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Various �ndings concerning the clinical signi�cance of �uantitative changes in hepatitis B surface antigen (HBsAg) during the acute
and chronic phase of hepatitis B virus (HBV) infection have been reported. In addition to being a biomarker of HBV-replication
activity, it has been reported that HBsAg could contribute to the immunopathogenesis of HBV persistent infection. Moreover,
HBsAg could become an attractive target for immune therapy, since the cellular and humeral immune response against HBsAg
might be able to control the HBV replication and life cycle. However, several reports have described the immune suppressive
function of HBsAg. HBsAg might suppress monocytes, dendritic cells (DCs), natural killer (NK), and natural killer T (NK-T) cells
by direct interaction. On the other hand, cytotoxic T lymphocytes (CTLs) and helper T () cells were exhausted by high amounts
of HBsAg. In this paper, we focused on the immunological aspects of HBsAg, since better understanding of the interaction between
HBsAg and immune cells could contribute to the development of an immune therapy as well as a biomarker of the state of HBV
persistent infection.

1. Introduction

Hepatitis B virus (HBV) is basically a noncytopathic DNA
virus that causes chronic hepatitis and hepatocellular car-
cinoma (HCC) as well as acute hepatitis and fulminant
hepatitis [1]. HBV now affects more than 400 million people
worldwide and, in approximately 5% of adults and 95%
of neonates who become infected with HBV, persistent
infection develops [2]. HBV contains a small (3.2 kb), circu-
lar, partially double-strand DNA organized into four open-
reading frames. e longest open-reading frame encodes
the viral polymerase. e envelope open-reading frame is
located within the polymerase open-reading frame in a
frame-shi manner. e core and X open-reading frames
partially overlap with the envelope open-reading frame [3, 4].
e covalently closed circularDNA (cccDNA) is the template
that is transcribed to generate four major RNA species: the
3.5 kb, 2.4 kb, 2.1 kb, and 0.7 kb viral RNA transcripts [5].
HBV produces Hepatitis B core antigen (HBcAg), Hepatitis B
envelope antigen (HBeAg), Hepatitis B X antigen (HBxAg),
and Hepatitis B surface antigen (HBsAg) that could con-
tribute to the HBV life cycle. HBsAg was found by Blumberg

et al. in 1965 and regarded as an HBV-related antigen in
1968 [6, 7]. e clinical signi�cance of �uantitative changes
in HBsAg during the acute and chronic phase of HBV
infection has been reported [8–10]. e amount of HBsAg
has been found to be closely related to the activity of HBV
replication in hepatocytes [8]. In addition to serving as a
biomarker of HBV-replication activity, it has been reported
that HBsAg could contribute to the immunopathogenesis of
HBV persistent infection (Table 1) [11–17].

It has been shown that cellular immune responses
including those of cytotoxic T lymphocytes (CTLs), Type
1 helper CD4+ T lymphocytes (1), FoxP3+ regulatory
T lymphocytes (Tregs), and dendritic cells (DCs) play a
central role in the control of virus infection [18–20, 28–
34]. Moreover, Type 2 helper CD4+ T lymphocytes (2),
B cells, and plasma cells could contribute to the production
of HBV neutralizing and/or nonneutralizing antibody. Not
only adaptive immune responses but also innate immune
responses, including the intrahepatocyte innate immune
response, and those of natural killer cells (NK), natural killer
T cells (NK-T) and monocytes, might be involved in the
coordination of all immune responses [15, 35–37]. Several
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T 1: Functions and the effect of HBsAg among the various kinds of lymphoid cells.

