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Abstract: Herniation of the intervertebral disc (IVDH) is the most common cause of neurological
and intervertebral disc degeneration-related diseases. Since the disc starts to degenerate before
it can be observed by currently available diagnostic methods, there is an urgent need for novel
diagnostic approaches. To identify molecular networks and pathways which may play important
roles in intervertebral disc herniation, as well as to reveal the potential features which could be
useful for monitoring disease progression and prognosis, multi-omics profiling, including high-
resolution liquid chromatography-mass spectrometry (LC-MS)-based metabolomics and tandem
mass tag (TMT)-based proteomics was performed. Cerebrospinal fluid of nine dogs with IVDH
and six healthy controls were used for the analyses, and an additional five IVDH samples were
used for proteomic data validation. Furthermore, multi-omics data were integrated to decipher a
complex interaction between individual omics layers, leading to an improved prediction model.
Together with metabolic pathways related to amino acids and lipid metabolism and coagulation
cascades, our integromics prediction model identified the key features in IVDH, namely the proteins
follistatin Like 1 (FSTL1), secretogranin V (SCG5), nucleobindin 1 (NUCB1), calcitonin re-ceptor-
stimulating peptide 2 precursor (CRSP2) and the metabolites N-acetyl-D-glucosamine and adenine,
involved in neuropathic pain, myelination, and neurotransmission and inflammatory response,
respectively. Their clinical application is to be further investigated. The utilization of a novel
integrative interdisciplinary approach may provide new opportunities to apply innovative diagnostic
and monitoring methods as well as improve treatment strategies and personalized care for patients
with degenerative spinal disorders.

Keywords: cerebrospinal fluid; dog; integromics; intervertebral disc herniation; metabolomics;
proteomics; personalized medicine

1. Introduction

Lower back pain (LBP) is a common disorder with a lifetime prevalence over 70% in
the global human population, causing major human health problems and extensive health
care utilization [1]. LBP may be caused by degenerative spinal disorders (intervertebral
disc damage—herniation or fractures), vertebral infections, or even cancer [2]. Although
experimental animals have been used to study degenerative spinal disorders, according
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to 3R (reduction, refinement and replacement) principles, dogs are reported as the most
suitable translational model for biomechanical studies and surgical procedures of the spine
and related pathophysiological processes [1,3,4]. In dogs, intervertebral disc herniation
(IVDH)-related diseases are the most common cause of spinal cord injury and sensory defi-
ciency [1]. The canine intervertebral disc (IVD) is an elastic structure located between the
bony vertebrae and is responsible for the stability and flexibility of the vertebral column [5].
The healthy intervertebral disc consists of the inner nucleus pulposus (NP) encompassing
the annulus fibrosus (AF) which, together with the cartilaginous endplates, abut the verte-
brae [6]. The nucleus is rich with proteoglycan, an incompressible shock absorber which
under compressive loads, distributes hydraulic pressure in all directions [3,6], while the AF
consists of collagen type I, elastin and fibroblast-like cells. The IVD is aneural and avascular,
receiving nutrition from adjacent cartilaginous endplates [3]. However, due to aging, as
well as various environmental factors (e.g., mechanical stress and osmotic pressure), the
IVD is susceptible to mechanical and chemical degeneration. At the molecular level, the
IVDH is mostly related to the extracellular matrix molecules and collagen degradation,
resulting in the upregulation of their degradation products as well as the upregulation of
pro-inflammatory cytokines [7,8]. Once the degenerative process starts, a biochemical and
mechanical cascade of events is triggered that can ultimately lead to structural failure of
the IVD and clinical signs of diseases [5,9].

IVDH is a common cause of spinal cord injury (SCI) in dogs, resulting in the compres-
sion of the spinal cord, associated with pain as well as sensory and motor deficits. The
severity of neurological signs is determined by neuroanatomical location, velocity and the
amount of the compressive material as well as the duration of the compression [10]. Pri-
mary SCI refers to the initial mechanical insult, whereas secondary injury is a biochemical
cascade following the primary event and consists of vascular dysregulation, neurogenic
shock, oxidative stress and excitotoxicity, ischemia and inflammatory cascade [4]. Neverthe-
less, the IVDH-related pathophysiological processes remain poorly understood, especially
at the molecular level. Diagnosis at an early stage of the disease could help to restore
disc structure and mechanical structure by using personalized and targeted therapeutic
strategies, circumventing the painful symptoms in patients [11,12].

The use of state-of-the-art technology and instrumentation has enabled the identifica-
tion and quantification of metabolites and large biomolecules in complex matrices with
high precision, reproducibility and sensitivity, using low analyte concentrations. Shotgun
tandem mass tag (TMT)-based quantitative proteomics enables high-throughput multiplex
analysis on up to sixteen samples simultaneously. Unlike proteomics, metabolomics is a
powerful tool to reveal metabolomic panels since metabolites are common intermediate
and end products of complex biochemical cascades linking the genome, transcriptome and
proteome to the phenotype [13]. High-resolution mass spectrometry-based proteomics and
metabolomics, combined with the application of various bioinformatic tools and pipelines,
have been widely used for studying the pathophysiological processes in central nervous
system (CNS) diseases and other neurological conditions by analyzing tissues and biologi-
cal fluids such as serum or cerebrospinal fluid (CSF) [13–15]. Although not easily accessible,
unlike blood, due to its multiple functions such as structural, hydrodynamic, metabolic
and immunological, CSF is the only readily accessible biofluid that evaluates current CNS
status and is a key consideration in differential diagnostic procedures in neurodegenerative
disorders [14–16]. The major constituent of cerebrospinal fluid is water (99%), whereas
the remaining 1% are ions, proteins, glucose, lactose and other organic compounds and
cells. The chemical composition of CSF is affected by CNS-related pathophysiological
processes [15].

Both human and animal clinical studies are mainly focused on a specific omics layer
rather than applying a multi-omics approach, which is the main reason why full omics
integration is still lacking, especially those providing statistical methods for consistent
multi-omics data handling [16]. However, the number of integromics-related studies is
constantly increasing. The integration of multi-omics data through data- and knowledge-
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based approaches enables insight into complex events occurring at the molecular level that
are being reflected in various pathophysiological processes in organisms and that cannot
be observed by studying just one component of a biological system. Finally, the major
challenge in multiple omics data integration lies in the selection of appropriate tools for a
given research question [17].

In our study, integrative MS-based high-resolution proteomic and untargeted
metabolomics analyses of CSF have been employed to gain deeper insights into changes
occurring during IVDH in dogs, monitoring the pathophysiological processes at the protein
and metabolite levels. Furthermore, since there is no “golden standard” for integrating
proteomic and metabolomics data, we designed a classification model to identify the most
important features and, by using data-mining tools, reveal significant pathways affected
by this degenerative disease. Special focus was placed on identifying the most consistent
features being the revelation of potential biomarkers of spinal cord compression, as well as
the effect of changes in CSF on CNS and vital functions. The understanding of the patient’s
unique profiles at the molecular level and pathways affected could help to improve the
diagnosis of this disease and select specific treatments to provide the best outcome.

