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Abstract
Background: The identification of statistically overrepresented sequences in the upstream
regions of coregulated genes should theoretically permit the identification of potential cis-
regulatory elements. However, in practice many cis-regulatory elements are highly degenerate,
precluding the use of an exhaustive word-counting strategy for their identification. While
numerous methods exist for inferring base distributions using a position weight matrix, recent
studies suggest that the independence assumptions inherent in the model, as well as the inability to
reach a global optimum, limit this approach.

Results: In this paper, we report PRISM, a degenerate motif finder that leverages the relationship
between the statistical significance of a set of binding sites and that of the individual binding sites.
PRISM first identifies overrepresented, non-degenerate consensus motifs, then iteratively relaxes
each one into a high-scoring degenerate motif. This approach requires no tunable parameters,
thereby lending itself to unbiased performance comparisons. We therefore compare PRISM's
performance against nine popular motif finders on 28 well-characterized S. cerevisiae regulons.
PRISM consistently outperforms all other programs. Finally, we use PRISM to predict the binding
sites of uncharacterized regulons. Our results support a proposed mechanism of action for the
yeast cell-cycle transcription factor Stb1, whose binding site has not been determined
experimentally.

Conclusion: The relationship between statistical measures of the binding sites and the set as a
whole leads to a simple means of identifying the diverse range of cis-regulatory elements to which
a protein binds. This approach leverages the advantages of word-counting, in that position
dependencies are implicitly accounted for and local optima are more easily avoided. While we
sacrifice guaranteed optimality to prevent the exponential blowup of exhaustive search, we prove
that the error is bounded and experimentally show that the performance is superior to other
methods. A Java implementation of this algorithm can be downloaded from our web server at http:/
/genie.dartmouth.edu/prism.
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Background
Transcriptional responses are modulated by DNA-binding
proteins known as transcription factors, which typically
bind sets of similar DNA sequences (cis-regulatory ele-
ments). Cognate binding sites for a transcription factor
exhibit position-specific variation. Critical residues that
mediate transcription factor binding are constrained,
while the other residues are free to drift neutrally [1], lead-
ing to highly degenerate cis-regulatory elements that are
often hard to detect computationally.

The de novo computational identification of cis-regulatory
elements is an extensively studied problem. Numerous
motif-finding algorithms have been developed over the
years (for reviews see [2,3]).

Nearly all motif-finding algorithms fall into three general
classes: pattern-based, profile-based and combinatorial.
Each class of algorithm uses a different mathematical
model (referred to as a motif model) to represent a set of
cis-regulatory elements. Pattern-based methods employ a
consensus motif model in which cis-regulatory elements
are represented by short words using the IUPAC alphabet.
These methods seek to enumerate all possible words in
the set of upstream sequences of coregulated genes in
order to identify conserved (statistically overrepresented)
motifs. Profile-based methods, on the other hand, are
based on a Position Weight Matrix motif model. These
methods try to identify statistically overrepresented
motifs by comparing upstream sequences (for instance, by
multiple sequence alignments) and seeking out local sim-
ilarities. Combinatorial motif-finding programs employ a
position-independent mismatch motif model, where the
motif is typically represented as a word of length l with at
most k mismatches. These methods seek to identify cis-
regulatory elements by clustering closely related groups of
words.

Each motif model has its limitations when searching for
highly degenerate cis-regulatory elements. Consensus-
based algorithms typically struggle with highly degenerate
motifs, in part because of their motif model. Exhaustive
enumeration of degenerate motifs over the 15-letter
IUPAC alphabet causes an explosion of the search space
from 4l to 15l (for a motif of length l) [4]. Further, the lim-
ited expressiveness of the consensus model implies that
motifs represented via this model are at best crude approx-
imations of the actual cis-regulatory elements. The Posi-
tion Weight Matrix model is more expressive, but is also
prone to local maxima due to the enormous size of its
search space. Highly degenerate cis-regulatory elements
that fit the position-independent mismatch model are dif-
ficult to find in published databases of cis-regulatory ele-
ments [5]. All of these models fail to account for inter-
position dependencies. Barash et al. showed that mode-

ling a collection of binding sites as a mixture of two Posi-
tion Weight Matrices can account for some positional
dependencies [6], while King and Roth present a nonpar-
ametric, PWM-based method that can account for arbi-
trary dependencies [7].

In this paper we present a novel approach to the discovery
of highly degenerate cis-regulatory elements that com-
bines aspects of all three motif models. Our approach
starts with the most overrepresented non-degenerate
words in a set of upstream regions. For each word, we
explore the mismatch space immediately surrounding it,
generalizing the word to a degenerate consensus that is
more significantly overrepresented than the original
word. We then construct a Position Weight Matrix based
on the actual occurrences of the consensus in the given set
of upstream regions. This approach leverages the repre-
sentational accuracy of the Position Weight Matrix model
while reducing the problem of local maxima through dis-
cretization. Implicit in the approach is the assumption
that a set of binding sites described by an overrepresented
degenerate cis-regulatory element has at least one element
within it that is itself overrepresented. In this paper, we
prove that the statistical significance of a degenerate motif
is bounded by the sum of the significance of the non-
degenerate motifs it describes. This bound validates our
assumptions and provides leverage for efficient identifica-
tion of degenerate motifs. We demonstrate that our
method is effective at finding highly degenerate cis-regu-
latory elements that are best described using the full
IUPAC alphabet in S. cerevisiae. When tested on biological
datasets, our approach outperforms nine other motif-
finding programs based on each of the three motif models
described above.

Results
Statistical overrepresentation is often used in motif-find-
ing programs as a surrogate for biological significance. A
natural measurement of overrepresentation is the proba-
bility of observing at least k occurrences of a motif given
its frequency in the genome. We estimate this probability
using the Poisson distribution, which is (-log)-trans-
formed and Bonferroni-corrected to yield a Sig score sim-
ilar to the binomial-based Sig score described by [8]. The
Sig score is easily extended to degenerate motifs when we
consider that such a motif describes a collection of non-
degenerate motifs. For this reason, we use the terms com-
posite motif and instantiation to respectively refer to a
degenerate motif and the non-degenerate motifs it
describes. As shown in the methods, a useful property of
the Sig score is that the Sig score of a composite motif is
bounded by the sum of the Sig scores of its instantiations.
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Sig score is bounded
Previous methods have taken the approach of identifying
the highest scoring non-degenerate motifs, then merging
those that have a significant amount of textual overlap
[8,9]. Implicit in this approach is the assumption that sig-
nificant degenerate motifs describe a set of significant
non-degenerate motifs. To directly investigate the rela-

