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Abstract

Machado-Joseph disease (SCA3/MJD) is the most common spinocerebellar ataxia worldwide, and particularly so in
Southern Brazil. Due to an expanded polyglutamine at ataxin-3, SCA3/MJD presents a relentless course with no cur-
rent disease modifying treatment. Clinical scales used to measure SCA3/MJD progression present moderate effect
sizes, a major drawback for their use as main outcomes in clinical trials, given the rarity and slow progression of the
disease. This limitation might be overcome by finding good surrogate markers. We present here a review of studies
on peripheral and neurophysiological markers in SCA3/MJD that can be candidates for state biomarkers. Data on
markers already studied were summarized, giving emphasis on validation against clinical scale, and responsiveness
to change. While some biological fluid compounds and neurophysiological parameters showed poor responsive-
ness, others seemed to be good candidates. Some potential candidates that are waiting for responsiveness studies
were serum levels of neuron specific enolase, vestibulo-ocular reflex and video-oculography. Candidates evaluated
by RNA and microRNA expression levels need further studies to improve their measurements. Data on peripheral
levels of Beclin-1 and DNAJB1 are promising but still incipient. We conclude that several potential candidates should
follow onto validating studies for surrogate state biomarkers of SCA3/MJD.
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Introduction

Machado-Joseph disease, also known as spinocere-
bellar ataxia type 3 (SCA3/MJD), is an autosomal domi-
nant spinocerebellar ataxia caused by an expanded CAG
repeat (longer than 51 triplets) at ATXN3 gene, giving rise
to an expanded polyglutamine (polyQ) at ataxin-3 protein
(Saute and Jardim, 2015). With a mean age at onset of
34-40 yo (Dürr et al., 1996; Schöls et al., 1997; Tang et al.,

2000; Globas et al., 2008; de Castilhos et al., 2014; du
Montcel et al., 2014; Zhou et al., 2014), SCA3/MJD in-
volves predominantly the cerebellar, pyramidal, extrapyra-
midal, motor neuron, and oculomotor systems. Gait ataxia
is commonly the first symptom, followed by diplopia,
dysarthria, spasticity, dystonic movements, sensory losses
and other findings, in different combinations (Jardim et al.,
2001; Saute and Jardim, 2015). SCA3/MJD is very hetero-
geneous and never exclusively ataxic. Currently there is no
disease modifying treatment and SCA3/MJD presents a re-
lentless progression, with an average survival of 21.18
years after onset of symptoms (Kieling et al., 2007). How-
ever, several lines of pre-clinical research gave rise to good
candidate treatments targeting different cellular and molec-

Genetics and Molecular Biology, 42, 1(suppl), 238-251 (2019)
Copyright © 2019, Sociedade Brasileira de Genética.
DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2018-0103

Send correspondence to Laura Bannach Jardim. Medical Genetics
Service Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos
2350, 90035-003 Porto Alegre, RS, Brazil. E-mail:
ljardim@hcpa.edu.br.
*These authors contributed equally to this work.

Research Article

http://orcid.org/0000-0002-1110-6471
http://orcid.org/0000-0003-3905-9563
http://orcid.org/0000-0001-6907-5068


ular pathways, a scenario in which robust designs of clini-
cal trials will be paramount for the success of the
therapeutic endeavor (Li et al., 2015; Duarte-Silva et al.,
2018; Matos et al., 2018). Considering the very slow pro-
gression of SCA3/MJD on clinical scales and the rarity of
the disease, state biomarkers might be important surrogate
endpoints for these future clinical studies.

Biomarkers are substances, structures, or processes
that can be measured in the body or its products and influ-
ence or predict the incidence or outcome of disease, of
treatments, or of environmental exposures" (WHO Interna-
tional Programme on Chemical Safety, 2001). Trait bio-
markers are present prior to start of the disease process,
while state biomarkers are due to disease process or due to a
therapy response, and mirror disease progression. State
biomarkers should be correlated to clinically meaningful
endpoints. If state biomarkers show advantages when com-
paring to clinical endpoints, they can replace them in clini-
cal trials (Aronson, 2005). This is the case of a biomarker
whose changes can be measured easily and in a more sensi-
tive way than clinical endpoints. Such surrogate markers
are especially important for phase II, randomized clinical
trials (phase II RCT) addressed to raise preliminary evi-
dence of efficacy for a given drug, especially in the context
of rare diseases.

