR-
NAs and diseases, namely P and Q, which can be used for predict-
ing circRNA-disease associations, they formulate the weighted
dual-manifold regularization learning-based calculation model
of MRLDC as follows:

min
P,Q≥0

f (P, Q) = ‖I ∗ (CD − PQ)‖2
F + λ1Tr

(
PTLcP

)
+ λ2Tr

(
QLdQT

) + λ3

∥∥∥PPT − CS
∥∥∥2

F

+ λ4

∥∥QTQ − DS
∥∥2

F + λ5

(
‖P‖2

F + ‖Q‖2
F

) (45)

where P and Q are the low-rank feature matrices of circRNAs
and diseases in the bilayer heterogeneous network, which can
be obtained by solving above formula. Besides, I is an indicator
weighted matrix where I(i, j) is equal to 1 if circRNA ci is associ-
ated with disease dj, otherwise I(i, j) = 0. In addition, λ1, λ2, λ3, λ4

and λ5 are regulation parameters. The second item and the third
item in above formula are the manifold regularization terms of
circRNA and disease space, respectively. The fourth item (fifth
item) is utilized to achieve the purpose that the similarity of
circRNAs (diseases) should approximate the inner product of
their feature vectors. The last item is to ensure the smoothness
of P and Q. Next, the Lagrange multiplier method is employed
to optimize above objective function and the following updating
rules can be obtained:

Pik ← Pik

(Ii· ∗ CDi·)
(
QT

)
·k + λ1

(
WcgP

)
ik + 0.5λ3

(
CSTP

)
ik

(Ii· ∗ (Pi·Q))
(
QT

)
·k + λ1

(
D′

cP
)

ik + U(
U = 0.5λ3

(
PPTP

)
ik

+ λ5Pik

) (46)
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Figure 8. The flowchart of MRLDC for predicting human disease-associated circRNAs based on a manifold regularization-learning framework.

Qkj ← Qkj

(
PT

)
k·

(
I·j ∗ CD·j

) + λ2
(
QWdg

)
kj

+ 0.5λ4

(
QDST

)
kj(

PT
)

k·
(
I·j ∗ (

PQ ·j
)) + λ2

(
QD′

d

)
kj + V(

V = 0.5λ4

(
QQTQ

)
kj

+ λ5Pjk

) (47)

Finally, the predicted circRNA-disease association matrix
AS = PQ. The parameters in MRLDC are hard to select. Besides,
MRLDC is inappropriate for new disease without any observed
associations.

iCircDA-MF

Wei et al. [106] proposed a calculation method (see Figure 9)
to identify CircRNA-Disease Associations based on Matrix
Factorization (iCircDA-MF). In the model of iCircDA-MF, the
authors first construct circRNA similarity matrix CS by inte-
grating circRNA GIP kernel similarity and circRNA-related gene-
based similarity, and disease similarity matrix DS by integrating
disease GIP kernel similarity and disease semantic similarity.
Besides, the collected circRNA-disease associations are denoted
by the matrix CD. However, many false negative associations
are assigned as zero in CD. To reduce the noise, the authors
reformulate the matrix CD to CDd and CDc from the vertical
direction and the horizontal direction by utilizing the interaction
profiles of top-k neighbors of investigated disease and circRNA
as follows:

CDd
(
:, di

) = 1
Wdi

k∑
j=1

DS
(
di, dj

) × CD
(
:, dj

)
(48)

CDc (cm, :) = 1
Wcm

k∑
n=1

CS (cm, cn) × CD (cn, :) (49)

where CDd(:, di) and CD(:, dj) are the ith column of CDd and the
jth column of CD. Besides, Wdi

= ∑
1≤j≤kDS(di, dj). In addition,

CDc(cm, ; ) and CD(cn, :) denote the mth row of CDc and the nth row
of CD. Moreover, Wcm = ∑

1≤n≤kCS(cm, cn). The final reformulated
circRNA-disease association matrix is as follows:

CD′ = max (CD, (CDc + CDd) /2) (50)

Next, matrix factorization method is utilized to predict
potential circRNA-disease associations, which can be formulated
as follows:

minP≥0,Q≥0

∥∥∥CD′ − PQT
∥∥∥2

F
+ α

∥∥∥PQT
∥∥∥2

F
+ β

(
Tr

(
PTLcP

) + Tr
(
QTLdQ

))
(51)

where P and Q represent two low-dimension feature matrices of
circRNAs and diseases, respectively. In addition, Lc = D′

c −CS and
Ld = D′

d − DS are two graph Laplacian matrices of circRNA and
disease space. Here, D′

c and D′
d are two diagonal matrices, where

D′
c(i, i) = ∑

jCS(i, j) and D′
d(i, i) = ∑

jDS(i, j). The first item in Eq. (51)
is the loss function of matrix factorization method. The second
item is used to avoid overfitting and ensure the smoothness of
circRNA and disease space. Besides, the last item can restrict the
geometrical structure of target space and reduce noise [107, 108].
In addition, α and β are regulation parameters.