tionship between the Sig scores of two motifs m1 and m2
and the Sig score of the composite motif M = {m1, m2}, we
performed the following experiment. We randomly chose
values for k (the number of occurrences of a motif in a reg-
ulon) and λ (the expected number of occurrences) for the
two motifs and plotted Sig(k1, λ1) + Sig(k2, λ2) against
Sig(k2 + k2, λ1 + λ2). As we demonstrate in Methods, if we
consider m1 and m2 to be the same motif, the resulting
combined motif has expected count λ1 + λ2 and observed
count k1 + k2 in the group. This experiment thus investi-
gates the relationship between the Sig scores of two motifs
that differ by one mismatch and the Sig score of the
degenerate motif that describes exactly those two motifs.
When we randomly choose k and λ from [0, 50] and com-
pute Sig(k, λ) + Sig(k, λ), we find that it almost exactly
equals Sig(2k, 2λ) (Figure 1A). When we generalize the
experiment to vary k and λ between the two terms, we find
Sig(k1 + k2, λ1 + λ2) ≤ Sig(k1, λ1) + Sig(k2, λ2). Thus, it
appears that Sig(k1, λ1) + Sig(k2, λ2) bounds Sig(k1 + k2, λ1
+ λ2) and that this bound is extremely tight when k1 ≈ k2
and λ1 ≈ λ2. This bound also holds when known motifs
and regulons taken from the SCPD database [10] that dif-
fer by one mismatch are merged (Figure 1B). A proof of
this bound is given in Methods.

Validation of hill climbing algorithm
In order to leverage the bounded Sig in a practical context,
we developed an algorithm capable of generalizing the
degree of overrepresentation of composite motifs from a
single instantiation. This algorithm, referred to as the hill
climbing algorithm and described in Methods, attempts
to generalize a single non-degenerate motif by exploring
the space of motifs that differ by one mismatch from the
original motif, and iteratively adding those motifs that
maximally improve the Sig score. Thus, given a single,
non-degenerate motif m, HC(m) returns a high-scoring
degenerate (composite) motif of any number of instanti-
ations.

In order to validate the hill climbing algorithm in a bio-
logical context, we tested the algorithm against the set of
S. cerevisiae regulons defined in the SCPD database [10].
For each regulon with experimentally verified binding
sites, we ran the hill climbing algorithm on each binding
site, comparing it with the resulting composite motif via
the Φ score metric [11]. The Φ score of a motif measures
the nucleotide-level overlap between the sites in a regulon
that a motif matches and the SCPD reported binding sites.
If the hill climbing algorithm improved the description of
the binding sites, this would be reflected in an increase in
the Φ scores.

Table 1 shows the results of running the hill climbing
algorithm on all reported binding sites for a number of
yeast regulons from the SCPD for which there was more

Experimental demonstration of bounded SigFigure 1
Experimental demonstration of bounded Sig. Sig(m1) 
+ Sig(m2) is plotted against Sig(m1 + m2), where m1 and m2 dif-
fer by one mismatch. This assumption assures the existence 
of a degenerate consensus motif that precisely describes {m1, 
m2}. A. Simulation in which k, λ ∈ [0, 50] and t = ∞. Four var-
iations were run, in which the parameters for m1 and m2 
were identical (red �), had different k (blue +), had different 
λ (green *) or had different k and λ (magenta x). B. Known 
binding sites from SCPD that differ by one mismatch. t is the 
number of l-length substrings in the 800 bases upstream of 
the translation start sites of each gene in the regulon.
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than 1 reported binding site (without a spacer region).
Comparing the Φ scores before and after running the hill
climbing algorithm compares the ability of the best non-
degenerate and degenerate exemplars to model the entire
set of binding sites. The motif that gives the best Φ score
among hill climbing results for each regulon is displayed
as well. As indicated by the increase in average Φ scores,
the hill climbing algorithm successfully generalizes many
of the non-degenerate binding sites to improve the degree
of overlap between the published sites and the predicted
motif. The best Φ score improves in 11 out of 16 cases
where the Φ score changes more than 0.10 as a result of
the hill climbing algorithm. The fact that the Φ score
drops in some instances highlights the limitation of Sig as
an estimate of biological significance. The details of one

run on a binding site of PDR3 are shown in Figure 2 to
demonstrate the changes a motif undergoes during the
hill climbing algorithm. As can be seen, the hill climbing
algorithm steadily improves the Sig score of the motif over
multiple iterations. Although the Φ score is not available
to the algorithm while it is optimizing the motif, we have
included it in this figure to show the relationship between
the degree of overrepresentation and the biological rele-
vance of this particular motif.

Identifying motifs ab initio
As shown in the previous section, given a single non-
degenerate instantiation of a biologically relevant motif,
the hill climbing algorithm is capable of returning a com-
posite motif that is a more accurate descriptor of the
experimentally determined binding sites. Of course, in
practical motif-finding situations, this non-degenerate
instantiation is not available to the algorithm. However,
Theorem 1 states that a composite motif with n instantia-
tions and Sig score σ must include at least one instantia-
tion with Sig score at least σ/N. Thus, if we are searching
for a highly overrepresented degenerate motif, it is reason-
able to start with a list of overrepresented, non-degenerate
motifs, each of which is used as a seed from which to
begin our search.

We therefore performed the following experiment to
determine the practical benefit of the hill climbing algo-
rithm in the ab initio discovery of degenerate motifs of var-
iable length. We identified candidate motifs for each
regulon, using the oligo-analysis tool from the Regulatory
Sequence Analysis Tools website (hereafter referred to as
RSAT) [8,12]. RSAT was set to identify the 50 most signif-
icant hexamers, then to assemble textually related hexam-
ers into longer motifs. Each motif reported by RSAT was
run separately on the hill climbing algorithm, resulting in
a set of degenerate motifs. All motifs reported by RSAT
were scored for their overlap with the biologically relevant
list of binding sites via the Φ score metric. These Φ scores
were compared against the Φ scores obtained from the
motifs generated by the hill climbing algorithm (columns
(c) and (d) in Table 2). After Sinha and Tompa [13], the
Φ score for a regulon is computed by sorting the reported
motifs by Sig, then reporting the highest Φ score from the
top 3 motifs.

The top 3 motifs are examined to account for the possibil-
ity that unknown binding sites may exist in these
sequences. Surprisingly, while HC(·) improves the per-
formance of RSAT on two regulons, on average, the output
of HC decreased the average Φ score by 9% (Table 2). One
possible explanation for this is that RSAT finds small frag-
ments of binding sites that, when generalized, include a
high number of false positives. This is supported by the
observation that the average ∆Φ for those regulons in

Table 1: Performance of the hill climbing algorithm on well-
characterized S. cerevisiae regulons. The reported binding sites 
were each run through the hill climbing algorithm to determine 
the algorithm's ability to generate a representative consensus 
motif given only one instantiation. Abbreviations are as follows: 
|B|-the number of genes in the regulon; HC(b)-the consensus 
motif reported by HC(·) that had the highest Φ score; ∆Sig-the 
maximum change in Sig score due to HC for any binding site; Φ 
b-the maximum Φ score for any one binding site; Φ HC-the Φ 
score after HC is run on the known binding sites.