Efficacy of a given treatment is most fully demon-
strated when outcomes of treated versus control groups
vary according to a minimal clinically important difference
(MCID); and MCID were never clearly determined to
SCA3/MJD. The closest to that was obtained by the Scale
of Assessment and Rating of Ataxia (SARA), a validated
semi-quantitative scale that progresses between 0.65 and
1.56/40 points per year (Schmitz-Hübsch et al., 2006,
2010; Chan et al., 2011; Ashizawa et al., 2013; Jacobi et al.,
2015), and where 1.5 points were noted by patients accord-
ing to the patients global impression of improvement
(PGI-I). Nevertheless, disease progression is slow as mea-
sured by SARA and by all other clinical scales in use - the
International Cooperative Ataxia Rating Scale (ICARS)
(Trouillas et al., 1997), Neurological Examination Score
for Spinocerebellar Ataxias (NESSCA) (Kieling et al.,
2008), Composite-Cerebellar-Functional-Score (CCFS)
(du Montcel et al., 2008), and the Inventory of Non-Ataxia
Symptoms (INAS) (Schmitz-Hübsch et al., 2008). Clinical
trials should be tailored to face this issue.

A drawback shared by all clinical scales is their large
variability, which can reduces their effect sizes (ES), either
by the Cohens effect size (CES), or the standardized re-
sponse mean (SRM) (Streiner and Norman, 2008; Saute et

al., 2012). The average SRM obtained for SARA scale was
0.5 (Schmitz-Hübsch et al., 2010). Considering SARA
SRM with a progression of 1 point per year, between 175
and 328 subjects would be needed in each arm to show a
50% reduction in the disease progression rate in a future
trial (Schmitz-Hübsch et al., 2010; Chan et al., 2011; Saute

et al., 2015). For a rare disease, these numbers are generally
unfeasible. This might be overcome by the discovery of a
good surrogate, or a set of surrogate markers, with ES
larger than those presented by current clinical scales.

Since biomarkers are much needed, we aimed to re-
view the state of art of potential surrogate markers of dis-
ease state in SCA3/MJD, focusing on neurophysiology
markers and biological fluid compounds. Candidates for
state biomarkers were included, provided that some prelim-
inary evidence in humans was already published. Valida-
tion against a meaningful clinical endpoint, feasibility, rate
of change in time (progression rate), and responsiveness to
change were the parameters in focus.

Materials and Methods

Search methods

We performed a search in MEDLINE up to Novem-
ber, 2017. The search terms were (Machado-Joseph disease
OR spinocerebellar ataxia) AND (Biomarker* OR Bio-
logic* Marker* OR Laboratory Marker* OR Serum Mar-
ker* OR Surrogate Endpoint* OR Biochemical Marker*
OR Immune Marker* OR immunologic* marker* OR
miRNA) OR (Biomarker* OR Electroencephalography*
OR Evoked potentials* OR Transcranial Magnetic Stimu-
lation* OR Quantitative Motor Features* OR Vestibular*
OR Video-Oculography* OR Nerve Conduction Studies*
OR Electromyography*).

In addition, a manual search for references known by
authors that were not covered by the above search strategy
was also performed, and such studies were included.

Criteria for including studies

We included studies describing biological fluid com-
pounds and neurophysiological measures that could be can-
didate for state biomarkers. Case-control and prospective
studies and clinical trials were also included, provided that
quantitative information on their candidate markers were
given.