Finally, the predicted circRNA-disease association matrix AS
can be calculated as AS = PQT after solving Eq. (51). This work
can effectively deal with noise data.

GMCDA

Xiao et al. [109] designed a Graph-based Multi-label learning
for CircRNA-Disease Association prediction (GMCDA). The inte-
grated similarity matrices of CS and DS are obtained by fusing
directed acyclic graphs of diseases and circRNA-disease asso-
ciations. The authors aim to generate an expected association
matrix AS to restore the missing values in the original circRNA-
disease association matrix CD. To achieve the aim, the multi-
label learning-based framework is proposed and formulated by
an objective function with three constraints as follows:

min
AS≥0

‖I ∗ (AS − CD)‖2
F

+ λ

(∥∥∥AS × CS × AST − CS
∥∥∥2

F
+

∥∥∥AST × DS × AS − DS
∥∥∥2

F

)

+ γ
(
Tr

(
AST × Lc × AS

)
+ Tr

(
AS × Ld × AST

))
+ μ‖AS‖2

1,2

(52)
where I is an indicator matrix (I=CD). Besides, the graph Lapla-
cian matrices of Lc and Ld can be computed by the same way
used in the previous model of MRLDC. In addition, λ, γ and μ are
constants used to control the contributions of different terms.



Circular RNAs and complex diseases 15

Figure 9. The flowchart of iCircDA-MF to identify circRNA-disease associations based on matrix factorization.

The first item in above formula is the loss function of GMCDA.
The second item means that the expected similarity values of
circRNA pairs and disease pairs should be approximate to the
original similarities. The third item is used to capture geomet-
rical structures of data. The last item is utilized to increase the
sparsity of AS and reduce noisy. The local optimal solution of this
objective function can be obtained by an iterative method.

iCDA-CMG

Xiao et al. [110] proposed the algorithm of identifying CircRNA-
Disease Associations by using Collective Matrix completion with
Graph learning (iCDA-CMG). First, the circRNA similarity matrix
CS is obtained based on circRNA-disease association informa-
tion. Besides, the disease similarity matrix DS fuses the data of
directed acyclic graphs of diseases and circRNA-disease associa-
tions. Then, the DWNN method, in the same way as that used in
the model of iCircDA-MF, is adopt to reconstruct circRNA-disease
association matrix CD to the matrix CD′.

Next, the similarity matrices of CS and DS are reconstructed
to the sparse similarity matrices of CS′ and DS′ by utilizing
the structure information of circRNA graph (circRNA similarity
network) and disease graph (disease similarity network). Sub-
sequently, the objective function of iCDA-CGM is formulated to
obtain the latent circRNA feature matrix P ∈ RK×Nc and the latent
disease feature matrix Q ∈ RK×Nd as follows:

min
P≥0,Q≥0

∥∥CD′ − PTQ
∥∥2

F + λc

Nc∑
i,j=1

∥∥P
(
:, i

) − P(:, j)
∥∥2

FCS′
i,j

+ λd

Nd∑
i,j=1

∥∥Q
(
:, i

) − Q(:, j)
∥∥2

FDS′
i,j

+ δc

Nc∑
i=1

∥∥P
(
:, i

)∥∥2
1 + δd

∑Nd
i=1

∥∥Q(:, i)
∥∥2

1

(53)

where the parameters of λc, λd, δc and δd are utilized to control
the contributions of different regulation terms. The first item in
above formula is the loss function of collective matrix comple-
tion. The second item (third item) is employed to achieve the

purpose that the latent feature vectors of similar circRNAs (dis-
eases) should be similar. The last two items are used to ensure
the sparsity of P and Q. Finally, an alternating method with
Lagrange multipliers is used to solve the objective function, and
the predicted circRNA-disease association matrix is AS = PTQ.