Regulon |B| HC(b) ∆Sig Φ b Φ HC

BAS1 13 gagtca 17.80 0.36 0.36
CPF1 3 cwcgtgrm 17.26 0.61 0.55
CSRE 6 tcmwttcayccg 28.33 0.27 0.29
GATA 5 gatwas 40.66 0.73 0.56
GCN4 20 bagtcab 26.10 0.29 0.44
GCR1 9 ctyhc 12.59 0.43 0.18
GLN3 3 ytaatctaatc 10.28 0.63 0.64
HAP2 5 gttggttggtgga 13.37 0.37 0.23
MATA1 3 sactaattaggaaa 10.00 0.33 0.36
MATA2 12 brdgtaadt 29.17 0.21 0.48
MCM1 43 chnwttmggdaa 53.31 0.05 0.29
MCB 4 wcgcg 40.46 0.62 0.78
MIG1 13 ccccrbwww 19.43 0.21 0.38
PDR3 10 hyccrcggr 138.96 0.50 0.71
PHO2 6 gtaaattagttaatt 0.00 0.40 0.21
PHO4 12 cacgtggracta 8.41 0.13 0.14
RAP1 18 acacccagacmkc 12.98 0.09 0.15
REB1 20 bvywacccs 25.01 0.36 0.47
ROX1 8 ycyattgttctc 14.86 0.13 0.38
RPA 3 tctcggcggtta 0.00 0.34 0.34
SCB 8 cdcgawa 37.79 0.58 0.72
SFF 4 aggtmaacaa 5.85 0.25 0.50
STE12 6 atgmaac 24.74 0.48 0.53
TBP 20 yatava 18.44 0.44 0.20
UASCAR 4 ttgccmttmgc 16.63 0.25 0.40
UASH 21 gwgtagtgaca 12.12 0.05 0.05
UASPHR 23 cgtggatgaaac 6.44 0.04 0.04
UIS 5 aaaatagcgcctc 0.00 0.22 0.20
URS1H 12 wdwtwgccsccvw 61.10 0.15 0.65

Average 11 24.21 0.33 0.39
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which the highest scoring motif is a hexamer is -0.11,
while the average ∆Φ for those regulons in which the
highest scoring motif is longer than 6 bases is +0.5. This
may be due to the method RSAT uses to identify motifs
longer than 6 bases. In order for such a motif to be
reported, a strong linearity assumption is made: both the
6-base prefix and the 6-base suffix must be among the
most overrepresented hexamers. Conversely, if any two
overrepresented hexamers overlap textually, they will be
combined to yield a long motif, regardless of the degree of
overrepresentation of the longer motif. This assumption is
likely to be violated in practice. To address this, we devel-
oped a motif finder specifically aimed at non-degenerate
motifs. This algorithm, called BEAM, employs a linearity
assumption that is broadly similar to the bound used by
the hill climbing algorithm to aggressively limit the search

space of motifs. Using a bounded breadth-first (beam)
search, BEAM first enumerates all motifs of length 5, then
iteratively expands each motif in either direction by con-
catenating a single nucleotide at either end. In each itera-
tion, BEAM computes the Sig score of each motif, then
expands only the highest scoring motifs. The linearity
assumptions and error bounds for the BEAM algorithm
were previously explored, and the algorithm was shown
to be efficient with bounded error [14]. In brief, iteratively
expanding motifs works because overrepresented strings
are likely to contain overrepresented substrings. Thus, the
space of all unambiguous motifs can be efficiently
searched by iteratively expanding the most overrepre-
sented motifs. The 50 highest scoring motifs returned by
BEAM were used as input to the HC(·) algorithm.

A trace of the hill climbing algorithm is shown for a binding site of PDR3Figure 2
A trace of the hill climbing algorithm is shown for a binding site of PDR3. The algorithm goes through 5 iterations, 
after which no modification further improves the Sig score. The top line traces the Sig score and the bottom line traces Φ × 
100.
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When run alone, BEAM performs comparably to RSAT on
these regulons. However, computing HC(·) on each
motif reported by BEAM yields a 15% improvement over
RSAT (Table 2). For ease of discussion, we named the pro-
gram that results in running the hill climbing algorithm
on the results of BEAM PRISM (Pattern Relaxation-based
Iterative Search for Motifs). Comparing PRISM and RSAT
directly on each regulon reveals that PRISM clearly outper-
forms RSAT on 6 of 7 regulons where one program outper-
forms the other by at least 0.10 (referred to as a clear win,
see [13,15]).

To place PRISM's performance in context, we ran PRISM,
RSAT, and eight other popular motif finders on all 28 S.
cerevisiae regulons from the SCPD for which binding sites
have been experimentally characterized (excluding the
binding sites for the Zn(II)2Cys6 family of transcription
factors, which bind DNA as homodimers with gapped
cores). All programs were run from their web servers with
default values selected. Where the option was offered, an
S. cerevisiae background model was specified. PRISM has

no adjustable parameters, and hence was not specifically
optimized for performance on this dataset. The results are
summarized in Table 3 in the format used in Sinha and
Tompa [13]. On average, PRISM scores higher than all
other programs and, with RSAT and YMF, has the highest
number of regulons for which a recognizable portion of
the binding sites were discovered (Φ ≥ 0.10). In head-to-
head comparisons between PRISM and the other pro-
grams, PRISM had 81% of clear wins. PRISM has near-
complete descriptions of more cis-regulatory elements
than any other program, as measured by the number of
regulons for which PRISM's Φ score was at least 0.50.

Evaluating PRISM in the presence of noise
Input sequences for motif-finding programs typically con-
sist of a set of coordinately expressed genes derived from
microarray data. Parallel regulation and rapid serial
response of downstream genes are both capable of gener-
ating coordinated expression patterns in the absence of
coordinate regulation. In addition, errors in clustering
may lead to the inclusion of extraneous upstream
sequences.

To test the robustness of PRISM to increasing levels of
extraneous upstream sequences in the dataset, we per-
formed the following experiment on five randomly
selected regulons. For each regulon, we added a number
of randomly selected upstream regions, corresponding to
0.5, 1, 2 and 4 times the number of sequences in the orig-
inal regulon. We ran PRISM on each of these data points
and assessed its accuracy using the Φ score metric. The
results are summarized in Figure 3. As can be seen, PRISM
is robust in the presence of extraneous genes. In the pres-
ence of twice as many extraneous upstream sequences as
real ones, the average Φ decreases from 0.32 to 0.18.
PRISM's robustness in the face of noisy gene sets makes it
a practical solution for motif-finding from microarray
experiments.