2. Results
2.1. Proteomic Analysis and Proteomic Data Validation

Proteomic analysis of CSF was performed using a gel-free tandem mass tag label-
based proteomic approach without the depletion of high abundant proteins. Prior to
the analysis, total protein concentration in CSF was measured. However, there were no
significant differences in total protein concentration between the control and IVDH groups
(data not shown). Data-dependent analysis (DDA) enabled the identification of 626 CSF
proteins according to set criteria (two unique peptides, 5% false discovery rate, FDR),
among which 204 proteins were master proteins. The information about peptide spectrum
matches (PSMs), including identified peptides, proteins and protein groups is available
in Supplementary File S1. The principal component analysis (PCA) score plot revealed
two clear clusters of samples, with the IVDH group being more heterogeneous based on
TMT-based proteomic results (Supplementary Figure S1).

In total, 227 proteins were statistically significantly differential in abundance due to
the disc herniation after applying FDR correction (Supplementary File S2, Figure 1a,b),
with a majority of proteins (89%) being down-regulated in the IVDH group compared to
the control group. Of those, 73 proteins were determined as being related to unique genes
(Supplementary Table S1) with the ten most upregulated and downregulated proteins
shown in Table 1.

Table 1. The top 10 most significantly changed proteins in cerebrospinal fluid of dogs with interver-
tebral disc herniation (IVDH) compared to healthy dogs. Complete list of all significantly changed
proteins can be found in Supplementary File S2.

Higher in Abundance in IVDH Group
(Upregulated)

Higher in Abundance in Control Group
(Downregulated)

Accession
No. (NCBI)

Adjusted
p-Value log2FC Gene

Symbol
Accession

No. (NCBI)
Adjusted
p-Value log2FC Gene

Symbol

359321961 0.0147 0.31 F2 345789648 0.0056 −2.00 CHGB
73975389 0.0349 0.37 AFM 1418342647 0.0075 −1.82 SCG2

1239925760 0.0181 0.39 C5 345795204 0.0056 −1.81 SCG5
18139619 0.0181 0.41 PLG 3046976 0.0266 −1.58 COL1A1

1418515495 0.0181 0.43 AHSG 1239931864 0.0056 −1.43 ENPP2
2147092 0.0181 0.48 ALB 73970011 0.0181 −1.38 C10H2orf40
3915607 0.0266 0.50 APOA1 1418314244 0.0098 −1.31 TTR

1239918269 0.0056 0.52 AOC3 1239976444 0.0056 −1.30 FSTL1
73975797 0.0098 0.68 PON1 1418222978 0.0056 −1.30 CRSP2

1418304654 0.0349 1.01 APOC1 197085524 0.0056 −1.30 CRSP4
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Figure 1. Statistical analysis of proteomics results: (a) Volcano plot of evaluated groups after false discovery rate (FDR)
correction. Proteins overexpressed in intervertebral disc herniation (IVDH) group are in red, lower-expressed are in blue.
(b) Heatmap revealing the differentially expressed genes in the control and intervertebral disc herniation groups. Each row
represents the fold change (FC) expressed as log2FC of a single gene across all samples. Figure 1b is also available within
Supplementary Files for detailed insight (Supplementary Figure S9).

According to gene ontology analysis (FDR corrected p-values < 0.05) using the
Database for Annotation, Visualization and Integrated Discovery (DAVID) tools, pro-
teins with significant differences in abundances within the control and IVDH group were
involved in calcium ion binding (30.6%), serine-type endopeptidase inhibitor activity
(19.4%), heparin binding (13.8%), cholesterol binding (11.1%), phosphatidylcholine-sterol
O-acyltransferase activator activity (8.3%), collagen binding (8.3%) and fatty acid binding
(8.3%), as can be found in Supplementary Figure S2 and Supplementary File S3.

REACTOME pathway analysis (Supplementary File S3; filtered list presented in
Table 2) revealed that most of the CSF proteins differing in abundance are involved in the
metabolism of proteins (26, p = 3.46 × 10−8), the immune system (19, p = 2.70 × 10−4),
hemostasis (19, p = 1.14 × 10−11) and the regulation of Insulin-like Growth Factor (IGF)
transport and uptake (19, p = 5.86 × 10−23). The major interacting proteins involved in the
most significant pathways are depicted in Figure 2.

Table 2. REACTOME pathways affected by intervertebral disc herniation in canine cerebrospinal fluid (filtered list based on
the relation to the disease). Complete list can be found in Supplementary File S3.

REACTOME Pathway Name ID # Genes # Background
Genes

Adjusted
p-Value

Regulation of Insulin-like Growth Factor (IGF)
transport and uptake by Insulin-like Growth Factor

Binding Proteins (IGFBPs)
HSA-381426 19 123 5.86 × 10−23

Post-translational protein phosphorylation HSA-8957275 13 106 2.79 × 10−14

Platelet activation, signaling and aggregation HSA-76002 16 256 1.04 × 10−13

Hemostasis HSA-109582 19 601 1.14 × 10−11

Extracellular matrix organization HSA-1474244 12 298 2.69 × 10−8

Metabolism of proteins HSA-392499 26 1948 3.46 × 10−8

Binding and uptake of ligands by scavenger receptors HSA-2173782 6 40 3.17 × 10−7
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Table 2. Cont.

REACTOME Pathway Name ID # Genes # Background
Genes

Adjusted
p-Value

Intrinsic pathway of fibrin clot formation HSA-140837 5 22 7.83 × 10−7

ECM proteoglycans HSA-3000178 6 75 7.48 × 10−6

Degradation of the extracellular matrix HSA-1474228 7 139 1.30 × 10−5

Post-translational protein modification HSA-597592 17 1366 6.26 × 10−5

Plasma lipoprotein remodeling HSA-8963899 4 30 7.28 × 10−5

Chylomicron remodeling HSA-8963901 3 10 1.20 × 10−4

Innate immune system HSA-168249 14 1012 1.20 × 10−4

Regulation of complement cascade HSA-977606 4 47 2.70 × 10−4

Neutrophil degranulation HSA-6798695 9 471 3.70 × 10−4

Crosslinking of collagen fibrils HSA-2243919 3 18 3.90 × 10−4

Metabolism of vitamins and cofactors HSA-196854 6 185 4.20 × 10−4

Amyloid fiber formation HSA-977225 4 78 1.30 × 10−3

Integrin cell surface interactions HSA-216083 4 83 1.60 × 10−3

Activation of matrix metalloproteinases HSA-1592389 3 33 1.60 × 10−3

Diseases associated with glycosaminoglycan
metabolism HSA-3560782 3 40 2.50 × 10−3

Collagen degradation HSA-1442490 3 64 7.20 × 10−3

Glycosphingolipid metabolism HSA-1660662 2 44 3.68 × 10−2

Glycosaminoglycan metabolism HSA-1630316 3 122 3.22 × 10−2

Figure 2. Interactome of pathways differentially expressed between control and intervertebral disc herniation (IVDH)
groups and their intermediate proteins. The network was visualized using the Cytoscape using the results of REACTOME
pathway analysis and protein-protein interactions identified with STRINGdb. Proteins overexpressed in IVDH are in red,
lower-expressed are in blue.
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The differences in protein abundance revealed by MS-based proteomic analysis were
evaluated by measuring the activity of paraoxonase 1 (PON1) as well as albumin concentra-
tion in CSF samples to validate the proteomic results. Significant changes in the abundance
of albumin (difference between means ±SEM = 1522.0 ± 423.4; p = 0.0058) and PON1
activity (difference between means ±SEM = 189.6 ± 77.79 mU/L; p = 0.0375) were found
in the IVDH group (Figure 3). The obtained results for albumin and PON1 are in line with
the proteomic findings; however, the validation results (if converted to fold change) have
higher fold changes than those obtained by proteomic analysis, which cloud be explained
by the sensitivity of TMT technology [18].