NMFIBAC

Wang et al. [111] developed a Non-negative Matrix Factorization
algorithm (NMF)-based model to Identify Breast cancer Associ-
ated CircRNAs (NMFIBAC), which integrated multiple biological
data including mRNA, miRNA, circRNA and pathway-related
data. Firstly, they search DE circRNAs and miRNAs from RNA-seq
data involving disease samples and normal samples. Then, they
construct circRNA-mRNA association matrix X1 based on DE
circRNAs and co-expressed mRNAs, miRNA-mRNA association
matrix X2 based on DE miRNAs and miRNA target genes, as
well as pathway-mRNA association matrix X3. Subsequently,
NMF algorithm is utilized to establish K circRNA modules by the
following objective function F:

F (W, H) =
3∑

I=1

‖XI − WHI‖ (54)

where W is a matrix with the size of M×K (M denotes the number
of mRNAs) representing the basis vector. In addition, the matrix
HI(I ∈ (1, 2, 3)) denotes the coefficient vector. After solving the
objective function, the matrix W and HI(I ∈ (1, 2, 3)) are utilized
to determine the members (including miRNAs, mRNAs, circRNAs
and pathways) of the K circRNA modules based on a previous
method [112]. Finally, in each module, circRNAs connecting with
more than four members are considered to be associated with
breast cancer.

SIMCCDA

Li et al. [113] raised a model (see Figure 10) of Speedup Inductive
Matrix Completion for CircRNA-Disease Association prediction
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Figure 10. The framework of SIMCCDA for circRNA-disease association prediction based on inductive matrix completion.

(SIMCCDA). In SIMCCDA, CS and DS are calculated by combin-
ing circRNA sequence similarity, circRNA GIP kernel similarity,
disease semantic similarity and disease GIP kernel similarity.
Besides, principal component analysis is utilized to extract pri-
mary feature vectors of the matrices CS and DS. The extracted
feature vectors are used to construct the circRNA feature matrix
P and disease feature matrix Q. The objective function of induc-
tive matrix completion can be defined as

min
Z∈RNc×Nd

‖Z‖∗ + 1
2

∥∥∥R�

(
PZQT − CD

)∥∥∥2

F
(55)

where Z is the target matrix to complete CD and ‖ · ‖∗ denotes
the nuclear norm. Besides, PZQT is the final circRNA-disease
association matrix. In addition, � denotes known association
sets. The first item in Eq. (55) is the constraint of low rank. The
second item is employed to cater to the hypothesis that the row
(or column) vectors in CD are located in the subspace spanned by
the column vectors in Q (or P). The solution of Z can be obtained
by using an accelerated proximal gradient algorithm [114].

PreCDA

Wang et al. [115] developed a calculation model named PreCDA
to infer underling circRNA-disease associations (see Figure 11).
They compute circRNA expression similarity matrix CES by
Spearman correlation coefficient based on circRNA expression
profile in 78 human cell types or tissues. Besides, the circRNA
functional similarity matrix CFS is calculated based on known
circRNA-disease associations. Then, they construct a circRNA

association network, where the weight between circRNA ci and
cj is defined as

CicWeight
(
i, j

) =
{(

CFS
(
i, j

) + CES
(
i, j

))
/2 if CES

(
i, j

)
> 0

CFS
(
i, j

)
otherwise

(56)
To infer potential disease-associated circRNAs, the informa-

tion of circRNA-disease associations is introduced into the cir-
cRNA association network. Based on the new network composed
of circRNAs and diseases, PersonalRank algorithm is employed
to identify disease-related circRNAs. Specifically, PR(i) is used
to denote the possibility value that node i is accessed. In the
beginning, PR(i) is equal to 1 if the node i is the target disease
node t, otherwise 0. Then, the target node t randomly moves
to neighbor nodes. In each move, the probability of returning to
node t is (1 − α). The following formula is defined to update PR(i)
after each move:

PR(i) = (1 − α) ri + α
∑

j∈in(i)

PR(j)
| out(j) | (57)

ri =
{

1 if i = t
0 if i �= t

(58)

where in(i) and out(j) are the in-degree of node i and out-degree
of node j, respectively; d is the transfer probability; t denotes
the target node. After enough moves, the possibility value that
node i is accessed will be stable. Finally, the probability value
that a circRNA node is accessed can be used as the association
score between the target disease t and this circRNA. The main
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Figure 11. The workflow of PreCDA to infer underling circRNA-disease associations based on PersonalRank algorithm.

limitation of PreCDA lies in the invalid application for disease
without any known related circRNAs.