Original studies on cellular or animal models, as well
as studies in humans lacking quantitative data, or when spe-
cific SCA3/MJD diagnosis was missing, case reports, case
series (without controls), reviews, comments, editorials,
and guidelines, and studies written in languages other than
English were excluded. Neuroimaging studies were ad-
dressed in a recent systematic review (Klaes et al., 2016),
and therefore were not included in this review.

Clinical rating scales or scores for cerebellar ataxia
and studies whose design was intended to identify a trait
biomarker - for instance, studies searching for modifiers of
age at onset - were not within the scope of this review.

Study organization

Results were presented in two groups of candidate
biomarkers: biological fluid compounds and neurophysio-
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logy characteristics. The main scientific queries were re-
lated to evidences on validation against a clinical scale,
responsiveness, and clinical significance. If already esti-
mated, sample sizes for future trials were mentioned as
well.

Sensitivity to change

Cohen’s Effect Size (CES) or the Standardized Re-
sponse Mean (SRM) were provided to candidate bio-
markers, when available. The following formulas were
applied: (1) mean score change/standard deviation (SD) of
score at baseline (for CES), and (2) mean score change/SD
of score change (for SRM) when data were available and
CES, or SRM were not determined.

Results

Biological fluid compounds

Table 1 summarizes data on biological fluid com-
pounds reported on SCA3/MJD and included in the present
review. Studies with positive results related to disease state,
on neurotrophic/growth factors, inflammatory mediators,
and astrocyte activators, markers of neuronal and glial loss,
oxidative stress, and protein quality control systems mark-
ers are described below. Longitudinal data was available
only for eotaxin levels, and the effect size of this candidate
is described in Figure 1.

Among compounds associated to symptomatic status
of SCA3/MJD carriers, only serum neuron-specific enolase

(NSE) levels and glutathione peroxidase activity (GSH-Px)
were found to be related to SCA3/MJD by two independent
case/control studies each (Tort et al., 2005; Zhou et al.,
2011; Pacheco et al., 2013; de Assis et al., 2017). NSE is a
peripheral marker of neuronal disruption, and increased
levels of this protein are associated to neuronal death. How-
ever, inconsistent associations were found between NSE
and clinical scales (Table 1). GSH-Px activity reflects anti-
oxidant defense capacity. A moderate inverse correlation of
this marker was shown with NESSCA, and differences
were observed between symptomatic and presymptomatic
phases of the disease (de Assis et al., 2017).

Some biological fluid compounds were associated to
SCA3/MJD or to disease severity by single studies using
unbiased approaches. Pro-inflammatory factors were par-
ticularly prominent among them. After a transcriptome-
wide gene expression profile approach, quantitative PCR
(qPCR) confirmed upregulation of FCGR3B and SELPLG
in SCA3/MJD, and the first one was related to disease dura-
tion (Raposo et al., 2015). Another unbiased approach ana-
lyzed microRNAs (miRs) of peripheral blood samples.
miRs are post-transcriptional repressors that can regulate
gene expression at different levels. The expression of four
specific miRs was found to be up- or down-regulated in
SCA3/MJD patients; some of them being involved in astro-
cyte proliferation. Of note, a down-regulated expression
pattern of miR-25 and miR125b was associated to longer
disease duration (Shi et al., 2014). Another unbiased ap-
proach evaluated serum cytokines levels and higher levels

240 Biomarkers for SCA3/MJD

Figure 1 - Candidate biomarkers that have been followed longitudinally in SCA3/MJD subjects. (A) Summary of the longitudinal data obtained for
eotaxin and Scale for Assessment and Rating of Ataxia (SARA); sensory nerve action potential (SNAP) amplitudes of sural nerves and International Co-
operative Ataxia Rating Scale (ICARS); and short-interval intracortical inhibition (SICI) of motor evoked potentials and ICARS. (B) Cohen effect sizes,
when available or when estimation was possible.
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of serum eotaxin, a cytokine secreted by eosinophils and re-
lated to astrocytes in central nervous system (CNS). These
were found in asymptomatic carriers when compared to
both symptomatic patients and controls. A reduction in the
levels of this protein was demonstrated in the symptomatic
period a year later (da Silva Carvalho et al., 2016). Eotaxin
levels and SARA scores obtained simultaneously in these
carriers (Saute et al., 2014) were both broadly dispersed,
but the ES of Eotaxin (0.06) was smaller than the ES of
SARA (0.50) (Figure 1).

