
Research Article
Integrated Analysis of miRNA-mRNA Interaction Network in
Porcine Granulosa Cells Undergoing Oxidative Stress

Xing Du, Qiqi Li, Qiuyu Cao, Siqi Wang, Honglin Liu, and Qifa Li

College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

Correspondence should be addressed to Qifa Li; liqifa@njau.edu.cn

Received 15 August 2019; Revised 18 September 2019; Accepted 1 October 2019; Published 4 November 2019

Academic Editor: José P. Andrade

Copyright © 2019 Xing Du et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Oxidative stress (OS), a common intracellular phenomenon induced by excess reactive oxygen species (ROS) generation, has been
shown to be associated with mammalian ovarian follicular development blockage and granulosa cell (GC) impairment. However,
the mechanism involved in these effects remains unknown, and the effect of OS on the transcriptome profiles in porcine GCs has
not been fully characterized. In this study, we found that hydrogen peroxide-mediated oxidative stress induced porcine GC
apoptosis and impaired cell viability. Moreover, RNA-seq analysis showed that oxidative stress induced dramatic changes in
gene expression in porcine GCs. A total of 2025 differentially expressed genes (DEGs) were identified, including 1940
DEmRNAs and 55 DEmiRNAs. Functional annotation showed that the DEGs were mainly associated with cell states and
function regulation. In addition, multiple hub genes (FOXO1, SOD2, BMP2, DICER1, BCL2L11, FZD4, ssc-miR-424, and ssc-
miR-27b) were identified by constructing protein-protein interaction and DEmiRNA-DEmRNA regulatory networks.
Furthermore, a gene-pathway-function coregulatory network was established and demonstrated that these hub genes were
enriched in FoxO, TGF-β, Wnt, PIK3-Akt, MAPK, and cAMP signaling pathways, which play important roles in regulating cell
apoptosis, cell proliferation, stress responses, and hormone secretion. The current research provides a comprehensive
perspective of the effects of oxidative stress on porcine GCs and also identifies potential therapeutic targets for oxidative stress-
induced female infertility.

1. Introduction

In mammalian ovaries, less than 1 percent of the follicles are
mature and capable of ovulation, whereas the majority of the
follicles undergo atresia and degeneration during folliculo-
genesis and follicular development [1]. It is generally believed
that the fate of follicles is determined by the state of the
follicular granulosa cells (GCs) [2, 3]. Recent reports have
suggested that follicular atresia is mainly attributed to the
apoptosis of GCs [4] and nonapoptotic forms of programmed
cell death [5], which are mediated by a complex regulatory
network that consists of multiple factors, including environ-
mental factors [6], homeostasis [7], steroid hormones [8],
cytokine [9], and epigenetic regulators [10]. Besides, accumu-
lating evidence shows that the reactive oxygen species- (ROS-)
induced oxidative stress also plays an important role in regu-
lating the state and function of granulosa cells and even causes
several anovulatory disorders [11, 12].

Oxidative stress, a common phenomenon in mammalian
cells, is mainly caused by excessive ROS accumulation due to
redox unbalance and involved in multiple critical biological
processes [13, 14]. ROS are the natural byproducts of
intracellular aerobic metabolism occurring into the
mitochondria. Basel ROS concentration in normal cells can
be beneficial for maintaining physiological functions, but
excessive ROS accumulation disrupts cellular homeostasis
and leads to oxidative stress-induced cellular damage and
mitochondrial dysfunction [15–17]. It has been reported that
excessive ROS levels are generated and accumulated in cells
undergoing dramatic changes or processes that have a high
aerobic energy metabolism requirement, such as autophagy,
endoplasmic reticulum stress, carcinogenesis, and reproduc-
tion impairment [18–20]. During follicular development,
metabolic rates accelerate to meet the increased demand for
nutrients and energy, which inevitably generates excessive
ROS and further induces oxidative stress in follicles [21].
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Previous studies using hydrogen peroxide- (H2O2-) treated
mouse models have shown that oxidative damage can block
GC development and trigger follicular atresia [22]. However,
the underlying mechanism of oxidative stress-induced GC
injury and follicular atresia remains largely unknown.