As a separate test, we looked at PRISM's performance in
the presence of randomly selected gene sets with no coreg-
ulated genes present. To test this, randomly selected genes
were assembled into regulons of size 3, 5, 10 and 20
(4000 regulons in total). PRISM was run on these regu-
lons, and the Sig score of the top-scoring motif was
reported. The results were compared to the Sig scores
obtained on the SCPD regulons. The mean Sig score from
the random regulons was 12, while the mean Sig score of
the SCPD regulons was 22. 58% of the SCPD regulons and
10% of the randomly generated regulons had a Sig score
of 20 or above, (for Sig scores of 30 or above, these num-
bers were 43% and 2% respectively).

Table 2: Performance summary for RSAT, BEAM and PRISM. 
RSAT and BEAM were each run alone on 15 randomly chosen 
regulons; the resulting Φ scores are reported in columns 3 and 5, 
respectively. For each program, we ran HC(·) on the top 50 Sig-
scoring motifs from RSAT (column 4) and BEAM (column 6). 
The combination of BEAM followed by HC is named PRISM. To 
summarize the results, we report the average, the number of 
regulons each program "wins" (defined to be any regulon for 
which that program's φ score is at least 0.10 and is greater than 
the other programs), and the number of clear wins and losses 
PRISM has in a head-to-head comparison against the other 
program. A clear win (loss) is defined to be a regulon for which 
PRISM's Φ score is at least 0.10 higher (lower) than the program 
in question.

Regulon |B| RSAT RSAT/HC BEAM PRISM

BAS1 13 0.36 0.35 0.28 0.07
GATA 5 0.73 0.56 0.73 0.73
GCN4 20 0.29 0.28 0.50 0.50
GLN3 3 0.00 0.00 0.00 0.00
HAP2 5 0.00 0.03 0.00 0.11
MATA2 12 0.28 0.18 0.19 0.43
MCB 4 0.62 0.55 0.69 0.69
PDR3 10 0.46 0.61 0.50 0.71
REB1 20 0.36 0.02 0.32 0.32
SCB 8 0.52 0.58 0.58 0.69
STE12 6 0.65 0.53 0.57 0.57
UASCAR 4 0.04 0.05 0.04 0.07
UASH 21 0.00 0.02 0.03 0.01
UASPHR 46 0.06 0.11 0.01 0.03
URS1H 12 0.42 0.52 0.52 0.60

Average Φ 0.32 0.29 0.33 0.37
Wins 3.0 1.0 1.5 6.5

clear win for PRISM 6 7 4
clear loss for PRISM 1 1 1
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Creating sequence logos from degenerate consensus motifs
Our results suggest that, for S. cerevisiae regulons, using
the consensus model to arrive at degenerate motifs is
more accurate than using a Position Weight Matrix for the
same purpose. Of the motif-finding programs tested, Alig-
nAce, MotifSampler, BioProspector, MEME and CON-
SENSUS all use Position Weight Matrices, and all were
outperformed by all three consensus programs (PRISM,
RSAT and YMF). These results are broadly consistent with
other performance comparisons [13,16]. However, the
representational power of the final output may be
improved somewhat by converting the consensus
sequences into position weight matrices based on the
sequences in the regulon that match the consensus. Figure
4 compares the predicted sequence logos from 6 regulons

(the 5 highest scoring regulons and a representative low
scoring regulon) to the sequence logos from the binding
sites as reported by SCPD. We also generated predictions
for four transcription factors whose binding sites have not
yet been experimentally characterized. The regulons for
these transcription factors were identified from data gen-
erated using Chromatin Immunoprecipitation (ChIP)
[17]. We selected regulons where all regulator-gene inter-
actions had a p-value of at most 0.001 in the ChIP analysis
and were confirmed by gene-specific PCR.

Using PRISM to generate hypotheses
We now show that PRISM is capable of generating directly
testable mechanistic hypotheses. As an example, it is
known that the transition from G1 to S-phase during the

Table 3: Performance comparison of 10 motif finders on 28 regulons. PRISM and nine popular motif finders where run on the SCPD 
regulons. The data are summarized as in Table 2. The programs tested were: PRISM, RSAT, Mitra [39], AlignACE [40], MotifSampler 
(MS) [41], BioProspector (BioProsp) [42], MEME [43], Consensus [44], Weeder [45] and Yeast Motif Finder (YMF) [4]. Some 
programs did not return values for MCM1, so this regulon was omitted.

PRISM RSAT Mitra AlignACE MS BioProsp MEME Consensus Weeder YMF

BAS1 0.07 0.36 0.00 0.00 0.04 0.00 0.00 0.00 0.20 0.36
CPF1 0.62 0.00 0.00 0.54 0.00 0.62 0.48 0.00 0.47 0.44
CSRE 0.09 0.25 0.00 0.10 0.00 0.49 0.30 0.00 0.08 0.07
GATA 0.73 0.73 0.21 0.18 0.39 0.13 0.19 0.00 0.29 0.56
GCN4 0.50 0.29 0.02 0.26 0.28 0.00 0.02 0.00 0.37 0.29
GCR1 0.12 0.24 0.18 0.04 0.05 0.10 0.08 0.25 0.08 0.10
GLN3 0.00 0.00 0.02 0.79 0.00 0.00 0.05 0.00 0.00 0.00
HAP2 0.11 0.00 0.02 0.07 0.00 0.18 0.00 0.00 0.01 0.00
MATA1 0.19 0.10 0.26 0.17 0.00 0.49 0.12 0.00 0.06 0.13
MATA2 0.43 0.28 0.08 0.15 0.04 0.24 0.09 0.00 0.25 0.23
MCB 0.69 0.62 0.02 0.40 0.48 0.05 0.26 0.51 0.50 0.64
MIG1 0.01 0.22 0.02 0.14 0.02 0.16 0.21 0.18 0.13 0.29
PDR3 0.71 0.46 0.51 0.76 0.75 0.42 0.37 0.73 0.82 0.74
PHO2 0.01 0.00 0.06 0.08 0.00 0.10 0.00 0.01 0.01 0.00
PHO4 0.25 0.21 0.24 0.23 0.00 0.21 0.33 0.23 0.00 0.18
RAP1 0.18 0.18 0.26 0.02 0.00 0.02 0.01 0.00 0.24 0.18
REB1 0.32 0.36 0.00 0.01 0.47 0.30 0.36 0.00 0.26 0.36
ROX1 0.19 0.33 0.05 0.05 0.00 0.09 0.45 0.00 0.17 0.18
RPA 0.02 0.08 0.00 0.00 0.00 0.05 0.10 0.00 0.00 0.00
SCB 0.69 0.52 0.58 0.08 0.00 0.09 0.40 0.00 0.57 0.50
SFF 0.02 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STE12 0.57 0.65 0.08 0.24 0.00 0.00 0.42 0.00 0.37 0.50
TBP 0.00 0.00 0.03 0.00 0.19 0.02 0.02 0.00 0.00 0.01
UASCAR 0.07 0.04 0.11 0.00 0.00 0.10 0.04 0.00 0.02 0.02
UASH 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
UASPHR 0.03 0.06 0.04 0.10 0.00 0.03 0.07 0.09 0.10 0.03
UIS 0.16 0.00 0.03 0.00 0.00 0.09 0.02 0.10 0.09 0.01
URS1H 0.60 0.42 0.62 0.00 0.50 0.75 0.41 0.46 0.38 0.40