Neurophysiology

Table 2 summarizes data on neurophysiological can-
didates found by the present literature review. Longitudinal
data was available for one parameter of motor evoked po-
tentials (MEP) and for one parameter of peripheral neuro-
physiology, but the effect size could be estimated for the
latter only (Figure 1).

Central neurophysiology

Motor evoked potentials (MEP) evaluate pyramidal
tract conductivity by MEP-derived parameters, such as
central motor conduction time (CMCT), amplitude, and
resting threshold. CMCT in SCA3/MJD was found to be
prolonged and associated to clinical scales by some studies
(Jhunjhunwala et al., 2013; Farrar et al., 2016). Cortical ac-
tivity related to movement preparation and execution, and
signs of cortical dysfunction in resting motor threshold,
short-interval intracortical inhibition (SICI), and cortical
silent period duration were found by a recent study, even in
presymptomatic SCA3/MJD individuals (Farrar et al.,
2016). These markers were strongly correlated to ICARS.
Data on SICI and ICARS progression in 18 months were
given in mean and standard error of mean. Therefore, CES
could not be estimated (Figure 1).

Among sensory evoked potentials, visual evoked po-
tentials (VEPs), brainstem auditory-evoked response
(BAER), somatosensory-EPs (SSEPs), pain-related evoked
potentials, and sensory gating at hippocampus/brainstem
were already studied in SCA3/MJD, and no good candidate
has arisen as a state biomarker (Table 2).

Video-oculography

Diplopia is a very common finding in patients with
SCA3/MJD and can be attributed to ophthalmoplegia or
vergence abnormalities. While ophthalmoplegia is easily
detected in symptomatic phases of disease, subtle findings
such as gaze-evoked and rebound nystagmus, square-wave
jerks, saccadic hypermetria, and impaired ocular pursuit are
measurable abnormalities described not only in symptom-
atic (Buttner et al., 1998; Ghasia et al., 2016), but also in
presymptomatic carriers (Jacobi et al., 2013; Raposo et al.,
2014). Quantitative oculomotor findings have been re-
cently described through video-oculography (Wu et al.,

2017). Several parameters were studied, and most of them
were shown to be significantly disturbed even in preclinical
phases of disease, and to be related to DD and to SARA in
later phases (Table 2). A stepwise worsening from pre-
ataxic to symptomatic carriers were seen in the frequency
and average amplitude of horizontal gaze-evoked eye mo-
vements, upward peak saccade velocity, and total anti-
saccadic error rates. The lowest dispersion rates in
pre-ataxic and symptomatic groups were obtained when
measuring the upward peak saccade velocity.

Vestibular system

Vertigo and imbalance when turning the head are fre-
quent complaints in SCA3/MJD, pointing to involvement
of the vestibular system. Measurement of myogenic poten-
tials in the ipsilateral sternocleidomastoid muscle after loud
monaural clicks, and of vestibulo-ocular reflex (VOR) after
a head impulse test (HIT) were among the neurophysio-
logical evaluations of vestibular dysfunction. VOR distur-
bances after HIT have been described for a long time in
SCA3/MJD (Buttner et al., 1998; Gordon et al., 2003).
VOR registrations were improved by using magnetic
search coils (Gordon et al., 2014), and video-oculography
(VOG) portable systems turned quantitative testing of the
VOR possible at the bedside (Agrawal et al., 2014). In a re-
cent study, VOR gain in SCA3/MJD subjects was signifi-
cantly lower than in controls and correlated with SARA
scores in the overall group of ataxic disorders (Luis et al.,
2016). VOR dispersion seemed to be larger than SARA dis-
persion in SCA3/MJD group (Table 2).