In the current study, we attempted to identify the core
RNAmolecules and crucial pathways involved in the response
of porcineGCs to oxidative stress, by constructingmRNAand
miRNA expression profiles through high-throughput
sequencing technology. The differentially expressed (DE)
miRNA-mRNA regulatory axis and gene-pathway-function
interaction network associated with H2O2-induced oxidative
stress were also established. These data will lay a preliminary
foundation for further investigation of the biological mecha-
nisms of oxidative stress-induced porcine GC apoptosis and
provide opportunities for the future development of
molecular-targeted therapy for oxidative stress-induced
female infertility.

2. Materials and Methods

2.1. Cell Culture and H2O2 Treatment. Porcine granulosa
cells were derived from healthy ovarian follicles (diameter
3-6mm) by using syringe with a 22-gauge needle and
cultured into a DMEM/F12 medium with 10% fetal bovine
serum (FBS) at 37°C in a 5% CO2 incubator as previously
described [10, 23]. For H2O2 treatment, the medium was first
changed by DMEM/F12 without FBS for 12 h and then H2O2
were added into the medium with the final concentration at
150 μM for 3 h. The morphological features of porcine
granulosa cells after H2O2 treatment were observed and
recorded in Figure 1S. This study was reviewed and
approved by the Animal Ethics Committee of Nanjing
Agricultural University, China (SYXK (Su) 2015-0656).

2.2. ROS Measurement. A Reactive Oxygen Species Assay Kit
(#S0033, Beyotime, Haimen, China) was used to measure
ROS levels in porcine GCs according to the manufacturer’s
instructions. Briefly, dichloro-dihydro-fluorescein diacetate
(DCFH-DA) was diluted 1 : 1000 with a DMEM/F12 medium
without FBS, to a concentration of 10 μM. Porcine GCs were
then submerged in 1mL of DCFH-DA (10μM) for 20min at
37°C. After incubation, cells were washed three times with a
non-FBS medium and H2O2 was added to the medium for
2 h at a final concentration of 150 μM. The entire procedure
was performed in a darkroom. ROS levels in porcine GCs
after treatment with H2O2 were detected by fluorescence
microscopy and flow cytometric analysis.

2.3. Cell Apoptosis and Viability Analysis. To detect the
apoptosis rate of porcine GC, Annexin V-FITC and propi-
dium iodide (PI) were used according to the protocol
(Vazyme Biotech Co., Ltd). Briefly, 2 × 105 cells were
collected and dyed with Annexin V-FITC and PI for 10min
in a darkroom, which were then sorted by flow cytometry
with a cell counting machine (Becton Dickinson). FlowJo
software (TreeStar) was used for data analysis. The apoptosis
rate was calculated by the ratio of (cell numbers in Q2 and
Q3)/total cells. For cell viability detection, Cell Counting

Kit-8 (CCK-8, #K1018, APExBIO, USA) was used following
the manufacturer’s instructions. Briefly, porcine GCs were
seeded into 96-well cell plates, and after treatment with PBS
or H2O2, 10 μL CCK-8 was added into the medium and
incubated at 37°C for 2 h. Then, the absorbance (optical
density, OD value) of porcine GCs was detected by using a
microplate reader.

2.4. RNA Extraction, Library Preparation, and Sequencing.
Porcine granulosa cells after H2O2 treatment were collected,
and total RNA were extracted using the High purity RNA
extraction kit (#RP1202, BioTeke Corporation, Beijing,
China). The extracted RNA was run on 1.5% agarose gels
to detect degradation and contamination; their quantity
and quality were also estimated by the NanoDrop 3000
system (Agilent Technologies, USA). The cDNA libraries
for sequencing were prepared according to the modified
method [24] and subsequently sent for sequencing by
Biomarker Technologies Co. Ltd., Beijing, China. The
proportion of each category in relation to total clean tags
was determined, and sequences obtained from Sus Scrofa
RefSeq (Sscrofa 11.1) databases were used for reads mapping.
The raw transcriptome sequencing data have been submitted
to Sequence Read Archive (SRA) database of NCBI (acces-
sion number SUB6086396).