Average Φ 0.26 0.23 0.13 0.16 0.11 0.17 0.17 0.09 0.20 0.22
Wins 6 1.5 3 2 2 6 2 1 1 1.5
# ≥ 0.50 8 4 3 3 1 2 0 2 3 5
# ≥ 0.33 9 9 3 4 5 5 7 3 7 9
# ≥ 0.10 17 17 10 12 7 14 13 6 14 17

clear win for PRISM 8 11 11 14 9 12 13 10 8
clear loss for PRISM 5 0 2 2 4 3 2 3 2
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yeast cell cycle is dependent on two heterodimeric com-
plexes, Sbf (Scb-binding factor) and Mbf (Mcb-binding
factor). These complexes have the same regulatory subu-
nit Swi6, but have unique DNA-binding proteins, Swi4
and Mbp1 respectively [18]. These two proteins share
50% identity in their DNA-binding domains, and there is
a 31% overlap between the in vivo targets of Mbf and Sbf,
as determined by ChIP data [19]. However, at the nucle-
otide level, the Φ score for the SCB and MCB cis-regula-
tory elements is only 0.09. Clearly, the functional overlap
between these genes is greater than the overlap at the
nucleotide level of their binding sites.

One possible explanation for this apparent contradiction
is the involvement of a third protein. A likely candidate
for mediating the functional overlap is Stb1, a Swi6-asso-

ciated protein that has been shown to be involved in the
transcriptional regulation of G1 to S-phase transition
[20]. In order to address the potential role of Stb1 in Mbf-
and Sbf-mediated transcription, we used PRISM to look
for overrepresented motifs upstream of genes that were
identified as being bound by Stb1 [17]. The cis-regulatory
element identified by PRISM (Figure 4) for Stb1 overlaps
the Mbf binding sites with a Φ score of 0.17, and overlaps
Sbf binding site with a Φ score of 0.20. Thus, it is possible
that Stbl mediates the functional overlap between Mbf
and Sbf. The association of Stb1 with Swi6, a common
subunit of both Sbf and Mbf, supports this hypothesis.

Discussion
We have shown that the degree of statistical overrepresen-
tation of a degenerate motif is bounded by the sum of the

Corruption tests for PRISM on five randomly selected regulonsFigure 3
Corruption tests for PRISM on five randomly selected regulons. Averages and standard errors over 10 trials are plot-
ted.
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Sequence logos of motifs predicted by PRISMFigure 4
Sequence logos of motifs predicted by PRISM. Number next to regulon indicates Φ score of this sequence logo against 
the SCPD binding sites. Logos generated by WebLogo [38].
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degree of overrepresentation of its non-degenerate instan-
tiations. This deceptively simple relationship sets a lower
bound on the Sig score of the most overrepresented
instantiation of a highly degenerate motif, since overrep-
resented motifs will possess one or more instantiations
that are themselves overrepresented, albeit to a lesser
degree. PRISM leverages this bound to provide a rapid,
effective means of identifying highly degenerate overrep-
resented motifs, starting from non-degenerate motifs.
While we have demonstrated PRISM on co-regulated sets
of genes, it is relatively straight forward to apply the
bound for phylogenetic footprinting, an orthogonal
approach to motif finding that leverages the evolutionary
conservation of transcription factor binding sites [21-23].

Comparing the performance of PRISM to motif finders
based on other motif models reveals a consistent pattern.
On this dataset, using the Φ score metric, PRISM outper-
forms PWM-based motif finding programs (AlignACE,
BioProspector, MEME, MotifSampler, MITRA and Con-
sensus) by large margins, ranging from 50 to 200%. On
the other hand, the difference between PRISM and pro-
grams based on word counting (YMF, Weeder, RSAT) is
much smaller, ranging from 15 to 30%. In general, motif
finders perform best on synthetic data generated accord-
ing to their motif model [13,24]. Thus, this observation
provides some hints at the mechanism of the underlying
DNA-protein interaction: if the free energy of binding of a
protein to a cis-regulatory element is very tightly corre-
lated with the additive overrepresentation of each posi-
tion, programs based on word counting would be
expected to perform poorly compared to programs based
on the more flexible PWM-based search, which empha-
sizes position independence. This is because PWM search
algorithms can directly optimize the contributions of
individual bases even in the absence of overrepresented
words that connect adjacent positions. Thus, PRISM's
superior performance relative to PWM-based programs
may be indicative of the limitations of the additivity
assumption inherent in PWMs and their optimization
algorithms. These limitations are demonstrated by exper-
imental results that suggest that the simple additivity
assumption in protein-DNA binding encoded in the PWM
is little more than a first approximation [25-27]. A
number of groups have extracted common principles to
identify underlying mechanisms in protein-DNA recogni-
tion from the solved structures of protein-DNA cocrystals,
which contain hundreds of examples of binding contacts.
These analyses have demonstrated that interactions often
occur between multiple DNA bases and amino acid side
chains. For instance, the widespread Zif268-like zinc fin-
ger transcription factors consist of three domains, each of
which recognizes overlapping trinucleotides [28,29]. In
this case the protein-DNA contacts are clearly neither
position independent, nor additive. A broad study of pro-

tein-DNA binding contacts has shown that, although the
chemical properties of the base-amino acid contacts
might be additive and position-independent in some
cases, the same is not true for the stereochemical effects of
adjacent residues on a DNA double helix [30].