Figure 3. Analytical validation of proteomic results: (a) measured activity of paraoxonase 1 (PON1),
(b) albumin (ALB) concentration in cerebrospinal fluid of intervertebral disc herniation (IVDH) group
compared to the control group. * p < 0.05 (p = 0.0375 herein), ** p < 0.01 (p = 0.0058 herein).

2.2. Metabolomics

Global metabolome analysis using the zwitterionic-polymeric hydrophilic interaction
chromatographic separation of metabolites in CSF resulted in 2941 peaks representing
metabolic features, which were annotated by database search or identified on the ba-
sis of mass and mass/retention time match to known standards, respectively. Among
them, 55 unique compounds were matched to a known standard and another 3798 poten-
tial metabolites were annotated in (Polyomics integrated Metabolomics Pipeline) PiMP,
using available databases. The list of metabolites generated using PiMP software is
available in Supplementary File S4. A PCA score plot revealed that the metabolomic
profiles of the studied groups (healthy control and IVDH) could be clearly distinguished
(Supplementary Figure S3) and 291 metabolic features referring to 73 metabolites according
to PiMP analysis (Figure 4a, Supplementary File S4) were significantly changed. Addition-
ally, 14 significantly changed metabolites were identified using standards (Table 3, Figure
4b). Total ion chromatograms showing CSF metabolites for both groups in positive and
negative ion mode are shown in Supplementary Figures S4–S7.



Int. J. Mol. Sci. 2021, 22, 11678 7 of 23

Figure 4. Statistical analysis of proteomics results: (a) Volcano plot of evaluated groups after false discovery rate (FDR)
correction. Proteins overexpressed in intervertebral disc herniation (IVDH) group are in red, lower-expressed are in blue.;
(b) Heatmap revealing the differentially expressed genes in the control and IVDH groups. Each row represents fold change
(FC) expressed as the log2FC of a single gene across all samples.

Table 3. List of identified (using authentic standards) significantly changed metabolites in cerebrospinal fluid of interver-
tebral disc herniation (IVDH) group compared to healthy dogs obtained using the Polyomics integrated Metabolomics
Pipeline (PiMP).

Higher in Abundance in IVDH Group
(Upregulated)

Higher in Abundance in Control Group
(Downregulated)

Peak ID Metabolite log2FC Adjusted
p-Value Peak ID Metabolite log2FC Adjusted

p-Value

693 Hydroxyproline 0.76 3.00 × 10−2 2325 Itaconate −3.78 5.1 × 10−10

23 Betaine 1.08 4.16 × 10−2 858 O-Acetylcarnitine −2.73 4.6 × 10−6

1789 Citrate 1.19 1.44 × 10−2 847 Pyridoxal −2.30 0.0017

1410 N-Acetyl-D-
glucosamine 1.46 5.00 × 10−4 2717 L-Methionine −2.16 0.0009

688 Adenine 1.51 1.50 × 10−2 2070 L-Glutamine −0.83 0.0002
217 L-Carnitine 1.65 1.51 × 10−2

24 Choline 1.79 1.46 × 10−2

466 L-Glutamate 2.51 3.10 × 10−2

245 Pyroglutamic acid 2.52 2.30 × 10−7

KEGG Pathway analysis performed in PiMP revealed the CSF metabolites changed
due to the IVDH are involved in C5-branched dibasic acid metabolism (p = 7.6 × 10−9),
D-glutamine and D-glutamate metabolism (p = 7.5 × 10−6), and Arginine and proline
metabolism (p = 2.8 × 10−4), among others, as reported in Table 4.
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Table 4. Metabolic pathways affected by intervertebral disc herniation in canine cerebrospinal fluid generated by the
Polyomics integrated Metabolomics Pipeline (PiMP) using KEGG Pathway.

KEGG Pathway Name Pathway ID Assigned
Formulas

Total Pathway
Formulas

Pathway
Coverage (%)

C5-Branched dibasic acid metabolism 99 7 21 33.33
D-Glutamine and D-glutamate metabolism 55 4 7 57.14
Glyoxylate and dicarboxylate metabolism 93 11 48 22.92

Ascorbate and aldarate metabolism 7 12 25 48.00
Arginine and proline metabolism 35 25 79 31.65

GABAergic synapse 218 3 9 33.33
Histidine metabolism 37 21 41 51.22
Butanoate metabolism 98 6 30 20.00

Pentose and glucuronate interconversions 4 8 23 34.78
Chlorocyclohexane and chlorobenzene degradation 41 3 57 5.26

Citrate cycle (TCA cycle) 2 4 15 26.67
Phosphotransferase system (PTS) 155 3 25 12.00

Cysteine and methionine metabolism 28 11 52 21.15
Glutathione metabolism 58 5 29 17.24

Proximal tubule bicarbonate reclamation 243 5 16 31.25
Glutamatergic synapse 215 2 7 28.57
Nitrogen metabolism 124 2 17 11.76

Vitamin B6 metabolism 106 4 29 13.79
Glycerolipid metabolism 73 4 14 28.57

ABC transporters 152 32 80 40.00
Alanine, aspartate and glutamate metabolism 24 9 23 39.13

Purine metabolism 20 10 78 12.82
Glycerophospholipid metabolism 76 3 23 13.04

HIF-1 signaling pathway 167 3 12 25.00
Zeatin biosynthesis 122 4 30 13.33

Bile secretion 251 10 89 11.24
Pyrimidine metabolism 23 13 56 23.21
Galactose metabolism 6 5 21 23.81

Mineral absorption 253 13 26 50.00

2.3. Integration of Omics Data

Subgroups of significantly differentially abundant protein and metabolite sets were
subsequently analyzed by applying both data-driven and knowledge based-approaches as
specified within the methods section. Firstly, in order to extract the important information
from the obtained omics features, PCA analysis was performed, showing the separation of
samples when plotted against the first two principal components (Supplementary Figure S8).
Furthermore, we built various classification models with integrated data from 16 significant
and identified metabolites and 73 significant and unique proteins. In addition, we used
two different algorithms for feature selection—recursive feature elimination (RFE) and
minimal-redundancy-maximal-relevance (mRMR) algorithm, and the results (in the form
of confusion matrices and feature ranks based on their importance) are reported in Figure 5.
The RFE algorithm showed two best models with 7 and 9 features selected, while the best
performance of mRMR algorithm showed one model with the top 30 ranked features. Since
these classification models are built upon a very small training set (only 9 samples), in
order to have some samples left for the test set (4 samples), we built a final classification
model from the features that were constantly selected, regardless of the algorithm. Thus,
features appearing in 2/3 models (RFE with 7 and 9 selected features and mRMR with
top 30 ranked features) were used for the final classification model. Selected features
for the final classification model were: follistatin Like 1 (FSTL1), secretogranin V (SCG5),
nucleobindin 1 (NUCB1), calcitonin receptor-stimulating peptide 2 precursor (CRSP2),
N-acetyl-D-glucosamine and adenine. The final model, as well as models that used the
RFE algorithm, correctly classified all the samples in the test set.
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Figure 5. Performance of different classification models on test data using different algorithms and options for feature
selection in the form of classification matrices: (A) minimal-redundancy-maximal-relevance (mRMR)–10 top-ranked features;
(B) mRMR–20 top-ranked features; (C) mRMR–30 top-ranked features, (D) recursive feature elimination (RFE)–7 features
selected; (E) RFE–9 features selected; (F) Combined mRMR (30 top-ranked features) and RFE (7 and 9 features selected)–only
features in overlap in 2/3 models were used (6 features).