2.5. Bioinformatics Analysis

2.5.1. Differentially Expressed Gene Analysis. Raw data were
extracted and low-quality reads were removed through Perl
scripts developed by Biomarker Technologies Co. Ltd.
(Beijing, China). After quantile normalization, sequencing
data were log2 transformed and expression levels of each gene
in all samples were normalized as fragments per kilobase of
transcript sequence per million mapped reads (FPKM).
Differentially expressed genes (DEGs) between different
samples were detected by using the DESeq R package
(1.10.1), and P values were adjusted to control for the false
discovery rate (FDR). Significant DEGs (DEmRNAs and
DEmiRNAs) were identified using ∣ log2ðfold changeÞ∣ ≥ 1
and adjusted FDR < 0:05 as cut-off criteria.

2.5.2. Functional Annotation of Differentially Expressed
Genes. To assess the functions, roles, and biological processes
of the DEGs and their enrichment in different biological path-
ways, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were
performed by using online database, DAVID (the Database
for Annotation, Visualization and Integrated Discovery,
version 6.7, https://david.ncifcrf.gov/). A significance level of
P < 0:05 and an enrichment score > 2 were set as the thresh-
olds. For the functional annotation and miRNA/pathway
clustering of DEmiRNAs, the DIANA-miRPath v3.0 database
(http://www.microrna.gr/miRPathv3/) was used according to
the published instructions [25].

2.5.3. Protein-Protein Interaction Network Construction.
DEG-encoded proteins were chosen for construction of a
protein-protein interaction (PPI) network. Briefly, potential
or confirmed protein interactions were generated and
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analyzed using STRING online software (http://string-db
.org/), with a minimum confident interaction score > 0:9
(0-1) and the interacted protein amount ≥ 1. The PPI
network was then visualized using Cytoscape v3.7.1 software.
Hub genes were identified as the nodes with higher degrees
(top 5%) using CytoHubba functions. The Cytoscape
software MCODE package was performed to analyze the
modules in the PPI network.

2.5.4. Construction of DEmiRNA-DEmRNA Regulatory
Network and Functional Assessment. Target genes of DEmiR-
NAs were first predicted using the miRWalk v3.0 database
(http://mirwalk.umm.uni-heidelberg.de/search_mirnas/),
microRNA.org (http://microrna.org/), TargetScan (http://
www.targetscan.org/), and miRDB (http://www.mirdb.org/).
The common genes both belong to DEmiRNA targets and
DEmRNAs which have inverse expression relationship with
DEmiRNAs were chosen to analyze miRNA-mRNA pairs
and retained for DEmiRNA-DEmRNA regulatory network
construction through using Cytoscape software. To assess
the functions of these miRNA-mRNA regulatory networks,
DAVID was used for GO annotation and KEGG pathway
analysis of the differentially expressed target genes. Venn
diagram indicating the intersected genes was generated by a
Draw Venn Diagram online tool (http://bioinformatics.psb
.ugent.be/webtools/Venn/). Hub miRNAs were defined as
the miRNA nodes with higher degree (top 5%) in the
DEmiRNA-DEmRNA regulatory network.

2.6. Quantitative Real-Time PCR Validation. Total RNA
from porcine granulosa cells after H2O2 treatment was
reverse-transcribed into cDNA with three biological repeats
by using HiScript® III RT SuperMix for qPCR (+gDNA
wiper, #R323-01, Vazyme Biotech Co., Ltd.) according to
the manufacturer’s instructions. Several significant DEGs
were chosen for sequencing accuracy detection, and qRT-
PCR were performed by using AceQ qPCR SYBR Green
Master Mix (#Q111-03, Vazyme Biotech Co., Ltd, Nanjing,
China) on a StepOne Plus System (Applied Biosystems) with
three biological repeats. The experimental data were analyzed
using the 2-ΔΔCT method. The expression levels of coding
genes were normalized to that of GAPDH. U6 was chosen
as an internal control of miRNAs’ expression levels. The
primers used here were designed using the primer 5.0
software and listed in Supplementary Table S1.