Peripheral neurophysiology

SCA3/MJD has been associated with axonal neuropa-
thy of both motor and sensory nerve fibers, detected by
marked reductions of compound muscle (CMAP) and sen-
sory nerve action potential (SNAP) amplitudes. In addition
to sensory losses, muscle cramps might be related to this
process, being due to the electrical irritability of unmyeli-
nated nerve twigs, enhanced by collateral sprouting sec-
ondary to loss of motoneurons. This electrical irritability of
unmyelinated nerve twigs was studied once, and further
clarification on this disorder is required (Kanai et al.,
2003).

Axonal neuropathy in SCA3/MJD is most probably a
neuronopathy rather than a distal axonopathy (Kanai et al.,
2003; Escorcio Bezerra et al., 2013), and CMAP and SNAP
amplitudes are considered indirect measures of the number
of peripheral axons. Axonal neuropathy was mainly
explained by age in SCA3/MJD (França et al., 2009a;
Klockgether et al., 1999; Linnemann et al., 2016). In a lon-
gitudinal observation, sural SNAP showed a significant de-
terioration after 13 months (França et al., 2009a). The CES
of SNAP (0.34) was a little higher than CES of ICARS
(0.20) obtained in the same period (França et al., 2009b)
(Figure 1).
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Discussion

Several biological fluid compounds and neurophysio-
logical parameters described in SCA3/MJD subjects
seemed to be good candidates, but are far from being vali-
dated as surrogate state markers for this condition. Most
publications described case-control observations where
cases were already symptomatic. In contrast, altered results
of the peripheral levels of eotaxin and for video-oculo-
graphy were already found in pre-symptomatic states.
Some candidates were associated with disease duration af-
ter symptoms onset. The oxidative stress marker GSH-Px,
movement-evoked potentials, vestibulo-ocular reflex
(VOR), and several video-oculography parameters corre-
lated reasonably and significantly with clinical scales, at
this same stage. Only three studies presented a longitudinal
design, but no candidate marker was tested in the context of
a clinical trial. Validation against a meaningful clinical
endpoint was done in some studies. Rate of change in time
was obtained for peripheral eotaxin measurements, SICI,
and SNAP amplitudes. Although responsiveness to change
was not evaluated by the original studies, published param-
eters permitted us to roughly estimate CES for eotaxin and
SNAP. Those values were worse than the ones obtained for
the clinical scales (ICARS, SARA and NESSCA) applied
simultaneously. It is worth emphasizing that the number of
studies that have been designed with the specific aim of
identifying biomarkers is extremely limited in this disorder.
We could have added other inclusion criteria to our review,
such as sample size, existence of technical validation and of
a validation cohort, and statistical adjustments in relation to
age or gender. Since these additional inclusion criteria
would narrow our results, we chose to summarize these and
other characteristics in Tables 1 and 2, letting the reader
judge about the candidates value for future studies.

SCA3/MJD is a disease essentially confined to the
central nervous system. Biological fluid compounds might
theoretically reflect the burden of damage related to the dis-
ease if they either cross the blood-brain barrier, or are acti-
vated both in the CNS and in the periphery. In any case, the
search for peripheral compounds is justified by their feasi-
bility in the clinical setting. Although SCA3/MJD patho-
genesis is not thoroughly understood and pitfalls might
occur in choosing candidates for biomarkers (Aronson,
2005), several clues were already established and are prone
to be followed by laboratory studies. Three unbiased sur-
veys aimed to find upregulated genes (Raposo et al., 2015),
microRNAs differentially expressed (Shi et al., 2014), and
cytokine patterns (da Silva Carvalho et al., 2016) in
SCA3/MJD carriers. Preliminary evidence of the first two
studies associated overexpression of pro-inflammatory fac-
tors FCGR3B and TNFSF14 and the protein encoded by
CLC to SCA3/MJD, a pattern that subsides with late phases
of disease. Furthermore, down-regulation of microRNAs
(miR-25 and miR-125b) was associated with activation of
astrocytes that got even worse in late phases of the disease.