ICFCDA

Lei et al. [116] raised an improved collaboration filtering rec-
ommendation system-based model named ICFCDA to predict
circRNA-disease associations (see Figure 12). They construct cir-
cRNA similarity matrix CS by integrating circRNA functional
annotation semantic similarity, circRNA sequence similarity as
well as circRNA GIP kernel similarity. Besides, the disease sim-
ilarity matrix DS can be obtained by integrating disease func-
tional similarity, disease semantic similarity and disease GIP
kernel similarity. To calculate recommendation score between
circRNA ci and disease dj, the top k similar neighbors N(ci) of ci

and the top k similar neighbors N(dj) of disease dj are selected
according to similarity matrices of circRNA and disease. Then,
circRNA-based recommendation score between ci and dj can be
computed based on the matrices of CD and CS as follows:

CRS
(
i, j

) = 1
k

⎛
⎝ ∑

cn∈N(ci)

CD
(
n, j

) × CS(n, i)

⎞
⎠ (59)

Similarly, disease-based recommendation score between ci

and dj is defined as follows:

DRS
(
i, j

) = 1
k

⎛
⎝ ∑

dn∈N(dj)

CD
(
i, n

) × DS(n, j)

⎞
⎠ (60)

Finally, the two recommendation scores are integrated as the
predicted association score between ci and dj as follows:

AS
(
i, j

) = λDRS
(
i, j

) + (1 − λ) CRS
(
i, j

)
(61)

where the parameter λ is a balance factor.

The second type of machine learning-based models

RWRKNN

Lei et al. [117] put forward a method named Random Walk
with Restart and KNNs (RWRKNN) (see Figure 13) to predict
novel circRNA-disease associations. Firstly, they construct dis-
ease similarity matrix DS by integrating disease semantic sim-
ilarity and GIP kernel similarity, and circRNA similarity matrix
CS by integrating circRNA functional similarity and GIP kernel
similarity. The matrices of DS and CS are considered to be the fea-
ture matrices of disease and circRNA. Secondly, the matrices of
DA and CA are utilized to represent disease-disease association
network and circRNA-circRNA association network, respectively.
These two matrices can be defined as follows:

DA
(
i, j

) =
{

1 if DS
(
i, j

) ≥ α

0 otherwise
(62)

CA
(
i, j

) =
{

1 if CS
(
i, j

) ≥ β

0 otherwise
(63)

where α and β are different threshold values.
Thirdly, the affinity scores between a disease (circRNA) node

and all disease (circRNA) nodes can be calculated by utilizing
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Figure 12. The workflow of ICFCDA to predict circRNA-disease associations based on improved collaboration filtering recommendation system.

Figure 13. The workflow of RWRKNN to predict novel circRNA-disease associations based on random walk with restart and KNN.

RWR algorithm on the disease-disease (circRNA-circRNA) asso-
ciation network. The matrices of Fc and Fd denote the affinity
scores for circRNA and disease, respectively. Next, the weighted
feature matrices of circRNA and disease, namely WCS and WDS,
are defined as follows:

WCS = CS · Fc (64)

WDS = DS · Fd (65)

The feature vectors of circRNA-disease pairs can be obtained
by splicing the row vector of WCS and WDS. Finally, KNN regres-
sion model is adopted to predict potential circRNA-disease asso-
ciations.
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iCDA-CGR

Zheng et al. [118] proposed the method of identification of
CircRNA-Disease Associations based on Chaos Game Represen-
tation (iCDA-CGP). The matrix of DS is constructed by integrating
disease semantic similarity and GIP kernel similarity, while the
matrix CS is constructed by integrating circRNA-related gene-
based similarity, circRNA sequence-based similarity and circRNA
GIP kernel similarity. The model of iCDA-CGP can be roughly
divided into three steps. First of all, they construct training
sample set including the same number of positive and negative
samples. The positive samples are gathered from benchmark
database of circRNA-disease associations, while the negative
samples are selected from unlabeled circRNA-disease pairs.
Secondly, the descriptor of each circRNA-disease pair in the
training sample set can be formed based on the matrices of CS
and DS

F
(
di, cj

) = (
DS

(
i, :

)
, CS

(
j, :

))
(66)

where F(di, cj) denotes the descriptor of the pair of di and cj.
Besides, DS(i, :) and CS(j, :) are the ith row of DS and the jth row
of CS. Finally, based on SVM, the descriptors of training samples
are utilized to train prediction model which is used to infer novel
circRNA-disease associations. The model of iCDA-CGP has one
main limitation, that is the negative samples used in the model
are not reliable.

GBDTCDA

Lei et al. [119] developed a prediction model of GBDT with
multiple biological data to predict CircRNA-Disease Association
(GBDTCDA) (see Figure 14). Specifically, they compute circRNA
sequence similarity, circRNA functional annotation semantic
similarity as well as circRNA expression profile similarity, and
combine them into the matrix CD by a similarity network fusion
algorithm [120]. In addition, they integrate disease semantic and
functional similarity as the matrix DS by endowing different
weights for the two types of similarity. Secondly, four types
of features of each circRNA-disease pair are extracted from
the data of collected circRNA-disease associations, integrated
similarity of circRNAs and diseases as well as circRNA nucleic
acid sequence. The feature vector of the pair of circRNA ci and
disease dj can be denoted as follows:

F
(
ci, dj

) = [
F1

(
ci, dj

)
, F2

(
ci, dj

)
, F3

(
ci, dj

)
, F4

(
ci, dj

)]
(67)

where Fi represents the ith type of features. Finally, they utilize
GBDT regression to train the training samples and obtain predic-
tive model for potential circRNA-disease association identifica-
tion. In GBDTCDA, the authors make full use of multiple biolog-
ical data and extract various kind of features, which facilitates
the reliable performance of GBDTCDA.