Lymphoid cells Function e effect of HBsAg for immune response Reference
Innate immune response

NK/NK-T cells Independent of epitope cytotoxic function Suppression of cytotoxic activity of
Intrahepatic NK cells [14]

Cytokine secreation (IFN-gamma etc.)
Monocyte cytokine, chemokine expression Suppression of monocyte activation

Suppression of LPS and IL-2 induced
cytokines production [13, 15]

Intrahepatocyte reaction
(TLR signaling)

Detection of pathogen-associated molecular
pattern Unclear

Adaptive immune response
CD8+ CTL HBV-speci�c cytotoxic function CTL exhaustion/peripheral tolerance [18–22]

(Perforin, IFN-gamma, etc.)
CD4+ cells HBV-speci�c IFN-gamma secretion 2 commitment [23]

Tregs Immune suppresion via IL10 and/or cells to
cell contact

Enhancing Tregs activity via
stress-related proteins [21, 23, 24]

Dendritice cells HBV antigen presentation and secretion of
cytokines

Inhibit the upregulation of costimulatory
molecules on mDCs [12, 25–27]

Suppression of pDC function

reports have described that HBsAg could be involved in
the orchestration of the immune responses, especially in
disturbances of the appropriate immune responses [11, 14,
15, 38].

Recently, nucleos(t)ide analogs, such as lamivudine, ade-
fovir, entecavir and tenofovir, and interferon-based therapy
have been employed to control HBV [39, 40]. Unfortunately,
the efficacy of nucleos(t)ide analogs is limited by viral reac-
tivation through the emergence of escaped mutants in cases
of prolonged treatment [39, 40]. erefore, immunotherapy
including interferon-based therapy is one of the signi�cant
options to eradicate or control HBV replication [41]. e
aim of immunotherapy is to control the activity of HBV
replication and to eradicate infected hepatocytes [42]. For
this reason, the �uanti�cation of HBsAg and stimulation
of HBsAg-speci�c immune responses might be important.
It is necessary for the development of new strategies to
understand the immuno-pathogenesis ofHBV infection [43].
In this review, we focus on the immunological aspect of
HBsAg based on various reports regarding HBsAg, lymphoid
cells, and HBsAg-related immunotherapy.

2. HBsAg, T (CTLs, Th, Tregs, etc.)
and B Lymphocytes

In the resolution of HBV infection, efficient recognition of
the intracellular HBV antigens by the host immune cells is
essential [32, 33, 44, 45]. It has been shown that the cellular
immune system, including CTL, 1, and Tregs, plays a
central role in the control of virus infection. e hypore-
sponsiveness of HBV-speci�c CTL, 1 cells, and excessive
regulatory function of Tregs in peripheral blood have been

reported in chronic hepatitis B (CHB) patients [2, 23, 24, 28,
29, 33, 46, 47]. Many groups including ours indicated that the
treatment with nucleos(t)ide analogs in CHB could restore
both CD4+ T cells and CTL hyporesponsiveness following
the decline of serum levels of HBV-DNA and HBV-derived
antigens (Figure 1) [20, 24, 46].

Although there are few reports indicating a direct sup-
pression of the T cell immune response by HBsAg, we
cannot exclude the possibility of a direct suppression of the
T cell immune responses. It has been reported that T cell
hyporesponsiveness in CHB might be induced by peripheral
tolerance such as exhaustion [18, 20, 21, 30]. Recently, much
attention has been devoted to the relevance of inhibitory
receptor expression on T cells during chronic infections,
including programmed death-1 receptor (PD-1) [22]. An
HBV transgenic mouse model revealed the effect of PD-1
mediated T cell exhaustion [18].

CTLs recognize viral antigens synthesizedwithin infected
cells in the form of oligopeptides that are presented on HLA
class I molecules [48]. Although the responses of HBV-
speci�c CTLs are observed in a strong, polyclonal, and
multi-speci�c way in patients with self-limited infection [47],
hyporesponsiveness of HBV speci�c CTLs in the peripheral
blood has been demonstrated in patients withHBVpersistent
infection. Various kinds of epitopes in HBV-core, surface,
and polymerase were reported by many groups [48]. We also
identi�ed new, HLA-A24 restricted CTL epitopes in core
and surface antigens [46]. erefore, the amount of HBsAg
in peripheral blood might in�uence the HBV-speci�c CTL
response.