Accuracy and reproducibility have not been established to
date for mRNA and miRNA expression analyses, and data
were presented as fold change or expression ratios. More-
over, potential superiority of effect sizes cannot be inferred,
since dispersion measurements (SE, SEM or SD) and rela-
tion to clinical scales were not available.

At least three serum measurements showed interest-
ing characteristics: the already mentioned eotaxin, as well
as NSE and GSH-Px (Tort et al., 2005; Zhou et al., 2011; da
Silva Carvalho et al., 2016; de Assis et al., 2017). Eotaxin
is a peptide secreted not only in peripheral tissues by T-
lymphocytes, but also by astrocytes in the CNS (da Silva
Carvalho et al., 2016). In the unbiased study on cytokines
in SCA3/MJD, eotaxin levels were significantly higher in
asymptomatic than in symptomatic carriers or in controls.
Although neither correlated to clinical scales nor to disease
duration at baseline, eotaxin levels were reduced after 360
days in symptomatic carriers. Eotaxin patterns were in line
with results of the microRNA study (Shi et al., 2014), and
both unbiased studies raised the hypothesis of astrocyte ac-
tivation in SCA3/MJD, possibly present in pre-clinical pha-
ses, and evolving to exhaustion as the disease progresses.
Although eotaxin effect size was small in symptomatic car-
riers (Figure 1), the effect size in preclinical phases remains
unknown. The peripheral indicator of ongoing neuronal
damage NSE has been evaluated by two different studies on
SCA3/MJD (Tort et al., 2005; Zhou et al., 2011). Increased
serum levels of NSE were described by both publications,
and the larger study was able to associate NSE to disease
duration. In contrast, NSE levels were inversely related to
the Extended Disability Status Scale of Kurtzke (EDSS) in
the older, and directly related to ICARS and SARA in the
more recent study. While this discrepancy remains un-
solved, the application of NSE as a potential biomarker is
precluded. The activity of the antioxidant enzyme gluta-
thione peroxidase (GSH-Px) was low in SCA3/MJD symp-
tomatic individuals in two studies (Pacheco et al., 2013; de
Assis et al., 2017). GSH-Px differences from symptomatic
to presymptomatic phases of the disease suggested a tem-
poral association of lower GSH-Px activity to more ad-
vanced disease stages, sustaining some expectation in this
candidate marker.

Neurophysiological studies have been done based on
the hypothesis that the underlying neurological function
under study is relevant for SCA3/MJD symptomatology.
However, important findings associated to this disease are
related to cerebellum and cerebellar-brainstem connec-
tions. There is no bedside tool to measure electrophysio-
logical manifestations of cerebellar dysfunction. In spite of
that, promising markers emerged from neurophysiology.
Among the parameters obtained from MEP, central motor
conduction time and SICI were significantly changed and
related to ICARS in symptomatic carriers (Figure 1). SICI
variability was very large, suggesting that potential CES
would be small, for future trials addressed to pyramidal in-
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volvement in this disease. VOR is affected in SCA3/MJD
symptomatic carriers, and showed a moderate association
to SARA, with similar measures of dispersion. Peripheral
nerve studies have been performed as well, and sural SNAP
showed a significant deterioration after 13 months (França
et al., 2009a,b). We were able to estimate CES of both
SNAP and ICARS, 0.34 and 0.20, respectively (Figure 1).
SARA CES (0.50) was superior to both.

Since they portray brainstem dysfunction, neurophy-
siological measurements of eye movement abnormalities
are very interesting candidate biomarkers. A promising
case-control study reported that frequency and amplitude of
gaze evoked nystagmus, smooth pursuit eye movements
(gain), upward peak velocity and accuracy of saccades, and
error rates of antisaccades were already affected in pre-
clinical phases of the disease, and were all related to SARA
scores and to disease duration in symptomatic carriers (Wu
et al., 2016). This results scenario suggests that these mani-
festations decline in SCA3/MJD in a progressive manner.
Although SD of SARA scores was not presented, other ob-
servations described SD as being equivalent to 40% to 60%
of SARA average results (Jacobi et al., 2011, 2015; Ashi-
zawa et al., 2013; Saute et al., 2014). Some video-oculo-
graphic parameters obtained in SCA3/MJD subjects
showed proportionally smaller SDs than these figures, like
horizontal mean pursuit gain and upward saccadic accuracy
(Table 2).