2.7. Statistical and Data Analysis. Statistical analyses were
performed using GraphPad Prism 7.0 (GraphPad Software,
CA, USA) and SPSS 20.0 (SPSS, IL, USA). The compari-
sons were conducted by a two-tailed Student’s t-test. P
value < 0.05 was considered as statistically significant.

3. Results

3.1. H2O2 Induced Oxidative Stress in Porcine GCs. In this
study, 150 μM H2O2 was used to establish oxidative stress
in a porcine GC model. To confirm that the model was
constructed successfully, we first analyzed ROS levels in
porcine GCs under different treatment conditions
(Figure 1S(a)). ROS levels in porcine GCs treated with

150 μM H2O2 were significantly upregulated and higher
than that in the control group (PBS), indicating that
excessive ROS were generated and accumulated after
150μM H2O2 treatment. Besides, we observed that H2O2-
treated porcine GCs had shrunken appearance with jagged
edges, suggesting the loss of membrane integrity and low
cell viability of porcine GCs (Figure 1S(b)). In addition,
H2O2-mediated oxidative stress significantly upregulated
porcine GC apoptosis (Figure 1S(c)) and dramatically
inhibited cell viability (Figure 1S(d)). These observations
suggested that 150μM H2O2 could induce oxidative stress
in porcine GCs.

3.2. Identification of Differentially Expressed RNAs in Porcine
GCs Treated with H2O2. To investigate the crucial RNA
molecules and pathways involved in the responses of por-
cine GCs to oxidative stress, a high-throughput sequencing
strategy was employed, as shown in Figure 1(a). Using the
criteria of ∣ log2ðfold changeÞ∣ ≥ 1 and adjusted FDR < 0:05,
a total of 2025 DEGs were identified in H2O2-treatment
porcine GCs compared to the control group (Figure 1(b)),
including 1970 DEmRNAs (1474 up- and 496 downregu-
lated, Supplementary Table S2) and 55 DEmiRNAs (38 up-
and 17 downregulated, Supplementary Table S3). Besides,
284 novel and 600 function-unknown genes were identified
in the sequencing data. In addition, heat maps of these
DEGs were generated with hierarchy cluster analysis to
show their expression patterns (Figures 1(c) and 1(d)). The
top 10 most up- and downregulated DEmRNAs and
DEmiRNAs according to fold change are presented in
Tables 1 and 2, respectively. Among these, SYVN1 and
COX-3 were the most up- and downregulated mRNAs,
whereas novel-miR-336 and novel-miR-418 were the most
up- and downregulated miRNAs, respectively. To validate
the accuracy of the sequencing data, top 10 significantly
changed DEmRNAs and DEmiRNAs were selected for
qRT-PCR detection and as shown in Figure 1(e), the
changes of their expression level after H2O2 treatment were
generally similar in qRT-PCR and sequencing data,
indicating the high accuracy of our sequencing analysis.

3.3. Functional Analysis of Differentially Expressed mRNAs.
To further investigate the role of these DEGs in porcine
GCs under oxidative stress, Gene Ontology (GO) analysis
was performed to assess the function of 1270 function-
known DEmRNAs using DAVID. This analysis identified
135 significantly altered GO terms (P < 0:05, Supplementary
Table S4). As shown in Figure 2(a), three GO categories,
including biological process (BP), cell component (CC),
and molecular function (MF), were analyzed. The three
most enriched GO terms in the BP category were “negative
regulation of transcription from RNA polymerase II
promoter,” “positive regulation of transcription from RNA
polymerase II promoter,” and “heart development.” In CC
category, “nucleoplasm,” “nucleus,” and “cytoplasm” were
the three most enriched GO terms, whereas the top three
terms in MF were “zinc ion binding,” “transcription
coactivator activity,” and “GTPase activator activity.”
Furthermore, KEGG pathway enrichment analyses showed
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Figure 1: Continued.
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that these DEmRNAs were mainly enriched in pathways
associated with regulation of cell state and functions, such
as PI3K-Akt, AMPK, cAMP, TGF-β, and FoxO signaling
pathways (Supplementary Table S5). The top 20 of the 38
significantly enriched pathways (P < 0:05) is shown in
Figure 2(b).