Previously, we examined the mechanisms of hypore-
sponsiveness of HBV-speci�c CD4+ T cells by evaluating
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HBsAg

Nucleos(t)ide and IFN-based therapy

Immune response

Good control
HBV replication

Appearance of 
HBsAb

Recovery from T cell exhaustion

Suppression of excessive function of Tregs

Recovery form DCs dysfunction

Recovery from NK, NK-T, and monocyte dysfunction

F 1: Scheme of recovery from immune suppression. e
reduction of HBsAg could result in recovery from various kinds
of immune suppression and possibly achieve resolution of HBV
persistent infection or good control of HBV replication.

the 1/2 commitment and activity of Tregs [23]. In
CHB patients, HBsAg stimulation induced upregulation of
GATA-3 mRNA compared with that in healthy volunteers,
while the expression level of 1-related mRNA remained
unchanged. However, the suppression of either direction, to
1 or 2, by HBcAg stimulation was observed. HBcAg-
speci�c Tregs produced IL10 and suppressed the immune
response, while HBsAg stimulation favored 2 deviation
in CHB [23]. Negative regulation of CD8+ T cell responses
during chronic HBV infection can also be mediated by
immuno-suppressive cytokines such as IL10 and TGF-beta
[29]. Recently, there has been increasing evidence indicating
a role of Tregs in maintaining HBV infection [28, 29].
However, the relation betweenHBsAg and Tregs has not been
clari�ed yet.

e extent to which the humoral immune response
contributes to the control of chronic HBV infection is
less clear. HBV-speci�c antibodies are indicators of certain
stages of these diseases. HBsAg speci�c antibodies (HBsAb),
detectable in patients who have recovered from acute HBV
infection and in HBV-vaccinated individuals, serve as neu-
tralizing antibodies that can inhibit viral attachment and
entry [49]. e induction of HBsAb is sufficient to prevent
infection. In CHB patients, seroconversion to HBsAb is
considered to be a marker of disease resolution [50, 51].
AlthoughB cells andplasma cells are important for producing
HBsAb, there are few reports indicating direct suppression of
the B cell functions by HBsAg in CHB patients. We need to
consider the possibility of B cell dysfunction in CHB since
the appearance of HBsAb during CHB treatment represents
a favorable condition of the immune response, as mentioned
above.

3. HBsAg, NK, and NK-T Cells

NK cells play a role in controlling the innate immune
response during viral pathogen invasion in the early stage of
infection, while regulating the adaptive immune responses in
a persistently infected host. ey are especially enriched in
the liver where they comprise about 50% of the intrahepatic
lymphocyte portion, as compared to the peripheral blood
where they represent about 10% of the total lymphocyte pop-
ulation [52, 53]. NK cells can be detected by �ow cytometry
by the expression of CD56 and lack of CD3. Additionally,
they can be separated into CD56dim and CD56bright cells.
CD56dim cells are considered to be mature NK cells that
constitute majority of the population, whereas CD56bright
cells are the minority and thought to be at an early stage of
maturation [35, 36].eymediate the recognition and lysis of
viral-infected cells and the production of immunoregulatory
cytokines. rough the release of cytokines such as IFN-
gamma GM-CSF, TNF-alpha TGF-beta IL-2, and IL-10, they
may in�uence the adaptive immune system [54–56].

NK-T cells are included in a lymphocyte population
identi�ed with the expression of surface markers of NK cells
together with T cell antigen receptor [57]. NK-T cells as well
as NK cells are found markedly in the liver, with fewer found
in the spleen or bone marrow [37]. NK-T cells produce large
numbers of cytokines more quickly than NK cells. erefore,
NK-T cells have been considered to largely in�uence the
innate and the adaptive immune response [58].

Little is known about the speci�c immune suppression
of NK and NK-T cells by HBV-encoded antigens such as
HBsAg. In 2005, Chen et al., showed that the number of
hepatic NK cells was decreased with the expression of HBsAg
and their cytotoxicity was attenuated in transgenic mice.
In addition, the response of hepatic NK cells to speci�c
stimulation by Poly (I:C) was changed and the increase in
the antitumor cytotoxic activity of intrahepatic activated NK
cells was markedly impaired [14]. However, in responders
to vaccination with HBV, Alabarran et al. reported that NK
and NK-T cells are effectively activated against HBsAg, as
re�ected in the elevated ratio of CD56bright cells, increased
NK-T cells, speci�c high levels of IL-2 and IFN-gamma
intracellular cytokines in NK-T, and increase of IFN-gamma
in NK cells. However, in nonresponders to vaccination, NK
and NK-T cells showed an inactivation of capability and a
diminished regulatory cytokine production [59].