Not surprisingly, models of protein-DNA binding that
include position dependent effects more accurately model
the true binding sites of a transcription factor than do sim-
ple PWMs, though at the expense of more free parameters
[6,7,31]. Our solution to this problem is to use the PWM
representation in the final output, but to restrict the inde-
pendence assumption by using a word-based search strat-
egy that assumes the presence of overrepresented
instantiations. The experimental results validate this deci-
sion. There is a second potential explanation for the per-
formance difference between PWM-based programs and
consensus-based programs on this dataset. PWMs search a
much larger parameter space than consensus models, as
each position has three free parameters (the probability of
three of the four bases), each of which is a real number
between 0 and 1. In contrast, every position in a consen-
sus model is represented with one parameter, which can
take on one of 15 values. Thus, employing a Position
Weight Matrix representation during the motif search
frames the problem in more complex terms than employ-
ing a consensus representation. This added complexity
leads to search strategies that are more prone to local
maxima and that often over fit to include noise when
learning novel cis-regulatory elements that occur only a
handful of times in the group. For instance, Gibbs Sam-
pler (originally developed to search for highly degenerate
motifs) is very sensitive to noise. The dilution of ten target
sequences containing a planted motif with five random
sequences reduces the accuracy of Gibbs Sampler from
90% to 30% [32]. MotifSampler, a derivative of Gibbs
Sampler, does not perform well on the SCPD datasets.

Although PRISM outperforms the other programs by a
substantial margin on this randomly selected dataset from
S. cerevisiae (winning in 81% of the cases where there is a
clear difference), it is formally possible that a performance
comparison on other datasets will lead to a different
result. Since motif finders are classifiers, the "no free
lunch" theorem of machine learning states that, for any
given motif finder, there must exist a dataset for which
that motif finder outperforms PRISM [33]. However, such
datasets that are also biologically relevant may be rare, as
evidenced by the small number of clear losses. Since our
test set was fairly large (constituting about 50 to 60% of
all published S. cerevisiae regulons), we believe that the
results reported here will generalize to most yeast regu-
lons. We wish to emphasize that the dataset (and the cri-
teria) presented here have been used in previous
published performance comparisons [13,15]. It is also
Page 10 of 17
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interesting to note that our comparison of ten motif-find-
ing programs on 28 regulons is larger than any previously
published comparison of motif finders except Tompa et
al. [16], which takes a philosophically different approach.

We wish to place special emphasis on the fact that our
algorithm has no nuisance parameters. This is significant
as it makes PRISM robust to use by non-experts and ena-
bles blind testing to be performed in a fair way on regu-
lons with known binding sites. It is circular to attempt to
tune the parameters of motif-finding programs in tests
involving ab initio motif discovery, unless the tuning is
performed on a separate training set of data. To our
knowledge, there has been no publication to date involv-
ing motif-finding programs with tunable parameters that
demonstrates error rates on separate training and test sets.
In some cases, performance comparisons have been per-
formed with methods tuned for optimal performance on
each individual regulon, clearly violating notions of circu-
larity and overfitting [15]. Thus, the generalizability of
tunable parameters in the field of motif-finding remains
an open question. We have assumed that the web-based
interfaces of the other programs tested here contain rea-
sonable parameter estimates for a naive user interested in
motif finding. The fact that PRISM has no tunable param-
eters enables a fair comparison to be made. However, we
acknowledge that it may be possible for expert users run-
ning the other programs to obtain higher scores than were
obtained here. Such improved performance would best be
demonstrated in a rigorous resampling framework.

The chief limitation of the algorithm presented here is
that it is not likely to work for cis-regulatory elements that
contain widely spaced critical residues. An example of this
is the Zn(II)2Cys6 binuclear cluster transcription factor
family in yeast and other fungi (see [34] for review). The
binding sites of members of this family consist of two sets
of critical residues separated by a long spacer region. We
are developing a separate algorithmic approach to this
problem that leverages the bound shown here (Chakra-
varty et al., in preparation).

Finally, the bound stated in Theorem 1 holds for all (-
log)-transformed probability distributions. While over-
representation has proved to be a useful approximation to
biological significance, it clearly has its limitations, as evi-
denced by the regulons for which all the tested motif find-
ers failed to find a plausible match. By dramatically
reducing the search space, we anticipate that PRISM, like
its predecessor BEAM [14], will be able to leverage com-
plex statistical measures that more closely approximate
biological significance. We are currently exploring such
metrics.

Conclusion
We have shown that the statistical overrepresentation of a
collection of binding sites is bounded by the sum of the
overrepresentation of each distinct sequence. This bound
lead to a simple hill climbing algorithm, which we
showed outperforms a wide variety of commonly used
motif finding programs. PRISM's success highlights the
limitations of assuming independence between nucle-
otide positions and supports the growing body of evi-
dence that protein-DNA binding is best modeled when
dependencies are considered. In this light, PRISM's main
contribution is the demonstration that a simple linear
approach can account for potential dependencies and can
identify a likely set of binding sites from which more
descriptive models can be inferred. While the PRISM
method is limited in its generality, as it cannot handle
gapped binding sites, the theorem proved here is guiding
the algorithmic development of a program that identifies
such binding sites.

Methods
Notation
We define a composite motif M = {m1, m2,..., mn} to be a
set of n = |M| non-degenerate motifs, each of length l. We
refer to each mi ∈ M as an instantiation of M. Degenerate
consensus motifs over the IUPAC alphabet are special
cases of composite motifs for which n = 2a3b for some
non-negative integers a and b and each motif mi ∈ M dif-
fers from mi+1 by exactly one mismatch. For such motifs,
an equivalent notation is given by M = b1b2...bn, where bi is
an IUPAC symbol describing a subset of A, C, G, T. We
write |bi| to mean the size of that subset. For example,
WAS = {AAC, AAG, TAG, TAG}, and |b1| = |b3| = 2, |b2| = 1.

Overrepresentation
PRISM is given a set S = {s1, s2,...,sc} of DNA sequences of
lengths t1, t2,..., tc, and seeks to return the most overrepre-
sented composite motif M in S. In this section, we first
define overrepresentation for a single motif with respect
to S, then generalize to composite motifs. We demon-
strate that the overrepresentation of a composite motif is
bounded by the the sum of the overrepresentation of its
instantiations.

Single motifs
Let X be a non-negative, integer-valued random variable
that describes the number of times motif m occurs in S.
Overrepresentation of a motif m that occurs X = k times in
S is given by

Pr{X ≥ k | },  (1)

where S is drawn from some distribution . To compute

this probability, we assume that each si ∈ S is generated by
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some generative model µ (or equivalently, the distribu-

tion of X is given by µ). For concreteness, we take µ, to be
an l - 1 order Markov model (see Implementation section
below), though in general other distributions are feasible.
For simplicity, we further assume that the

 motifs of length l generated by µ are

independent trials. While this simplification ignores the
fact that the motif at each position will depend on the l -
1 previous motifs and will affect the l - 1 following ones,
it allows us to compute Probability (1) using a hyper-geo-
metric derived distribution. Previous studies have found
that the effects of this independence assumption are neg-
ligible except for highly repetitive motifs [8]. Our imple-
mentation of BEAM masks out such motifs as a
preprocessing step.