3.4. Functional Annotation of Differentially Expressed
miRNAs. To investigate the functions of these 55 DEmiRNAs
in porcine GCs treated with H2O2, their targets were first
predicted and GO analysis was performed. As shown in
Figure 2(c), three GO categories including biological process,
cell component, andmolecular functionwere analyzed. In BP,
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Figure 1: Expression profiles of differentially expressed RNAs in porcine GCs under oxidative stress. (a) Flow diagram showing the strategy
for detection of differentially expressed RNAs through RNA-seq technology. (b) Volcano plot of differentially expressed RNAs in porcine GCs
treated with H2O2. Up- and downregulated genes are indicated as red and green points, respectively (fold change ≥ 2 and FDR < 0:05). (c)
Heat map showing the relative expression patterns of 55 DEmiRNAs between control and H2O2 treatment groups. The color scale of the
heat map ranges from blue (low expression) to red (high expression). (d) Hierarchical clustering of 1970 DEmRNAs in porcine GCs under
oxidative stress. Color brightness reflects the degree of expression, increase (red) or decrease (green). (e) Differentially expressed genes
with high fold change were chosen for qRT-PCR validation of transcriptomic results in the porcine GCs under oxidative stress. The values
are shown as log2 (fold change).

Table 1: Top 10 up- and downregulated DEmRNAs in porcine GCs treated with H2O2.

Ensembl ID Gene symbol Log2FC FDR Chr.1 Regulation

ENSSSCG00000027057 SYVN1 9.906 3.23E-56 2 Up

New gene_46815 — 8.131 2.25E-35 2 Up

ENSSSCG00000032395 — 7.797 7.74E-31 6 Up

ENSSSCG00000040186 C12ORF57 7.731 7.23E-30 12 Up

ENSSSCG00000029474 AVEN 7.132 6.88E-28 7 Up

New gene_79274 — 6.666 5.23E-26 4 Up

ENSSSCG00000017551 FAM117A 6.268 9.25E-25 12 Up

ENSSSCG00000005915 MAF1 6.183 1.01E-23 4 Up

ENSSSCG00000021899 — 6.100 9.95E-21 6 Up

New gene_76434 — 5.899 2.23E-20 4 Up

ENSSSCG00000040167 — -5.935 1.09E-21 18 Down

ENSSSCG00000013725 FBXW9 -6.045 8.09E-21 2 Down

New gene_34816 — -6.213 1.33E-21 17 Down

ENSSSCG00000028892 — -6.337 2.38E-23 6 Down

New gene_126488 — -6.512 8.28E-25 8 Down

ENSSSCG00000036469 HIST2H3PS2 -6.642 5.53E-26 1 Down

ENSSSCG00000036620 DPH2 -6.979 5.99E-27 6 Down

ENSSSCG00000032367 CEBPD -7.205 7.22E-29 4 Down

ENSSSCG00000012319 — -9.126 1.19E-50 X Down

ENSSCG00000018082 COX-3 -9.445 1.43E-53 MT Down
1Chr. indicates chromosome.
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the most enriched GO term was “small molecule metabolic
process”. In CC, “protein complex” was the most enriched
GO term and “ion binding” was the most enriched GO term
in MF (Supplementary Table S6). In addition, KEGG
pathway enrichment analysis was performed and showed
that the targets of DEmiRNAs were mainly enriched in
estrogen generation, Hippo, TGF-β, FoxO, Ras, and mTOR
signaling pathways (Figure 2(d); Supplementary Table S7).
Moreover, DEmiRNA annotation and miRNA/pathway
clustering were performed and showed that these
DEmiRNAs mainly participated in regulating cell
pluripotency, cell growth and death, fatty acid metabolism,
estrogen biosynthesis, and diseases (Figure 2S).