DFPUCDA

Zeng et al. [121] raised a computational model of DF combined
with Positive-Unlabeled learning based CircRNA-Disease Asso-
ciation prediction (DFPUCDA). In the first step of DFPUCDA, the
authors construct a heterogeneous biological network, which
contains a disease similarity network, a miRNA functional sim-
ilarity network, a circRNA co-expression network, a miRNA-
circRNA interaction network and a miRNA-disease association
network. Then, they extract 24 meta-path-based features to rep-
resent circRNA-disease samples by PathCount and RandomWalk

measures [122, 123]. Next, a positive-unlabeled learning algo-
rithm is exploited to select reliable negative samples from unla-
beled samples. Subsequently, DF algorithm is employed to train
a classifier with collected positive samples and reliable neg-
ative samples. Finally, they utilize the classifier to infer posi-
tive circRNA-disease samples. It is difficult to obtain negative
circRNA-disease samples and the number of positive samples
is far less than that of unlabeled samples. In DFPUCDA, the
positive-unlabeled algorithm can make full use of the infor-
mation of unlabeled samples and solve the problem of data
imbalance to some extent.

CNNCDA

Wang et al. [124] put forward a CNN-based method to pre-
dict CircRNA-Disease Associations (CNNCDA). Firstly, they con-
struct the matrix DS through merging disease semantic simi-
larity and disease GIP kernel similarity. Besides, the matrix CS
is constructed based on circRNA GIP kernel similarity. Secondly,
the authors define the circRNA-disease fusion descriptor F(ci, dj)
between circRNA ci and disease dj as follows:

F
(
ci, dj

) = [
CS

(
i, :

)
, DS

(
j, :

)]
(68)

where CS(i, :) and DS(j, :) denote the ith row and jth row of CS and
DS, respectively.

Next, CNN, composed of input layer, convolution layer, sub-
sampling layer, full connection layer and the output layer, is
utilized to extract hidden deep features from circRNA-disease
fusion descriptor. Finally, the extreme learning machine algo-
rithm [125, 126] is used to train prediction model based on
positive circRNA-disease samples and negative samples. How-
ever, the circRNA similarity is computed only based on known
circRNA-disease associations, which would reduce the predic-
tion performance.

GCNCDA

Wang et al. [127] further proposed a Graph Convolutional
Network-based algorithm to infer CircRNA-Disease Associations
(GCNCDA) whose flow diagram is shown in Figure 15. Firstly, the
circRNA similarity matrix CS is constructed based on circRNA
GIP kernel similarity, and the disease similarity matrix DS is
constructed based on disease GIP kernel similarity and disease
semantic similarity. Secondly, each circRNA-disease pair can
be denoted by a feature descriptor which can be obtained in
the same way as that in CNNCDA (i.e. Eq. (68)). Then, the Fast
learning with Graph Convolutional Networks (FastGCN) [128]
is utilized to further extract high-level features from original
feature descriptors to construct new descriptors. Compared with
GCN, FastGCN can make the training process more efficient.
Next, the Forest by Penalizing Attributes (Forest PA) algorithm
[129] is used to train classifier. Forest PA generates the training
data set for trees by bootstrap sampling. The decision trees
are built by using an improved CART algorithm [130]. The only
difference between original CART algorithm and the improved
CART algorithm is that the merit values is employed to instead
of classification capacities (e.g. Gini Index) to select splitting
attributes. Finally, the Forest PA classifier can be used to predict
potential circRNA-disease associations.
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Figure 14. The workflow of GBDTCDA to predict potential circRNA-disease associations based on GBDT algorithm.

Figure 15. The flow diagram of GCNMDA to predict potential circRNA-disease associations based on Graph Convolutional Network.