4. HBsAg andMonocytes

Monocytes play roles in immune function and migrate from
the bloodstream to other tissues to differentiate into tissue-
resident macrophages or dendritic cells. ey are charac-
terized by the high expression of the CD14. Some groups
have reported about the association between monocytes
and HBV infection. Vanlandschoot et al., described that
HBsAg suppressed the activity of monocytes and con�rmed
that recombinant HBsAg particles could bind almost exclu-
sively to monocytes and that the binding to monocytes was
enhanced by a heat-labile serum protein that was inhibited by
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Ca2M�Mg2M, low pH, and an HBsAg-speci�c monoclonal
antibody. Moreover, the LPS and IL-2-induced production
of cytokines was suppressed [15]. A study of the associ-
ation between the human immune function and HBsAg
using THP-1 cells, a human monocyte cell-line, indicated
that HBsAg inhibits LPS-induced COX-2 expression and
suggested that hepatitis B virus may regulate IFN-gamma
production by inhibiting IL-18 and IL-12 production [13].

5. HBs-Ag and Dendritic Cells

Dendritic cells are professional APC that initiate andmediate
immune responses against pathogens and tumors. Typically,
immature DCs capture and process antigens to peptides
which are then presented in the context of MHC class II
or class I molecules. ey migrate to lymphoid tissues and
present antigenic peptides to naive T cells. Previous studies
demonstrated that the myeloid dendritic cells (mDCs) of
patients with chronic HBV are indeed impaired in their
capacity to mature compared to mDC of healthy controls,
as shown by their decreased capacity to upregulate cos-
timulatory molecules, produce proin�ammatory cytokines,
and stimulate T cells [12]. It has been also reported that
monocyte-derived DCs and plasmacytoid DCs(pDCs) are
functionally impaired by the presence of HBV [12, 25]. Con-
cerning the inhibitory mechanism, whether HBV directly
interferes with the DC function is not known, as only HBV
DNA could be detected but no evidence was found for viral
replication in circulating mDCs and pDCs [12, 26], nor
in monocyte-derived DCs [27]. us, although HBV may
be incapable of replicating in DCs, the binding and uptake
of viral particles by these cells may be responsible for the
impaired function of DCs in HBV-infected patients. Op den
Brouw et al. reported that HBsAg is internalized by mDCs
and inhibits the upregulation of costimulatory molecules
on mDCs [11], and Woltman et al. reported that analyzing
different HBV proteins revealed that HBeAg and especially
HBsAg are involved in the suppression of pDCs function,
and HBsAg abrogated the CpG-induced mTOR-mediated
phosphorylation of S6, the subsequent phosphorylation of
IRF7 and the transcription of IFN-𝛼𝛼 genes [60]. However,
the direct immune regulatory effect of HBV and circulating
HBsAg particles on the function of DCs can be considered
as part of the mechanism by which HBV escapes immunity
(Figure 2).

6. HBsAg Contributing to Carcinogenesis and
Immune-Suppression of HBV-Related HCC

Up to now, carcinogenesis of the HCC by HBV has been
studied. HBV-associated carcinogenesis can be seen as a
multifactorial process that includes a direct mechanism
involving viral protein, indirect mechanisms through the
chronic in�ammation, and the integration ofHBVDNA [61].
As for the direct mechanism of the viral protein, it has been
reported that the HBx gene [62–65] and PreS2 gene [66]
act as promoters of carcinogenesis, based on a transgenic
mouse model and force expression model of cell lines. e

mDC

MHC

T

T

T

T
T

HBV
HBs-Ag

Myeloid dendritic cell Plasmacytoid dendritic cell

CD86 ↓

CD80 ↓

• Costimulatory molecules ↓
• TNF- ↓

• Allostimulatory capacity ↓ • S6 and IRF7 phosphorylation ↓
• Capacity of NK cell activation ↓

• TNF- , IP-10, IL-6 ↓

F 2: A schematic diagram of DC dysfunction in patients with
HBV.