3.5. DEG Protein-Protein Interaction Analysis and Hub Gene
Identification. After removing the novel and function-
unknown DEGs, a PPI network was built and visualized by
using STRING online database and the Cytoscape v3.7.1 visu-
alization tool. As shown in Figure 3, there were 483 nodes (380
up- and 103 downregulated genes) and 2499 edges in the PPI
network. Among them, 30 nodes with higher degree (top 5%)
were considered as hub genes with CREBBP, HIST1H2BD,
CDK1, CDC20, PIK3R1, FOXO1, DYNC1H1, SUMO1, CBL,
and FN1 being the most significant 10 node degree genes
(Supplementary Table S8). Module analysis was conducted
and showed that there were four significant modules existing
in the PPI network (Figure 3). KEGG pathway analyses of
the genes in these modules showed that they were mainly
enriched in pathways involved in regulating the cell cycle,
growth, apoptosis, autophagy, oxidative stress, and ubiquitin
modification. The top 6 hub genes were selected for qRT-
PCR validation. The qRT-PCR and sequencing results were

highly consistent, except for the SUMO1 gene that was not
significantly affected by H2O2 treatment (Figure 3S).

3.6. DEmiRNA-DEmRNA Regulatory Network and Functional
Assessment. To establish the DEmiRNA-DEmRNA regulatory
network, the potential targets of DEmiRNAs were first ana-
lyzed and 5439 genes were identified, including 586 common
genes with DEmRNAs in the sequencing data (Figure 4(a)).
With the DEmiRNAs (14 up- and 9 downregulated) and
common DEmRNAs (46 up- and 24 downregulated)
mentioned above, a regulatory network was established
including 93 nodes and 124 edges (Figure 4(b), Supplementary
Table S9). In this work, ssc-miR-424 and ssc-miR-27b with
higher degrees (top 5%) were considered as hub miRNAs.
Functional assessment showed that their targets were mainly
enriched in TGF-β, FoxO, Hippo, Wnt, cAMP, PI3K-Akt,
and MAPK signaling pathways (Figure 4(c) upper lane). To
further assess the effects of the miRNA-mRNA regulatory
network on porcine GCs, gene-pathway-function
coexpression patterns were analyzed and indicated that the
oxidative stress-induced miRNA-mRNA regulatory axes
exerted important roles in regulating states (proliferation,
survive, and apoptosis) and functions (stress responses and
hormone secretion) of porcine GCs (Figure 4(c) lower lane).

4. Discussion

Ovarian follicle development is a complex process that has
been proved to be regulated by multiple follicular fluid
factors, such as FSH, IGF-1, and ROS [26–28]. Previous stud-
ies have shown that ROS levels in follicular fluid are closely
related to follicular development, atresia, and ovarian

Table 2: Top 10 up- and downregulated DEmiRNAs in porcine GCs treated with H2O2.