AE-DNN

Deepthi et al. [131] devised an ensemble method to predict
circRNA-disease associations based on AutoEncoder and DNN
(AE-DNN). First, the circRNA similarity matrix is constructed by
integrating circRNA sequence similarity and circRNA GIP sim-
ilarity, while the disease similarity matrix DS is computed by
integrating disease semantic similarity as well as disease GIP

similarity. Then, they construct training sample set which con-
tains both positive and negative samples. The positive samples
are obtained from the CircR2Disease database and the negative
samples are randomly selected from unlabeled circRNA-disease
pairs. For each training sample (ci, dj), the feature vector is the
splicing of the vectors of CS(i, :) and DS(j, :). Next, the autoencoder
consisting of encoder and decoder is utilized to extract the
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Figure 16. The flow diagram of AE-RF to predict potential circRNA-disease associations based on AutoEnconder and RF.

high-level features and reduce the dimension of feature vectors.
Autoencoder [132] is a special neural network structure, which
can learn the latent features of input data. Finally, the high-level
feature vectors of training samples are used to train a three-
layer feed-forward DNN. After training, the DNN can predict
association probability for unlabeled circRNA-disease pair.

AE-RF

Deepthi et al. [133] proposed an ensemble method of circRNA-
disease association prediction based on a deep AntoEncoder and
RF classifier (AE-RF) whose flow diagram is shown in Figure 16.
They first construct circRNA similarity matrix CS and disease
similarity matrix DS by combing multiple types of similarity of
circRNA and disease as follows:

CS
(
ci, cj

) =
{

CFS
(
ci, cj

)
if ci and cj has functional simialrity

KC
(
ci, cj

)
otherwise

(69)

DS
(
di, dj

) =
{

DSS
(
di, dj

)
if di and dj has semantic simialrity

KD
(
di, dj

)
otherwise

(70)
Then, the feature vector of circRNA-disease pair (ci, dj) is

constructed by splicing the vector CS(ci, :) and vector DS(dj, :).
Next, the training set consisting of equal positive and negative
samples is utilized to train an autoencoder which is also used in
the prediction model of AE-DNN. After training, the autoencoder
can be used to reconstructed the feature vectors of samples
in training set and remaining unlabeled circRNA-disease pairs.
Subsequently, the training samples are utilized to train the RF
classifier. The trained classifier can be used to predict associa-
tion score for unlabeled samples. The innovative of this study
lies in the combined application of autoencoder and RF where
autoencoder can help reduce noise data and extract high-level
features, while RF has good generalization ability. However, the
false negative problem of randomly selected negative samples
still exists.

Algorithm evaluation methods
To evaluate the predictive performance of computational mod-
els, researchers usually report their AUC values based on distinct
cross validation including LOOCV, 5-fold and 10-fold cross val-
idation (collectively called K-fold cross-validation). LOOCV and
K-fold cross validation have been widely utilized to evaluate the

performance of not only the circRNA-disease association pre-
diction models but also other biological association prediction
models, such as miRNA-disease association prediction models
[92, 99, 134], lncRNA-disease association prediction models [95,
135], lncRNA-miRNA interaction and lncRNA-protein interaction
prediction models [136–138]. In this section, we will introduce
LOOCV and K-fold cross validation in detail. In addition to cross
validation, we also introduced two types of case studies, which
have been frequently utilized to evaluate the prediction per-
formance of different circRNA-disease association prediction
algorithms.

LOOCV

In the process of LOOCV, each known circRNA-disease associ-
ation is left out as the test sample in turn, and the remaining
known associations are adopted as training samples. In addi-
tion, all unknown circRNA-disease pairs are candidate samples.
Specifically, the prediction model based on the training sam-
ples can score for the investigated test sample and all candi-
date samples. Then, the test sample and candidate samples are
ranked in descending order according to their association scores.
Above process is repeated until every known circRNA-disease
association is tested. According to the results of LOOCV, true
positive rate (TPR) and false positive rate (FPR) can be calculated
as follows:

TPR = TP
TP + FN

(71)

FPR = FP
FP + TN

(72)

where TP denotes the number of true positive samples which are
test samples ranked higher than the given threshold; FN denotes
the number of false negative samples, which are test samples
ranked lower than the given threshold. In addition, FP represents
the number of false positive samples, which are candidate sam-
ples ranked higher than the given threshold; TN represents the
number of true negative sample, which are candidate samples
ranked lower than the given threshold. The ROC (receiver operat-
ing characteristic) curve can be drawn by plotting the TPR against
the FPR under a series of thresholds. Furthermore, the value of
AUC can demonstrate the performance of prediction model and
the higher the AUC, the better the prediction performance of the
model.
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K-fold cross validation

In K-fold cross validation, all known circRNA-disease associa-
tions are divided into K subsets with the same size. Then, one
of the K subsets is left out as the test set and the remaining
K − 1 subsets are utilized as training set to train the prediction
model. All unknown circRNA-disease pairs are candidate sam-
ples. The trained prediction model can score for the samples in
the test set and candidate samples. Next, each sample in the test
set is ranked with the candidate samples in descending order
according to their association scores. When all the K subsets
have been tested, the ROC curve and AUC value can be drawn
and calculated in the same way used in the LOOCV.