While the hyper-geometric distribution is the most accu-
rate model given our assumptions, it is generally too com-
putationally expensive to be of practical use in this
context. Instead, an approximation using the binomial
[8,9] or Gaussian [4] has previously been used. We have
chosen the Poisson distribution, as it efficiently and accu-
rately approximates the binomial distribution when the
number of trials t is large and the probability pm that any
given trial results in m is small.

The Poisson distribution parameterizes X by λ = E[X] and
approximates Probability (1) as

If λ <<> t then we can approximate Equation (2) by sum-
ming to infinity, which gives us the standard tail probabil-
ity. We expect binding sites to be rare, so we will use this
latter definition.

Composite motifs
Now consider the general case of composite motifs. A com-
posite motif can be viewed as an equivalence class over its
instantiations. That is, the composite motif M describes a
set of binding sites and we are interested in the overrepre-
sentation of those motifs as a set, not individually.

Observation 1. Let X1, X2,..., Xn be independent, Poisson dis-

tributed random variables with expectations λ1, λ2,...,λn. Then

is Poisson distributed with expectation

.

Proof. The expectation is evident from the interpretation of
the parameter λ as the expected number of occurrences.
That X is Poisson distributed can be proved using the gen-
erating function of the Poisson distribution [35].�

If we let Xi be the number of observed occurrences of mi ∈
M in S, then X is the number of observed occurrences of
M and Observation 1 implies that

provided the Xi are independent. This independence
assumption is equivalent to the assumption for single
motifs that each trial is independent from all other trials.
As in the single motif case, if λ <<> t, the primary violation
of this assumption will occur for auto-correlated motifs.
In the composite motif context, auto-correlation occurs
when the last w letters of mi are the same as the first w let-
ters of mj. In such cases, the statistical significance will be
overestimated. Like the single motif case, this tends to be
a problem only with highly repetitive motifs, though the
odds of M collectively describing a highly repetitive
degenerate motif increases with n.

Bounding composite motif significance
A useful property of Equation (3) is its relationship to the
significance of each Xi. If k is the number of times M
occurs in S, we can write k = ∑iki, where ki is the number
of times mi ∈ M occurs in S. In the simple case where M =
{m1, m2}, we can make use of the following general
bound.

Lemma 1. Given two independent random variables X and Y,

Pr{X + Y ≥ k1 + k2} ≥ Pr{X ≥ k1}Pr{Y ≥ k2},

with equality when k1 = k2 = 0.

Proof. By definition

The domain of the summation is shown as the dark gray
region in Figure 5. We can visualize the event X + Y = k1 +
k2 as the line x + y = k1 + k2 in Figure 5. The event X + Y ≥ k1
+ k2 is then the area above that line, which must be a super-
set of the space defined by X ≥ k1 ∧ Y ≥ k2. Thus, we have

Pr{X + Y ≥ k1 + k2}

≥ Pr{X ≥ k1 ∧ Y ≥ k2)}

= Pr{X ≥ k1}Pr{Y ≥ k2)}.  �
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Lemma 1 extends easily to the general case where M has n
instantiations.

Corollary 1. For the independent random variables X1, X2,...,

Xn, the composite variable , and ,

Sig score
Throughout a run of PRISM, S remains fixed. It is there-
fore convenient to write the significance of M with respect
to S as a function in M that increases monotonically with
M's statistical significance as defined by Equation (1). We
therefore define

SigS(M) = -log(Pr{M | }).  (4)

When the specific sequence set is not of interest, we sim-
ply write Sig(M). Corollary 1 easily maps into the Sig
domain.

Lemma 2. Given the composite motif M = {m1, m2,...,mn},

Proof. The statement is evident from Corollary 1 and the
rules of logarithms.  �

Thus, we have

Theorem 1. Given the composite motif M = {m1, m2,...,mn)},
if Sig(M) = σ, then there exists mi ∈ M such that Sig(mi) ≥ σ/
n.

Proof. From Lemma 2 it is evident that the average Sig
score of the instantiations is at least σ/n. So by the Fubini
principle, at least one of the instantiations has a Sig score
of at least σ/n.  �

Returning to Figure 5, consider the case where X and Y are
independent. Then the joint probability is given by multi-
plying the probabilities. If X and Y have the same distribu-

X Xii
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Probability space of X ≥ k1 ∧ Y ≥ k2 is a subset of X + Y ≥ k1 + k2Figure 5
Probability space of X ≥ k1 ∧ Y ≥ k2 is a subset of X + Y ≥ k1 + k2. P(X ≥ k1 ∧ Y ≥ k2) is the sum of the probabilities taken 
over all values in the dark gray space, while P(X + Y ≥ k1 + k2) is the sum of the probabilities taken over both the light gray and 
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tion parameters, then a three dimensional plot over the
probability space of Figure 5 would yield maximum val-
ues along the line y = x. Since independently changing k1
and k2 moves the origin of the dark gray region along the
line x + y = k1 + k2, P(X ≥ k1)P(Y ≥ k2) will be most similar
to P(Z ≥ k1 + k2) when k1 = k2. If the distribution parame-
ters of X and Y are not equal, the maximum values may
not lie along the y = x line, so P(X ≥ k1)P(Y ≥ k2) may not
be as good an approximation of P(Z ≥ k1 + k2). Translated
into -log space, these observations explain the results seen
in Figure 1A.

Multiple hypothesis correction
BEAM identifies non-degenerate motifs by heuristically
searching the entire space of motifs. Since the number of
motifs of a given length increases as 4l, we are more likely
to discover high scoring motifs of long lengths simply by
chance. To correct for this artifact of multiple hypothesis
testing, we applied a Bonferroni correction to Sig to penal-
ize long motifs. The corrected Sig is defined to be

SigS(M) = -log(Pr{M | } × f(M)),  (6)

where f(M) is the number of motifs considered in the
process of selecting M. Since this number if difficult to
determine, we used the approximation of [8], which
defines f(M) to be the number of possible motifs of length
l. In the non-degenerate case, this yields f(M) = 4l. In the
degenerate case, we generalize f(M) to be the number of
possible motifs of the same length and degeneracy of M:

While adding this definition of f(M) to Sig means the ine-
quality of Lemma 2 will not always hold, running PRISM
on the 28 SCPD regulons with a definition of f(M) that
maintains Lemma 2 yields the same average Φ score as
using Equation (6) (data not shown). We chose Equation
(6) because it conforms to the intuitive notion that a
motif should not be penalized if wildcard N characters are
appended to it. It should also be noted that this definition
only applies to degenerate consensus motifs, and not gen-
eralized composite motifs.