miRNAs Log2FC FDR Mature sequence (5′-3′) Regulation

novel-miR-336 7.055 5.39E-4 UCCCUGGCCUGGGAACUUUU Up

novel-miR-228 6.557 8.02E-4 GCGGGACUGUGCAACUUGCUUUGAC Up

ssc-miR-128 6.433 1.34E-2 CGGGGCGGCAGGCUGAGCCU Up

novel-miR-285 6.297 2.28E-2 UCUCUCCCCCUCCGUCCCAGG Up

novel-miR-69 6.147 4.00E-2 UCUCCAGCCAGACCAGAGGAU Up

novel-miR-85 6.147 4.00E-2 AGGGAGGGUUUGGGUUCAUCUGU Up

novel-miR-417 5.210 1.04E-8 GUGGCUGAGGUGAGAACA Up

ssc-miR-193a 3.845 3.53E-3 AACUGGCCUACAAAGUCCCAGU Up

ssc-miR-142 3.758 5.58E-3 CUCCCAGCGGUGCCUCCU Up

novel-miR-194 3.347 3.93E-2 GUAUGUGAGCGGGGGGCUGGUGGG Up

novel-miR-176 -2.153 2.82E-5 AGACCUUGAUGGCUGGCUGAGUCUC Down

novel-miR-430 -2.337 3.29E-3 GUUAACGAAUCUGACUAGG Down

ssc-miR-369 -2.818 4.70E-2 AGUGGGCUGAGGAUCUGGCGUUGU Down

novel-miR-90 -2.938 5.62E-14 UGGUUUGUUUGGGUUUGUU Down

ssc-miR-370 -3.178 8.29E-4 GCCUGCUGGGGUGGAACCUGGU Down

ssc-miR-198 -3.606 2.17E-13 UAGUGGCUAGGAUUCGGCG Down

novel-miR-309 -6.759 4.56E-4 AUGGUGAGUGUGGACGUG Down

novel-miR-119 -6.759 4.56E-4 GCCUUGAAGACUUUGGCA Down

ssc-miR-411 -7.245 7.21E-29 GGGCCUGUGGCUCAGAGGG Down

novel-miR-418 -7.858 1.10E-6 GCCGUGGAGACCUGGGCC Down
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diseases. For example, high levels of ROS-induced oxidative
stress increase HCG-stimulated androgen secretion and
contribute to polycystic ovary syndrome (PCOS) [29].
Besides, excess ROS induces autophagy in oocytes, which
eventually leads to follicular atresia and premature ovarian
failure [30, 31]. 3-NP has been used as an oxidant in several
studies and proves that it causes excess ROS generation and
induces mouse follicular atresia and mouse GC (mGC)
apoptosis in vivo [32, 33]. Meanwhile, proanthocyanidins
and gallic acid have been shown to be excellent antioxidants,
which further decrease the follicular ROS levels in mice and

suppress atresia by inhibiting mGC apoptosis [34]. In vitro,
H2O2-mediated oxidative stress has been proved to signifi-
cantly increase mGC apoptosis and impair relative functions
[26, 35]. In the present study, we found that 150 μM H2O2
induced excess ROS generation and oxidative stress in por-
cine GCs which further induced porcine GC apoptosis and
inhibited cell viability in vitro.

Accumulating evidence obtained through sequencing
technology has shown that oxidative stress significantly
changes gene expression in multiple cell types of different
species, such as bovine, mouse, and human [36, 37]. In this
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Figure 2: Functional analysis of differentially expressed RNAs. (a, b) Gene Ontology analysis (a) and KEGG pathway enrichment analysis (b)
of DEmRNAs in porcine GCs treated with H2O2. (c, d) Functional annotations of DEmiRNAs were performed using Gene Ontology (c) and
KEGG pathway enrichment analysis (d). GO and KEGG pathway terms with P value < 0.05 were considered as significantly enriched. The
corresponding terms are listed in Supplementary Table S4-S7.
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study, DEmRNAs were screened and a total of 1970
DEmRNAs were identified in porcine GCs treated with
H2O2. Moreover, multiple hub genes including FOXO1,
SOD2, COX-3, BMP2, and FZD4 were identified. Among
which, FOXO1, a sensor of ROS, has been proven to be
regulated by oxidative stress at different levels [38, 39].
Members of TGF-β (BMP2) and Wnt signaling pathway
(TCF7 and FZD4) have also been proven to be regulated
by oxidative stress in human bone marrow stromal cells
(hBMSCs) [40]. In addition, the expression and activity of
SOD2 have been reported to be modulated by oxidative
stress during mitophagy and vascular hypertension [41,
42]. GO and KEGG pathway enrichment analyses demon-
strated that these DEmRNAs mainly serve as regulators of
porcine GC states and functions. For instance, CDK6,
CDK18, CDKN2B, CDKN2C, CCNB1, CCNJ, and CCNK
are associated with cell cycle [43–45]. BMP2, GDF15,
TGF-β1, SMAD5, and PCNA are involved in cell prolifera-
tion [46, 47]. BCL2L11, FOXO1, FOXO3, MMP2, and SOS1
are apoptotic factors [48, 49]. ACVR2B, BMP1, BMP4, and
NR5A2 are associated with hormone secretion and cytokine
responses [50, 51]. These identified DEmRNAs may
partially explain the effects of oxidative stress on porcine

GC states and functions. Apart from these well-known
genes, many function-unknown DEmRNAs were also iden-
tified and their functions will be the focus of future
investigations.