Case study

Usually, one or several diseases would be investigated in case
study. In addition, the types of case studies are also diverse.
In the following, we will introduce two common types of case
studies utilized to evaluate predictive performance of circRNA-
disease association prediction model. The first type of case study
aims to assess the prediction ability of calculation model in
identifying novel circRNA-disease relationships [85, 102]. Specif-
ically, the trained prediction model is used to compute the
association scores for candidate samples involving investigated
disease. Then, the result of case study for investigated disease
can be obtained by inspecting how many associations in the top-
M predicted results have been confirmed by other database or
literature. The second type of case study aims to evaluate the
prediction ability of calculation model in predicting associated
circRNAs for novel disease without any known related circRNAs
[86, 117]. To be more specific, the association information involv-
ing an investigated disease is removed from training sample
set. Then, the trained model is utilized to infer associated cir-
cRNAs for this investigated disease. Finally, researches observe
how many circRNAs in the top-ranked predictions have been
confirmed by database or literature.

Discussion and conclusion
CircRNAs have caught much attention from scientists. More
and more circRNAs were discovered by biological experiments
and bioinformatics methods. Later, researchers found that
circRNAs have important biological functions including acting
as miRNA sponges, regulating the expression of parental
genes as well as competing with pre-mRNA splicing. In
addition, many experimental evidences indicate that circRNAs
have close relationships with complex human diseases. The
occurrence and development of many complex diseases are
usually accompanied by abnormal expression of circRNA. Thus,
studying associations between circRNAs and diseases could
promote the understanding of the functions of circRNAs and
the pathogenesis of complex diseases, which would further
provide new ideas and strategies for detection, diagnosis and
treatment of complex diseases. Identifying novel circRNA-
disease associations is a critical step. However, it is inefficient
to discover novel associations by traditionally experimental
methods. Fortunately, massive biological data about circRNAs
and circRNA-disease associations have been accumulated after
conducting various biological experiments and RNA sequencing.
Therefore, researchers have proposed effective computational
methods to predict novel circRNA-disease relationships by
mining useful information from biological data such as circRNA
sequence, circRNA expression profile, disease directed acyclic

graph, circRNA-gene interaction, disease-gene association and
circRNA-disease association.

In this review, we first briefly summarized the general con-
cepts and classification of circRNAs. Then, we introduced some
common functions of circRNAs and associations between circR-
NAs and several important human diseases, since circRNAs may
be a novel classes of biomarkers of complex diseases. Next, we
presented two types of databases which can provide biological
data about circRNAs and circRNA-disease associations. Proper
application of these databases can promote the research of cir-
cRNA function and identification of novel circRNA-disease asso-
ciations. Subsequently, we introduced 27 computational models
for inferring novel circRNA-disease associations. According to
the core algorithms used in these models, we divided the com-
putational models into two classes, namely network algorithm-
based models and machine learning-based models. Finally, we
summarized several common measures for performance evalu-
ation of circRNA-disease association prediction models.

In the following, we will discuss the advantages and
limitations of aforementioned two types of computational
models. First of all, in the network algorithm-based models,
it is a key step to construct the circRNA-disease associations
network, circRNA similarity network and disease similarity
network. Generally, circRNA-circRNA similarity can be calculated
based on circRNA sequences, circRNA-related genes, expression
profiles of circRNAs- and circRNA-related diseases. In addition,
disease-disease similarity can be computed based on disease
related genes, phenotype descriptions of diseases, directed
acyclic graphs of diseases and disease-related circRNAs. The
different network algorithms, such as KATZ, label propagation
and bipartite network projection, were utilized to infer novel
circRNA-disease associations based on these networks. One
advantage of network algorithm lies that these models can
integrate multiple biological data to construct single layer
network or heterogeneous network and make full use of
topological information of circRNA-disease network. In addition
to circRNA and disease, other biological object can also be
introduced into heterogeneous networks. For example, in
the model of BRWSP, the authors introduced gene similarity
network, gene-disease association network and gene-circRNA
interaction network into their constructed heterogeneous
network. Another advantage of network algorithm lies in the
wide choice for similarity calculation methods. Except for the full
use of multiple data, similarity calculation method also plays an
important role in network algorithm-based models. For example,
in the model of CD-LNLP, the authors utilized LNS measure
to calculate circRNA similarity and disease similarity. As a
result, CD-LNLP obtains impressive performance even though
only circRNA-disease association data are used to calculate
similarity. Therefore, reliable similarity calculation method
would contribute to the predictive performance of network
algorithm-based models. However, most of network algorithm-
based models cannot predict associations for diseases without
any known related circRNAs. Besides, it is difficult to determine
the weights of distinct types of similarity in the process of
similarity integration. Therefore, how to construct different
circRNA similarity networks and disease similarity networks,
and reasonably integrate the similarity from different biological
source information is an important topic worthy of further study.