PRISM
Leveraging a bounded Sig
As defined above, a degenerate consensus motif is a spe-
cial case of composite motif wherein each instantiation mi
∈ M differs from mi+1 by exactly one mismatch. Theorem
1 implies that the search for the most overrepresented
degenerate motifs can start with the most overrepresented
non-degenerate motifs, provided the number of instantia-
tions is not too large with respect to the level of overrep-
resentation. Lemma 2 says that Sig({m1, m2} ≤ Sig(m1) +

Sig(m2). While maximizing Sig(m2) does not imply that
Sig({m1, m2} will be maximized, Figure 1 suggests that the
bound tends to be tight if m1 and m2 are similar. Thus,
defining

mi+1 = argmaxm'Sig(m'),  (8)

where argmaxxf(x) returns that argument x which maxi-
mizes f(x), is a reasonable heuristic. Following our defini-
tion of a degenerate consensus motif, the domain of m' is
constrained to be those motifs that differ from mi by one
mismatch.

Algorithm
Equation (8) can be implemented as a simple hill climb-
ing algorithm that starts from a single non-degenerate
motif and builds a progressively more degenerate motif by
iteratively adding those closely-related motifs that most
improve the Sig score. Given M = {m1, m2,...,mn}, let Mi,j =
{mi, mi+1,...,mj} for 1 ≤ i ≤ j ≤ n. We can then define the
recurrence

Mi,j+1 = Mi,j ∪ {argmaxm'Sig(Mi,j ∪ {m'})}  (9)

over all motifs m' that differ from mj by one mismatch
(excluding, of course, mj-1). Note that the maximization is
taken over Mi,j ∪ {m'} rather than m'. While computation-
ally more expensive, this definition lessens the effect that
a loose upper bound will have on the recurrence.

As Mi,j grows to include more motifs,  and  will

continue to grow. As they do so, they will continue to

diverge from the k and λ of any non-degenerate motif that
is a candidate for addition to Mi,j. As discussed above, this

behavior essentially loosens the bound of Lemma 2 to the

point where it is possible that Sig(Mi,j+1) ≤ Sig(Mi,j). In

fact, if we start with a motif that occurs more often than

expected (k > λ), then this condition must occur at least
before the composite motif includes every possible instan-
tiation of that length, as such a motif would have the

property k = λ = t. This provides a natural stopping condi-
tion for the recurrence described by Equation (9).

We can now describe a hill climbing algorithm for the
identification of M = {m1, m2,...,mn} given mi as follows.

HC (m1)

M ← m1

while maxm' Sig(M ∪ {m'}) > Sig(M) do

m' ← argmaxm' Sig(M ∪ {m'})
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M ← M ∪ {m'}

return M

In practice, the binding sites in a regulon of a transcription
factor do not necessarily form the complete set of instan-
tiations. That is, it is often the case where two binding sites
differ by more than one mismatch, and the intermediate
instantiation is not present in the regulon. It is therefore
convenient to use the degenerate consensus motif repre-
sentation of M. In this notation, we can implement arg-

maxm' Sig(M ∪ {m'}) by iterating over all bi to find the

IUPAC symbol  ⊇ bi, | | ≤ |bi| + 1, such that replacing

bi with  results in the maximum Sig. For example, if bi =

A, then  will be one of {A, R, W, M} (the selection of 

= A indicates no mismatches at this position increase the
Sig score). Since the addition of a degenerate base multi-
plies the number of instantiations by 2, 3 or 4, this
method allows the algorithm to effectively skip instantia-
tions that don't exist in the regulon.

The running time of argmax implemented over the IUPAC
alphabet is linear in the length of the motif. In the worst
case, we will execute the while loop 3l times, resulting in
a motif consisting of all N's. Thus, the worst case running
time of the hill climbing algorithm is O(l2t(Sig)), where
t(Sig) is the time it takes to compute Sig. This approach
sacrifices guaranteed optimality for a reduction in running
time from O(2l) to O(l2). It is particularly relevant to note
that this algorithm has no adjustable parameters, and
hence does not require optimization.

Implementation
We implemented the hill climbing algorithm in Java (SDK
1.4). The expected number of occurrences λ of a motif m
is computed using maximum likelihood estimation over
the set of sequences corresponding to the 800 base pairs
upstream of all reported yeast genes. This computation is
facilitated by the use of a suffix array (for review, see [36]),
which yields a Sig computation running time on a com-
posite motif M of t(Sig) = O(ln log G), where l and n are
the length and number of instantiations of M, and G is the
total number of bases in the background sequences. While
modest computational gains can be achieved using
parameterized models (commonly, low-order Markov
models are used to estimate background probabilities),
the systemic bias of such models in estimating the back-
ground probabilities of cis-regulatory elements justifies
the increased complexity required to generate unbiased
estimates [14].

Non-degenerate motifs are generated using an implemen-
tation of the BEAM algorithm, which returns with high
confidence the most overrepresented, non-degenerate
motifs of all lengths of at least 5 bases [14].

SigS(M) can be computed with respect to both strands of
S by simply including the reverse complements of each mi
∈ M in M. BEAM attaches a boolean flag to each motif
indicating whether the reverse complements should be
considered. The top motifs reported by BEAM are inde-
pendently run on HC(·), and the final motifs are sorted
by score. If the minimum score and degeneracy (N) of tar-
get motifs is known a priori, we use only those motifs from
BEAM that match the Sig threshold given by Theorem 1.
In general, this information is not available; thus, we take
the top C motifs from BEAM. We have found that the top
3 motifs reported by PRISM tend to be invariant for all val-
ues of C ≥ 50.

We refer to the combination of BEAM and the hill climb-
ing algorithm as PRISM (Pattern Relaxation-based Itera-
tive Search for Motifs). The average running time of this
implementation on the data sets described here was 3.5
seconds on a 3 GHz Intel Pentium 4 processor with 512
MB of RAM. The binary files, documentation and the yeast
background sequences are available for download at from
the project web site [37].

Metrics
Given a set of binding sites B in the upstream sequences R
of a regulon, we would like to measure the ability of the
hill climbing algorithm to take a single instantiation b ∈
B and generalize it to a composite motif M = HC(b) that
closely approximates the set of all binding sites B. To this
end, two metrics are employed to compare b with HC(b).
The first metric, ∆Sig = Sig(HC(b)) - Sig(b), quantifies the
ability of the hill climbing algorithm to identify more
overrepresented (higher scoring) motifs. To quantify the
practical similarity between HC(b) and the entire set B of
binding sites, we used a metric defined by Pevzner and Sze
[11]. Given two motifs m1 and m2, let I(mi) describe the
actual bases in R that are part of a sequence described by
mi. The similarity between m1 and m2 can then be quanti-
fied by

Thus, the Φ score is a direct measure of the nucleotide-
level overlap between the set of known sites and the set of
sites predicted by a motif-finding program.
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