Pre S2 protein is encoded by HBsAg. It activates mitogen-
activated protein kinase (MAPK), which is a signal molecule
that is involved in cell proliferation [67]. Moreover, PreS2
protein accumulates in the endoplasmic reticulum (ER) of
hepatocytes, andDNA injury is caused in the cell by ER stress
[68, 69]. ese mechanisms are considered to be a cause of
carcinogenesis.

However, it is also thought that evasion from self-
immunity is necessary for the growth of cancer. In recent
studies, it was revealed that HBsAg carriers have 25–37
times increased risk of developing HCC as compared to
noninfected people [70, 71]. Accordingly, it is thought that
HBsAg functions in immune evasion, not only in promoting
carcinogenesis. Actually, the accumulation of ER stress in
hepatocytes causes the degeneration of protein, and evasion
from self-immunity [72]. Moreover, it was reported that
Pre S2 mutants increased hepatocellular carcinoma. ese
mutants reveal shorter forms of large, HBV surface antigens
(LHBs), proteins with internal deletion. e deletion site
(nucleotides 4–57) of Pre S2 has been recognized to correlate
with an epitope of the CD8 T-cell response and B cell
neutralization [33]. erefore, Pre S2 mutants are involved
in immune evasion. e immune evasion mechanism of
HBV oncogenesis has not been fully elucidated, but further
clari�cation is expected in the future.

It has been reported that the immune response could be
suppressed by various kinds of mechanisms in HCC [73–
81]. One of the important roles of immune suppression
is induced by Tregs, as seen in HBV persistent infection
[75–79, 82]. e frequency of Tregs in�ltrating HCC was
signi�cantly higher than in non-HCC regions of the liver
[83–86]. Moreover, HBV itself could induce excessive Tregs
function [23, 24]. erefore, the interaction between HBV
and immune suppressive factors of HCC might strongly
suppress cellular immune responses, including DCs, CTL,
and 1, and so forth, that are important for controlling
HCC proliferation and HBV replication [87]. However, the
relation betweenHBsAg expression and immune suppression
in HCC is still unclear. In our ongoing study, the expression
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patterns of chemokines produced from several HCC cell
lines with HBV replication were clearly different from those
without HBV replication. erefore, it is urgent to analyze
the mechanisms of immune-suppression observed in HBV-
related HCC.

7. HBsAg and Immunotherapy

In addition to HBcAg, HBsAg is one of the most impor-
tant HBV-antigens that could induce HBV-speci�c cellular
immune responses. HBsAg stimulation might easily induce
2 immune responses. However, one group reported that
HBsAg and CpG motif-containing oligodeoxynucleotides
could induce 1 immune responses [17]. Various kinds of
HBsAg delivery systems were examined since the induction
of a favorable immune response that could control HBV
used to be difficult [17, 88–94]. Many groups have described
that various kinds of recombinant hepatitis B vaccines could
have a speci�c but transient effect on viral replication in
HBsAg-positive CHB [95]. However, vaccines consisting of
recombinant HBsAg and anti-HBs immunoglobulins could
induce HBs-speci�c T cells efficiently since the formation
of Ag-Ab immune complexes could be easily captured and
taken up by DCs [96]. Although HBsAg might suppress the
functions of DCs [11], HBsAg-pulsed DCs might enhance
HBV-speci�c immune response in CHB patients [97].

8. Conclusion

HBsAg is not only a useful biomarker but also a protein
that might suppress various kinds of immune cells con-
tributing to innate and adaptive immune systems. Moreover,
HBsAg could become an attractive target of immune therapy,
since the cellular and humeral immune response against
HBsAg might be able to control HBV replication and life
cycles. Better understating of the interaction between HBsAg
and immune cells could contribute to the development of
immune therapy and a biomarker of the clinical state forHBV
persistent infection.
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