Machine learning-based circRNA-disease association predic-
tion models could be further divided into two classes. Specifi-
cally, regularized least squares, logistic regression and manifold
regularization learning, matrix decomposition and inductive
matrix completion algorithm-based calculation methods belong
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to the first category, which usually transform the problem of
circRNA-disease association prediction into solving diverse
optimization models based on circRNA-disease adjacency
matrix, circRNA similarity matrix and disease similarity matrix.
One advantage of the first class of machine learning-based
models is that negative samples are not necessary. Actually,
negative circRNA-disease associations are hard to collect due
to the fact that experimentally validated negative circRNA-
disease relationships are usually not reported in literature or
database. Besides, different regulation terms can be added into
objective functions of the first types of machine learning-based
models. For example, in the models of MRLDC and iCircRA-
MF, graph regularization term is introduced into their objective
functions to restrict the geometrical structure of target space
and reduce noise. However, the parameters in the objective
functions are hard to determine. In addition, how to choose
suitable optimization algorithm to solve different objective
functions is worth considering. In the second type of machine
learning-based circRNA-disease association prediction models,
the algorithms of KNN, SVM, RF, GBDT, DF, CNN, GNN and DNN
are utilized to construct different classifiers. Besides, distinct
feature construction methods are employed in the second type
of machine learning-based models. One advantage of these
models lies that they could make full use of the prior information
of known circRNA-disease associations since all know positive
samples are utilized to train the prediction models. In addition,
most of the second type of machine learning-based models can
be employed to predict associated circRNAs for novel disease
without any known related circRNAs. However, negative samples
are necessary in these prediction models. As mentioned above,
negative circRNA-disease samples are difficult to collect and
randomly selecting unlabeled samples as negative samples is
a common strategy in these models, which would reduce the
prediction accuracy to some extent. Furthermore, the second
type of machine learning-based models belong to supervised
learning models, so the class imbalance problem of circRNA-
disease samples is one of main obstacles in these prediction
models. Semi-supervised learning methods work well dealing
with the class-imbalance data. Therefore, researchers can utilize
semi-supervised learning algorithms to establish new prediction
models in the future.

Overall, circRNA plays an important role in the development
of various complex diseases and is a novel biomarker of complex
diseases. Accumulation of experimental data about circRNAs
and diseases makes it possible to predict new circRNA-disease
associations by computational methods. However, the number of
current known circRNA-diseases associations is too less, which
limits the predictive accuracy of existing computational models.
Thus, collection and accumulation of experimentally verified
circRNA-disease associations remains an important mission in
the future study. Besides, researchers can consider utilizing the
information of other biological objects, such as pathway and
protein, to help circRNA-disease association prediction, since
biological objects are usually closely interdependent. In terms of
calculation model, new effective algorithms should be proposed
since the current methods have different limitations. In this
paper, we mainly reviewed the research of circRNA-disease asso-
ciation from distinct aspects. Actually, the studies of miRNA-
disease association and lncRNA-disease association are also hot
research fields [134, 135]. MiRNAs and lncRNAs also play impor-
tant roles in the occurrence and development of many human
diseases. However, the studies of associations between circRNAs,
miRNAs, lncRNAs and human diseases were conducted inde-
pendently. The joint research of associations between circRNAs,

miRNAs, lncRNAs and human diseases may be an important
future direction. In the end, scientists have demonstrated that
non-coding RNA can be of drug targets [101]. Specially, some
works have been implemented to identify miRNAs as drug tar-
gets [139–141]. CircRNA is also an important class of non-coding
RNA. Therefore, identifying circRNAs as drug targets could be a
promising future direction.

Key Points
• CircRNAs play a growing important role in a large

number of life activities and are thus closely related
to various human complex diseases.

• Studying associations between circRNAs and diseases
could promote the understanding of the functions of
circRNAs and the pathogenesis of complex diseases.

• We listed some publicly accessible databases about
circRNAs and circRNA-disease associations.

• Computational models could effectively predict
potential circRNA-disease associations for further
experimental verification, which would save many
resources.

• Computational models of circRNA-disease prediction
were divided into two categories, namely network
algorithm and machine learning-based model.

• We introduced several methods of algorithm evalua-
tion to estimate the predictive performance of calcu-
lation models.

• The advantages and limitations of various existing
computational models were analyzed.
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