Although evidence levels remain preliminary, the
paragraphs below address promising additional biomarkers
due to their direct roles in the SCA3/MJD pathophysiology.
Molecules associated to quality control systems might play
a very relevant role in SCA3/MJD, and we can highlight
here two promising ones: beclin-1 and DNAJB1. Beclin-1
is a marker of protein quality control systems, and low pro-
tein as well as mRNA levels were found in fibroblasts from
symptomatic SCA3/MJD individuals (Nascimento-Ferrei-
ra et al., 2011; Onofre et al., 2016). DNAJB1 is a molecular
chaperone that stimulates the ATPase activity of Hsp70
heat-shock proteins in order to promote protein folding and
prevent misfolded protein aggregation. High DNAJB1 lev-
els were associated with earlier ages at onset than those pre-
dicted by the CAG repeat length (Zijlstra et al., 2010). Both
compounds should be further evaluated using larger sample
sizes and by performing longitudinal observations.

Soluble mutant ataxin-3 levels were measured by
time-resolved Forster resonance energy transfer (TR-
FRET) immunoassay in human cell lines and brain samples
of transgenic SCA3/MJD mice model (Nguyen et al.,
2013), but properties of soluble ataxin-3 as a disease bio-
marker were not addressed up to date. Soluble mutant pro-
tein levels have been measured in other neurodegenerative
disorders, such as in Huntington disease (HD), and were as-
sociated to clinical features (Moscovitch-Lopatin et al.,
2013). Soluble huntingtin is currently being evaluated as an

outcome in recent HD clinical trials (Huntington Study
Group Reach2HD Investigators, 2015; Süssmuth et al.,
2015). Likewise measurements of soluble mutant ataxin-3
should be evaluated in future longitudinal studies on
SCA3/MJD.

Finally, it is worth to stress that biomarkers are
mostly needed for the pre-clinical phases of SCA3/MJD.
The pathological process is already on the way before the
onset of gait ataxia, and future therapies will probably be
more effective if starting early. Studies on pre-symptomatic
carriers face more difficulties than others, such as lack of
adherence and ethical issues. Fortunately, the time burden
measured by the concept “disease duration” since the onset
of symptoms and useful for symptomatic studies, can be
solved by equations that predict the age at onset and that
have recently appeared in the literature (Tezenas du
Montcel et al., 2014; Mattos et al., 2019). They will help
validating biomarkers for the pre-symptomatic phases.

In conclusion, several potential candidates as state
biomarkers have been preliminarily described, albeit
through a majority of studies without good sample sizes
and/or rigorous designs for the validation of such bio-
markers. Candidates for surrogate biomarkers of the pre-
symptomatic state were even more scarcely described in
the literature. Studies on pre-clinical phases, such as those
performed on cytokines and on neurophysiological mea-
surements of eye movement abnormalities, are even more
important, since most clinical scales give normal scores in
this period. Prospective evaluations are required for all of
them, together with measurements of clinical scales and of
PGIs. Validation against a MCID, rate of change in time,
and responsiveness to change should be established. We are
aware that several barriers can delay this goal, including re-
straints that go beyond the scientists’ efforts and patients’
goodwill. For example, neurophysiology, molecular, and
neuroimaging data depend upon technology companies,
where planned obsolescence is intrinsic to the production
lines. The constant change in platforms turns all knowledge
acquisition longer and harder than expected. Hence, solu-
tions for these dilemmas have to be searched for and the fu-
ture needs to be carefully planned. To this, all-embracing,
multi-center studies can be the answer.
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