Furthermore, to obtain the biological significance of our omics data, dual (metabo-
lite and protein) pathway analysis was performed using all significant proteomic and
metabolomic features. Both joint pathways that can be observed in the CSF due to IVDH
are shown in Table 5, Figure 6a and Supplementary File S5. Furthermore, the pathway-
based network of significant features was also visualized by Metascape (Figure 6b).
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Table 5. KEGG pathways affected by intervertebral disc herniation in dogs observed in cerebrospinal
fluid as obtained using MetaboAnalyst taking into consideration significantly deregulated proteins
and metabolites.

KEGG Pathway Name Total Features
in Pathway p/FDR * Impact *

Complement and coagulation cascades 80 5.83 × 10−2 0.3881
Cholesterol metabolism 60 1.99 × 10−4 0.0583

D-Glutamine and D-glutamate metabolism 18 7.86 × 10−3 0.3125
Glycine, serine and threonine metabolism 90 7.86 × 10−3 0.1059
Glyoxylate and dicarboxylate metabolism 92 7.86 × 10−3 0.1136

Prion diseases 38 4.54 × 10−2 0.0313
Mineral absorption 87 4.87 × 10−2 0.0118

* The p-value after false discovery rate (FDR) correction was calculated during the pathway enrichment analysis
in while the pathway impact value was calculated from the pathway topology analysis in MetaboAnalyst.

Figure 6. (a) Joint pathway enrichment analysis performed in MetaboAnalyst reveals the key pathways in cerebrospinal
fluid affected by intervertebral disc herniation (IVDH) in dogs. (b) Pathway-based Compound-Reaction-Enzyme-Gene
(C-R-E-G) network obtained using significantly deregulated genes and metabolites visualized in Cytoscape plugin Metscape
(nods: blue—gene, red—compound/metabolite, green—enzyme). Highlighted blue (gene) and red (metabolite) nods
represent input data. Enlarged feature names, together with the metabolic pathways, represent the features closely related
to the IVDH. The C-R-E-G network is also available as a Supplementary File for better insight into various features
(Supplementary Figure S9).

3. Discussion

Spine-related disorders represent significant health concerns for both humans and
dogs, affecting the quality of life. Histologic, biomechanical, compositional and clinical
similarities have enabled comparative studies between these species, making the canine
IVDH model tremendously useful for both understanding the pathophysiology of disease
and validating novel therapies prior to clinical trials [19]. The degenerative disc changes
are commonly diagnosed by magnetic resonance imaging (MRI), X-ray or computed
tomography (CT) scans [20]. Furthermore, total protein concentration elevation in CSF
partially reflects the functional status of the nerve root (e.g., nerve root compression),
leaking of plasma proteins through the blood–nerve root barrier into the CSF or can
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be indicative of a tumor [21,22]. However, the total protein concentration difference is
mostly not significant in the CSF of IVDH dogs, in line with our previous research [22].
Finally, the pathogenesis involves multiple molecular events that cannot be identified by
applying the above-mentioned methods and requires a more advanced systems approach.
Understanding those molecular events may provide a better understanding of imbalances
which could lead to more effective personalized treatments [20,23]. To obtain an insight
into the complex biological processes in IVDH occurring at the molecular level, we used
the novel integrative multi-omics approach, involving the integration of high-resolution
mass spectrometry-based proteomics and global metabolome profiling data, which has not
previously been applied in IVDH in human or veterinary medicine in IVDH. In relation to
this current topic, and according to the best authors’ knowledge, IVDH-related proteomic
studies have been published to address quantitative analyses of IVD [24], secretome
and proteoglycan in canine NP [25], as well as gel-based approaches in human CSF in
IVDH [26]. Although there are recent papers reporting multi-omics (e.g., proteomics,
metabolomics, transcriptomics and genomics) studies contributing to the identification of
potential biomarkers in neurovascular diseases [27], the use of biostatistical omics data
integration is still at an early stage [28].

In our study, the LC-MS/MS analysis of TMT-labelled CSF tryptic peptides enabled
the identification of 73 master proteins involved in calcium binding, lipid, vitamin and
amino acid metabolisms as well as immune response, presenting the potential protein
biomarker candidates of IVDH. This information, although valuable for further potential
clinical diagnostic application, requires further studies and clinical validation. Accordingly,
it can be expected that some proteins, with regards to their abundance in the CSF, are
showing limited biological intra-individual variations in the CSF due to age and gender
(proteins that originate from blood, serotransferrin, vitamin D-binding protein, ganglioside
GM2 activator, beta-2-glycoprotein) unlike inflammatory proteins and proteins specific to
CNS in humans [29]. Based on the PCA plot (Supplementary Figure S1), it can be observed
that global proteomic profiles of selected individual animals within groups are not so
consistent; however, they are clearly separated from the control group. It can be concluded
accordingly that the changes in abundance are at their highest extent caused by the disease.

MS results presented herein were analytically validated by quantitative measurements
of albumin concentration and enzyme activity of PON1 in the CSF of IVDH dogs compared
to the control group, where the CSF of five dogs with IVDH (not previously used for omics
analyses) and the CSF of six healthy dogs were used. The proteins used for validation were
selected based on both biological importance and test availability. Albumin is the major
protein in CSF, exclusively produced by the liver; thus, its concentration in CSF depends on
the blood–brain barrier (BBB). If total protein concentration in the CSF increases, albumin
concentration increases disproportionally due to molecular size and blood–brain barrier
(BBB) disruption. Since albumin was found to be abundant in the CSF of human patients
following incomplete spinal cord injury at 1–8 days post-injury, being a potential biomarker
for spinal cord injury progression and recovery [30], it was selected for analytical validation.
In our study, elevated concentration of albumin in the CSF of IVDH group revealed by TMT
label-based proteomics was also confirmed by using immunoturbidimetric assay (Figure 3).
The antioxidant PON1 has an anti-inflammatory role and was documented in the serum,
CSF, and brain, suggesting its activity in neurodegenerative disease. Furthermore, PON1
plays an important role in keeping the homeostatic balance of intervertebral disc and for
this reason, it was selected for analytical validation. Unlike in our results, CSF PON1
activity was reported to decrease with the progression of neurodegenerative diseases and
Alzheimer’s disease, as well as dementia [18]. However, plasma PON1 activity in animal
models of spinal cord injury increases [31] and the cases studied in this investigation were
more related to this type of injury rather than degeneration and lead to an increase in PON1.
Increased levels of PON1 and its activity can be explained by PON1 having a protective
role in the early phase of oxidative stress because of antioxidant enzyme consumption [31].
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The increase in CSF PON1 activity was also obtained by assay, using p-nitrophenyl acetate
as a substrate herein, confirming the proteomic findings.

The CSF metabolomics profile mainly reflects brain metabolic processes but also
consists of intermediate and end products of neurotransmission and energy metabolism.
Among others, metabolic changes in CSF can be caused by various pathophysiological pro-
cesses, such as inflammation or response to oxidative stress responses [32], which was also
the case in IVDH dogs in our study. To fill the existing gaps in IVDH-related knowledge,
it is necessary to obtain detailed insight into the metabolomic profile. We are aware that
due to metabolite diversity, it is impossible to cover all metabolites by a single method
and/or using only one analytical platform, and this is probably the reason why some, for
example, lipid metabolites related to lipid peroxidation, neuroinflammation and changes in
antioxidant compounds like glutathione [32,33] were not identified/detected as changed in
the CSF herein. However, although known IVDH-related important metabolites might be
absent, pathway analysis revealed that C5-Branched dibasic acid metabolism, D-Glutamine
and D-glutamate metabolism, Arginine and proline metabolism, Glutathione metabolism
and Nitrogen metabolism are significantly affected by IVDH. All above-mentioned path-
ways were reported significantly affected in spinal cord damage, including demyelination
in multiple sclerosis [33]. Branched-chain amino acids are crucial for brain metabolism
and function as they are an important source of pyruvate in energy metabolism and serve
as nitrogen donors in protein synthesis [34]. Arginine metabolism, nitrogen metabolism
and glutathione metabolism are linked to oxidative stress. Arginine serves as a precursor
to nitric oxide and changes within arginine metabolism might result in the synthesis of
nitric oxide. The formation of reactive nitrogen species is cytotoxic for nerves, promoting
myelin destruction [34]. Although we did not find the glutathione itself to be aberrant,
as a protective compound against oxidative stress by oxidizing to glutathione disulfide
(GSSG) with a simultaneous reduction of H2O2, the concentration alliteration of metabo-
lites such as pyroglutamic acid [35] revealed the deregulation of glutathione metabolism
in IVDH. The elevation of pyroglutamic acid has not yet been related to IVDH, unlike
anion-gap metabolic acidosis [36] or cancer [37], according to the authors’ knowledge.
Affected metabolic pathways and the alliteration of antioxidant defense molecules such
as an increase in superoxide dismutase type 1 (SOD1) imply that oxidative stress may
also play an important role in IVDH. IVDH-affected pathways in the CSF also included
D-glutamine and D-glutamate metabolism, and glutamate was also found to be signifi-
cantly elevated in IVDH dogs. Glutamate is the major excitatory neurotransmitter in the
CNS and its extracellular accumulation points out the abnormalities in the glutamatergic
neurotransmission [38]. Elevated concentrations of glutamate have catastrophic impacts
on nervous tissue due to the overstimulation of glutamate receptors, which can lead to
subsequent excitotoxic injury of glial cells and neurons [39]. The increase of glutamate in
the CSF has been related to several neurological and brain pathologies such as multiple
sclerosis, Alzheimer’s and Parkinson’s disease or during ischemia [39].

3.1. Integromics Model Reveals Key Molecules for IVDH

The main task of omics data integration, besides obtaining knowledge about disease
using various omics layers, is to be able to straightforwardly classify patients with a high
specificity based on the best omics feature selection. For our pilot study, the challenge was
to use a well-defined (as can be seen from the omics PCA plots, Figures 1 and 3) but small
population size with multiple proteomic and metabolomic features for the selection of the
most suitable data-driven and data-mining tools in order to define the pathways and the
CSF features best representing the IVDH in dogs that can be used for disease diagnosis,
monitoring and/or progression. Data-driven statistical methods integrate multi-omics
data sets performing sample clustering or classification, equalizing the contribution of
different omics data which could ignore biological relationships between different types of
molecules [17]. Since better performance can be achieved by combining several selection
algorithms [40], we used RFE and mRMR feature selection algorithms to integrate the
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analysis of multi-omics data addressing three major challenges [41], specifically the effect
of dimensionality, the differences in scales, and extracting the most relevant features
across different multi-omics results. mRMR and RFE algorithms have been applied widely
in omics analyses of gene expression data for glioblastoma prognosis [42] and cancer
classification [43].

In our study, the six most significant omics features selected by the optimal classifi-
cation model were FSTL1, SCG5, NUCB1, CRSP2, N-acetyl-D-glucosamine and adenine,
respectively. However, their biological role should be determined by data mining. Data
mining computational tools derive pathways and molecular interactions from the correla-
tion structures, which provides the results with the biological significance [17]. However,
biological knowledge (molecular interactions and pathway data) is under permanent
change by data curators due to new data generation and is thus biased, with the density
of connections in certain regions of the network affected by (in)completeness of experi-
mentally proven molecular interactions and their availability within databases [42]. To
determine the effectiveness of our classification model, data mining of biological signifi-
cance and the feature’s potential relation to IVDH revealed FSTL1, SCG and CRSP2 as key
molecules in studies addressing neuropathic pain [44]. Furthermore, NUCB1 was reported
as a novel pan-neuronal calcium handling marker, correlated to Alzheimer’s disease [45].
Unlike those, N-acetyl-D-glucosamine has a neuroprotective role as a regulator of primary
myelination and myelin repair and is of importance in demyelinating diseases like multiple
sclerosis [46]. Finally, adenine is, as one of the purines, involved in neuromodulation,
neurotransmission, activation of differentiation and neuritogenesis of precursor cells and
neurons. Additionally, purines also contribute to immunological response due to astro-
cytes and microglia activation, initiating the inflammatory reactions [46]. The diagnostic
significance and potential are yet to be examined by further studies.

3.2. Integrative Omics Analysis Reveals Key Processes Referring to IVDH

Although not easily accessible as serum or saliva due to technical and ethical reasons
(especially in the case of healthy individuals), CSF was proven to be a very informative
biofluid for omics analyses. Herein, by using an integromics approach of proteomic and
metabolomic data, we demonstrated that a plethora of events occurs in IVDH in dogs, that
can be observed by CSF analyses at the molecular level (Figure 7). Multiple features were
found, revealing the most common anomaly—a manifestation of degenerative changes in
terms of collagen (COL1) degradation, causing IVDH, which may result in nerve damage,
spinal cord injury (such as deficiency of apolipoprotein E (APO E)) [47] and neuropathic
pain (such as a higher representation of mimecan and/or apolipoprotein C1) [48].

Annulus fibrosus, the outer layer of intervertebral disc, is, together with elastin,
fibroblast-like cells and proteoglycans composed of collagen type I [3]. Collagen is a bio-
logical polymer continually synthesized and degraded in the extracellular space. However,
among dogs with IVDH, excessive collagenolysis has been demonstrated in diseases such
as atherosclerosis, arthritis and even cancer. Collagen is composed of tropocollagen, con-
taining repeating triplets of amino acids X1, X2 and glycine (X1–X2–G), with many X1/X2
occupied by either proline or hydroxyproline [49]. Integrated omics and metabolomic
analyses emphasized the glycine, serine and threonine metabolism pathways as signifi-
cantly affected by IVDH, with 17 annotated and 7 identified metabolites (45% coverage,
as shown in Table 3), as well as the arginine and proline metabolism pathways having
31 annotated and 7 identified metabolites (42% coverage, as shown in Table 3). In our
study, 4-hydroxyproline was found to be elevated in the CSF of the IVDH group, showing
collagen degradation [50]. Following annotation based on molecular ion m/z and fragment
ions (Supplementary File S4), other collagen fragments presented as series metabolites
isoleucyl-proline, glycyl-hydroxyproline and valyl-glycine, and were also found to be
different in concentration in the IVDH group (however, not significantly according to our
results). Unlike previous metabolomic studies of collagen degradation-related diseases
in nerve, serum and/or urine, other collagen degradation products such as amino acids
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(glycine, proline, alanine, leucine and valine) were not found to be significantly changed in
this study, which might be related to the analytical method/platform selectivity or degree
of disc degradation [50–52]. Interestingly, the statistically lower abundance of collagen
(COL1) was also found in the CSF of dogs in the IVDH group, which might be explained
by collagen deposition during wound healing [53].

Figure 7. Complex processes occurring in cerebrospinal fluid of dogs with intervertebral disc herniation (IVDH) revealed
by integrative omics approach pointing out the key molecules (in bold) proposed by our classification data-driven model.
Related proteins: follistatin Like 1 (FSTL1), calcitonin receptor-stimulating peptide 2 precursor (CRSP2), secretogranin
(SCG), nucleobindin 1 (NUCB1), Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2), transthyretin (TTR),
gelsolin (GSN), apolipoproteins (APO A1 and APO C1), C-C Motif Chemokine Ligand 23 (CCL23), Complement C1r (C1R),
Serpins (SERPIN F1 and G1), matrix metalloproteinases (MMP) and collagen 1 (COL1).

When collagen degrades, the fibrous ring ruptures and the protrusion of the nucleus
pulposus can press on a nerve root and/or the spinal cord, bursting the nucleus of the disc
and damaging the nerve and compressing the spinal cord. Interestingly, unlike altered
proteins related to spinal cord injury (transferrin–TF, matrix metalloproteinases–MMPs,
insulin-like growth factor 1–IGF-1 and apolipoprotein E–APO E) [54,55], no metabolites
reported in both untargeted and targeted metabolomics SCI-related studies [56] were found
to be altered. This might be explained by the severity of SCI itself in the IVDH group,
which was mild. However, we found evidence of wound-healing events such as myelina-
tion and myelin repair (N-acetyl-D-glucosamine, MMPs), angiogenesis and neurogenesis
(MMPs). Due to spinal cord compression and nerve injury, inflammation and/or ischemia
occur, which are important processes of disc herniation. Changes in inflammation markers
were associated with proteins such as APO A1, C-C Motif Chemokine Ligand 23 (CCL23)
and MMP2. APO A1 is the principal protein fraction of high-density lipoproteins (HDL),
involved in reverse cholesterol traffic, as well as inflammatory and immune response. It has
a protective role against cardiovascular diseases and neuroinflammation in neurodegenera-
tive diseases [57]. Furthermore, CCL23 was found to be deranged in the CSF in our study.
Unlike some other studies addressing neuroinflammation where it was increased, albeit not
significantly [58], neuroinflammation was in contrast found to be decreased in our study.
CCL23 is a chemokine—a circulating and tissue-inflammatory molecule, being a chemo-
tactic factor for monocytes/macrophages, dendritic cells and lymphocytes, up-regulating
proinflammatory cytokine release. CCL23 was proposed to be a blood biomarker for the
early diagnosis of cerebral damage [59]. CCL23 is expressed in response to IL-4 and LPS,
TNFα and IFN-γ and signals through CCR1 [60]. In our case, the patients had acute IVDH,
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and the enzymatic cascade enabling the release of CCL23 was probably not yet activated.
Matrix metalloproteinases (MMPs) are involved in the pathogenesis of neuroinflammatory
diseases [61]. MMP2 (72-kDa gelatinase A) can be found in a healthy brain, in neurons
from the cortex, cerebellum and CSF. It was found to be decreased in the CSF of the IVDH
group, as reported in neuroinflammation [62]. Additionally, MMP2 specifically cleaves
type IV collagen, the major structural component of basement membranes, increasing the
permeability of BBB. MMP-2 is also important in remyelination, angiogenesis and neuroge-
nesis [62]. Inflammation processes caused by cell injury/tissue damage initiate both innate
and adaptive immune responses, which was also determined in our study [63]. Multiple
proteins already documented as being involved in the maintenance of CNS and immune
surveillance against injured cells have been altered in IVDH dogs; for instance, complement
C1R, whose activity is tightly regulated to protect host cells, and its regulator SERPIN
G1 (which binds to and inactivates C1r, C1s and MASP-1/2 proteases) [64]. Lower levels
of serpin protein C1 inhibitor activate kinin pathways and increase levels of bradykinin
in the blood, which is responsible for capillary leakage and angioedema [65]. Cell injury
(tissue damage), nerve root compression and swelling, as well as disc inflammation, may
have an important role in pain generation. The bioinformatic analysis of CSF proteins
related to neuropathic pain gathered from multiple studies [66] identified three groups of
proteins involved in inflammatory responses (APO A1, APO C1 [49], SERPIN F1), immune
responses (ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), transthyretin
(TTR), gelsolin (GSN)) and metabolic processes (albumin, prothrombin (F2)), and these
were all found changed in our study. The application of metabolomics in pain research
is still at an early stage [67]. Notwithstanding this issue, the metabolomics of the CSF in
pain patients revealed that neuropathic pain alters sphingomyelin–ceramide metabolism,
nervous tissue damage (alanine, taurine) and inflammatory processes (choline) [67–69].
Choline, which was found to be elevated in IVDH dogs in our study, is a metabolite related
to glial activity, and its elevation was found to be linked with worse pain interference [69].

Our pilot study using canine clinical samples was constrained by sample size restric-
tions (especially in the control group due to animal ethical guidelines), as well as CSF
sample volume availability, testing research hypotheses in a small number of subjects.
Furthermore, ideal matching based on canine age and the weight of the control group
compared to the study group was not possible for operational reasons (especially related to
owners’ consent for CSF collection in healthy dogs and ethical guidelines). However, our
findings are considered to be a valid indication of the change in CSF due to intervertebral
disc herniation.

4. Materials and Methods
4.1. Experimental Design

A total of 14 client-owned dogs presented to the veterinary clinics of the Faculty
of Veterinary Medicine, University of Zagreb, Croatia, as well as 6 shelter dogs were
involved in this pilot study. The sample size was determined based on recommendations
for statistical consideration of optimal clinical study design in proteomics in preliminary
studies for biomarker discovery [70,71], taking into consideration gender, age, sample
type, quantification method (isobaric labeling) and availability of samples due to ethical
restrictions (it is ethically not acceptable to collect CSF in healthy dogs for the purpose
of scientific research, only because the procedure of sampling requires general anesthesia
and cerebellomedullary puncture, which is an invasive method). The current pilot study
was provided to patients who were treated at the Veterinary Faculty, University of Zagreb.
The owners signed a written consent for participation in the study on the acceptance
of the risk of anesthesia and surgical procedure. All dogs were submitted for a general
physical examination, and general hematology was performed. Prior to general anesthesia,
pre-anesthetic assessment of patients was performed.

The omics studies involved canine patients classified into two groups. Healthy dogs
(control group) (N = 6) were mixed breeds (20 kg average body weight), age 2–6 years,
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while the intervertebral disc herniation group (N = 9) were mixed breeds (body weight
6–15 kg), age 6–12 years. In IVDH dogs, disc herniation was detected in T13/L1/L2
discs by CT. The dogs in IVDH group were paraplegic with preserved deep pain reflex
and underwent a surgical procedure for decompression of the spinal cord. Additionally,
5 samples from IVDH group not used for omics studies were randomly selected for the
analytical validation (age 6–12 years). The Ethical Committee at the Faculty of Veterinary
Medicine, University of Zagreb, Croatia approved the research (No. 640-01/18-17/67;
Record No. 251-61-21/333-18-01).

4.2. Sample Collection

Cerebrospinal fluid was sampled under general anesthesia from cisterna magna prior
to operation. Induction to general anesthesia was obtained with propofol (Propofol®,
Abbott, Maidenhead, UK), administered intravenously and maintained with sevoflurane
(Sevorane®, Abbott, Maidenhead, UK) applied through an endotracheal tube. Anesthesia
was adjusted to minimally interfere with cerebral blood flow and intracranial pressure [72].
The CSF was collected into sterile Eppendorf tubes (size 1.5 mL), immediately centrifuged
at 3000× g at 4 ◦C for 5 min, aliquoted into Eppendorf tubes (size 1.5 mL) to avoid multiple
freeze-thaw cycles and stored at −80 ◦C till analyzed. All samples were collected within
6 months.

4.3. Proteomic Analysis

Proteomic analysis of CSF samples (IVDH N = 9 and control N = 6) was performed by
using a gel-free TMT-based quantitative approach, as described previously [18]. In short,
total protein concentration was determined using a bicinchoninic acid assay (BCA assay)
(Thermo Scientific, Rockford, IL, USA). An internal standard was prepared by mixing equal
protein amounts of each CSF sample. An amount of 35 µg CSF proteins was diluted to a
volume of 100 µL using 0.1 M triethylammonium bicarbonate (TEAB, Thermo Scientific,
Rockford, IL, USA), reduced (5 µL of 200 mM dithiothreitol for 60 min, 55 ◦C) (Sigma
Aldrich, St. Louis, MO, USA), alkylated (5 µL of 375 mM IAA at 30 min, room temperature
in the dark) (Sigma Aldrich, St. Lois, MO, USA) and acetone-precipitated (600 µL, overnight,
−20 ◦C) (Merck, Darmstadt, Germany). The obtained protein pellets were dissolved in
50 µL of 0.1 M TEAB and digested using trypsin gold (1 mg/mL, Promega; trypsin-
to-protein ratio 1:35, at 37 ◦C overnight). For labeling, TMT tenplex reagents (Thermo
Scientific, Rockford, IL, USA) were prepared as recommended by manufacturers and 19 µL
of each reagent were used for labeling. The internal standard was labeled with TMT m/z
131, while other samples were randomized within two TMT experiments. Labeling reaction
was quenched by 5% hydroxylamine (Sigma-Aldrich, St. Louis, MO, USA). Per experiment,
nine TMT-labelled peptide samples were combined with the internal standard, aliquoted,
dried and stored at −80 ◦C for subsequent LC-MS/MS analysis.

High-resolution LC-MS/MS analysis was performed using an Ultimate 3000 RSLC-
nano system (Dionex, Germering, Germany) coupled with a Q Exactive Plus mass spectrom-
eter (Thermo Fisher Scientific, Bremen, Germany) as reported elsewhere [18]. Differentially
TMT-labelled peptides were desalted on the trap column and separated on the analytical
column (PepMap™ RSLC C18, 50 cm × 75 µm, Thermo Scientific, Rockford, IL, USA) using
linear-gradient 5–45% mobile phase B (0.1% formic acid in 80% ACN) over 120 min, at the
flow rate of 300 nL/min. Mobile phase A consisted of 0.1% formic acid in LC-MS-grade
water. Ionization was achieved using a nanospray Flex ion source (Thermo Fisher Scientific,
Bremen, Germany) equipped with a 10 µm-inner diameter SilicaTip emitter (New Objective,
Littleton, MA, USA). The MS operated in positive ion mode using DDA Top8 method. Full
scan MS spectra were acquired in range from m/z 350.0 to m/z 1800.0 with a resolution
of 70,000, 120 ms injection time, AGC target 1E6, a ± 2.0 Da isolation window and the
dynamic exclusion 30 s. For HCD fragmentation, step collision energy (29% and 35%
NCE) with a resolution of 17,500 and AGC target of 2E5 were used. Precursor ions with
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charge states of +1 and more than +7, as well as unassigned charge states, were excluded
from fragmentation.

For protein identification and reporter ion-based relative quantification, the SEQUEST
algorithm implemented into Proteome Discoverer (version 2.3., Thermo Fisher Scientific,
Bremen, Germany) was applied. Database search against Canis lupus familiaris FASTA
files (downloaded from NCBI database 04/04/2019, 172,083 entries) was performed using
parameters as follows: two trypsin missed-cleavage sites, precursor and fragment mass
tolerances of 10 ppm and 0.02 Da, respectively; carbamidomethyl (C) fixed peptide modifi-
cation, oxidation (M) and TMT sixplex (K, peptide N-terminus) dynamic modifications.
The false discovery rate (FDR) for peptide identification was calculated automatically based
on decoy database by the Percolator algorithm within the Proteome Discoverer workflow
and was set at 1%. Proteins containing at least two unique peptides and 5% FDR were
reported as identified. The mass spectrometry proteomics data were deposited to the
Consortium via the PRIDE partner [73] repository with the dataset identifier PXD024921.

4.4. Analytical Validation of Proteomic Results

Frozen aliquots of CSF (IVDH N = 5 and control N = 6) were thawed to determine
paraoxonase 1 (PON1) activity, as well as albumin (ALB) concentration using automated
biochemistry analyzer Abbott Architect c4000 (Abbott, Chicago, IL, USA). PON1 activity
was assayed using the method of Tvarijonaviciute et al. with p-nitrophenyl acetate (Sigma-
Aldrich, Saint Louis, MO, USA) as substrate [74]. Albumin concentration in CSF samples
was evaluated with human immunoturbidimetric assay (Microalbumin OSR6167 Beckman
Coulter, Brea, CA, USA) which was previously validated for use in canine CSF samples [75].

4.5. Untargeted Metabolomic Analysis

Metabolomics analysis of CSF samples (IVDH N = 7 and control N = 6) was performed
using an untargeted approach, as described [76]. In short, pooled sample was prepared by
mixing 10 µL of each sample (control and IVDH). Matrix blank sample contained extraction
solvent. For metabolite extraction, a volume of 25 µL of each sample was subjected to
chloroform/methanol/water (1:3:1, v/v/v) extraction on a vortex mixer for two hours
at 4 ◦C. All samples (CSF samples, pooled sample, matrix blank) were subsequently
centrifuged (13,000× g for 5 min at 4 ◦C). The supernatant (200 µL) was stored at −80 ◦C
until LC-MS/MS analysis.

Metabolite extracts were separated on a 4.6 mm × 150 mm zwitterionic-polymeric
hydrophilic interaction chromatography (ZIC-pHILIC) column (Merck SeQuant, Darmstad,
Germany) using Dionex UltiMate 3000 RSLC system (Dionex, Germering, Germany) cou-
pled to a Thermo Orbitrap Q Exactive Plus (Thermo Fisher Scientific, Hemel Hempstead,
UK) using a gradient of 80% to 95% of mobile phase A for 15 min at 25 ◦C and a flow rate
of 0.3 mL/min, as reported [76]. Mobile phase A contained 20 mM ammonium carbonate
in water and B contained 100% acetonitrile. The injection volume was 10 µL. Samples
were maintained in the autosampler at 5 ◦C prior to injection. The mass spectrometer
was operated by altering positive and negative modes with electrospray ionization at a
resolution of 70,000 and the full scan m/z range of 70–1050. The MS settings for positive
electrospray ionization were used as follows: source voltage of 3.8 kV, sheath gas 40 (ar-
bitrary units), auxiliary gas of 5 (arbitrary units) and capillary temperature of 320 ◦C. A
standard mix containing a mix of 148 authentic compounds—metabolites—was used for
metabolite identification. A standard mix (containing reference compounds for metabolite
identification) and quality control samples used in metabolomics analysis herein were
kindly donated by Dr. Richard Burchmore, Glasgow Polyomics, College of Medical, Veteri-
nary and Life Sciences, University of Glasgow, UK. Metabolomics data were deposited to
the EMBL-EBI MetaboLights [77] database (DOI: 10.1093/nar/gkz1019, PMID:31691833)
with the identifier MTBLS2689.

Metabolomics data were analyzed using the Polyomics integrated Metabolomics
Pipeline (PiMP), available at http://polyomics.mvls.gla.ac.uk (accessed on 14 January

http://polyomics.mvls.gla.ac.uk


Int. J. Mol. Sci. 2021, 22, 11678 18 of 23

2021), using standard workflow and default parameters [78]. In short, raw data was
converted from the ‘RAW’ file format (Thermo Scientific) to an open-source ‘mzXML’ file
format, centroided and split into positive and negative polarities using MSConvert tool [79].
Metabolite identification was performed in PiMP, following Metabolite Standards Initiative
guidelines by matching retention times and accurate masses of detected peaks with either
the authentic standards or were annotated (assigned putatively based on accurate masses)
using metabolite libraries search (e.g., The Human Metabolome Database, HMDB, and/or
Kyoto Encyclopedia of Genes and Genomes, KEGG) integrated within PiMP standard
workflow. The metabolic maps provided within PiMP software were derived from the
KEGG database.

4.6. Statistical and Bioinformatic Analyses
4.6.1. Proteomics

Proteins that had more than 50% missing values were excluded from the subsequent
statistical analysis. Statistics were performed using R v3.2.2 [80]. Sample outliers were
detected per each group for each protein using Dixon’s test from R package outliers
v0.14 [81]. Significant outliers (p < 0.05) were removed from further analysis. To test the
difference in protein abundance between groups, Mann–Whitney U test was performed.
Fold change (FC) between two groups was calculated as mean(IVDH)/mean(control) and
expressed on log2 scale. PCA and volcano plots were designed using R package ggplot2
v3.1.1 [82].

For bioinformatics, proteins GI accession numbers were converted into official gene
symbol by DAVID conversion tool (https://david.ncifcrf.gov/conversion.jsp, accessed
on 19 March 2021) and UniProtKB ID mapping (https://www.uniprot.org/uploadlists/,
accessed on 19 March 2021). Protein–protein interactions and REACTOME pathway
analysis was performed using STRINGdb v11.0 (https://string-db.org/, accessed on 26
March 2021) [83], with the selection of Canis lupus familiaris default settings with the
exception of no more than 5 interactors to show in the 1st shell. Networks of relationship
between REACTOME pathway and proteins with significantly differential abundances
between groups were designed using Cytoscape v.3.7.1. (https://cytoscape.org/, accessed
on 10 June 2021) [84]. Annotation terms (GO Biological process, GO Molecular function,
GO Cellular component) were generated using Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.7. (https://david.ncifcrf.gov/, accessed on 10 June
2021) [85].

4.6.2. Proteomic Data Validation

The significance of PON1 activity within CSF samples of healthy and IVDH dogs, as
well as albumin concentrations in CSF, was determined by applying the Mann–Whitney U
test within GraphPad Prism software (v.8.4.2.).

4.6.3. Metabolomics

Metabolomics raw data were submitted to the PiMP for metabolite annotation/
identification, statistical analysis and metabolic pathway analysis using a standard work-
flow [78]. One group-wise comparison was undertaken to identify differences between
control and IVDH group (fold changes expressed as log2FC). Peaks with an (Benjamini–
Hochberg) adjusted p-value less than 0.05 were considered significant. Further analyses
and visualization of PiMP-exported data (peak intensities, log2FC and FDR values of
identified/annotated metabolites) were performed using R v.3.2.2. (volcano plot, PCA plot
and heatmap) [80].

4.6.4. Statistical Omics Data Integration

Significantly altered and identified metabolites, as well as significantly altered proteins
related to unique genes were merged to build a classification model where only the most
associated proteomic and metabolic features would be able to discriminate between healthy
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dogs and dogs diagnosed with disc herniation. First, samples that have both proteomic and
metabolomic data (6 controls and 7 IVDH samples) were randomly divided into training
and test set in a 70:30 ratio, leading to 9 samples in the training set and 4 samples in the test
set. Metabolic data were first log-transformed for further use. The training set was then
scaled, centered and the possible missing values were imputed using K-nearest neighbor
imputation. We performed elastic net logistic regression with 5-repeated 10-fold cross-
validation to fit the training set. Features were then ranked according to their importance
and the model was applied on the test set whose performance was evaluated with a
confusion matrix. Due to the multicollinearity issue when dealing with small sample size
and large number of integrated proteomic and metabolic features, we applied two feature
selection algorithms to reduce the number of features to fit the model. One was recursive
feature elimination (RFE) algorithm with 5-repeated 10-fold cross-validation and different
numbers of features to retain the most important ones. The second one was minimal-
redundancy-maximal-relevance (mRMR) algorithm, which ranks features based on their
correlation with the output but removes redundant features. For this, we considered the
first 10, 20 and 30 ranked features. R packages caret [86] version 6.0-86, glmnet [87] version
4.0-2 and mRMRe [88] version 2.1.0 were used to build classification models.

4.6.5. Bioinformatic Omics Data Integration

Joint-pathway analysis of metabolites (compound name with matching fold changes
used as input) and proteins (official gene symbol with matching fold changes used as input)
that were significantly changed due to IVDH was conducted in MetaboAnalyst v.4.0. by
applying Homo sapiens (human) as model organism. Further visualization was performed
in Cytoscape plugin Metscape [89] v3.1.1. to identify enriched metabolic pathways. For the
analysis, the lists of significantly changed genes and metabolites were imported into the
Metscape, and human was set as a model organism, to obtain pathway-based Compound-
Reaction-Enzyme-Gene (C-R-E-G) network using standard workflow.

5. Conclusions

Complex conditions, such as IVDH, require a systems biology-based approach that can
reveal not only progressive structural and functional changes of patients but also various
pathophysiological processes that could be linked to the disease severity and patient’s
outcome. For that reason, we applied proteomic and metabolomic analyses combined with
the state-of-the-art bioinformatics tools to obtain insight into the various molecules affected
by IVDH. We set up a prediction model to examine the most important CSF features
involved in IVDH with diagnostic potential and identified the key molecules, namely pro-
teins FSTL1, SCG5, NUCB1 and CRSP2 and the metabolites N-acetyl-D-glucosamine and
adenine, involved in neuropathic pain, myelination, neurotransmission and inflammatory
response, respectively. Their clinical application requires further clinical validation and the
development of suitable tests for routine analysis. The integromics approach provided new
deeper insights into a number of mechanisms and molecular pathways affected in IVDH,
which could not be observed or distinguished by exclusively monitoring the individual
omics layers, not to mention current diagnostic methods. Our approach and obtained
results contribute to the improvement of treatment strategies and personalized care for
patients with degenerative spinal disorders.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms222111678/s1, Supplementary File S1. List of PSMs, peptides, proteins, master proteins
and protein groups identified in CSF of healthy dogs and dogs with IVDH obtained by TMT-based
proteomics; Supplementary File S2. Differentially abundant proteins in CSF of healthy dogs and
dogs with IVDH: Supplementary File S3. Gene ontology and pathway analyses of differentially
abundant proteins in CSF of healthy dogs and dogs with IVDH; Supplementary File S4. Metabolomics
profiling of CSF of healthy dogs and dogs with IVDH revealing peaks, identified and annotated
metabolites, metabolic pathways and metabolic maps; Supplementary File S5. Joint pathway analysis
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of differentially abundant CSF proteins and metabolites generated in MetaboAnalyst reveals the
pathways affected by IVDH in dogs.
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