MicroRNAs (miRNAs), one of the most important
endogenous epigenetic factors, are a class of 18~24 nt short
noncoding RNA that inhibit gene expression at the post-
transcriptional level by complementary binding to the 3′
-untranslated regions (3′-UTR) of specific target genes
[52–54]. Thus, miRNAs are involved in regulating numer-
ous biological processes such as cell death, proliferation,
autophagy, and various diseases [55–57]. Importantly,
miRNAs have been shown to be the major mediators
affecting cell function under conditions of oxidative stress
[58, 59]. For example, oxidative stress significantly upreg-
ulated various miRNAs, including miR-30b, miR-194,
miR-125, and miR-128 which further suppressed prolifera-
tion of human fibroblasts and HN cells [59, 60]. Besides,
Lee et al. showed that oxidative stress-induced hnRNPA2B1
increases miR-17/93 expression in epithelial cells and elicits
an innate immune response [61]. In addition, oxidative
stress-induced APE1 is required for miR-221/222 processing
and regulating the tumor suppressor, PTEN [62]. A previous
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study using high-throughput sequencing technology showed
that oxidative stress modulates the expression of miRNAs in
bovine GCs [63]. In the present study, we identified 55
DEmiRNAs (38 up- and 17 downregulated) in oxidative stress
porcine GCs through RNA-seq with the criteria ∣ log2ðfold
changeÞ∣ ≥ 1 and FDR < 0:05. Interestingly, we observed that
the miRNAs mentioned above also existed in our DEmiRNA
library. Apart from these well-known miRNAs, multiple
newly identified OS-induced DEmiRNAs may also play
vital roles in ovaries. miR-126 has been shown to induce
GC apoptosis by directly targeting FSHR in pigs [64].
miR-142 regulates the proliferation and apoptosis of human
GC by inhibiting TGFBR1 [65]. The miR-182/183/96 cluster

actively participates in sexual differentiation in primordial
germ cells [66]. Additionally, in another ongoing study,
we showed that miR-130a significantly induces porcine
GC apoptosis and follicular atresia by targeting the TGF-β
signaling pathway (data not shown). Moreover, several
DEmiRNAs, such as miR-141 and miR-210, have been
proven to control oxidative stress responses in ovarian
cancer cells and endometriotic cells by targeting p38α and
BARD1, respectively [67, 68], suggesting that several identi-
fied DEmiRNAs may function as modulators in response to
oxidative stress. We also identified 19 novel, function-
unknown DEmiRNAs which require further investigation.
It is worth noting that DROSHA and DICRE1 (miRNA-
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Figure 4: DEmiRNA-DEmRNA regulatory network analysis. (a) Venn diagram showing the overlapping genes that simultaneously belong to
the DEmRNAs and the predicted target genes of the DEmiRNAs. (b) DEmiRNA-DEmRNA regulatory network. Rectangles and triangles
indicate DEmRNAs and DEmiRNAs, respectively. Red and green indicate up- and downregulated, respectively. (c) Gene Ontology (GO)
analysis for DEmiRNA-DEmRNA regulatory axes in porcine GCs underlying oxidative stress. (d) KEGG pathway enrichment analysis for
DEmiRNA-DEmRNA regulatory axes (upper) and gene-pathway-function coregulation network was established (lower).
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processing enzyme encoding genes) were significantly
upregulated during this process which may partially
explain the multiple miRNAs differentially expressed in
porcine GCs undergoing oxidative stress.

Previous studies have demonstrated that oxidative stress
often induces multiple signaling pathways during the regula-
tion of different cellular biological processes. These mainly
include the FOXO [26], TGF-β [13], Wnt [69], Hippo [70],
and PI3K-Akt signaling pathways [71], which were also
enriched in the miRNA-mRNA pathway-function regulatory
network. Furthermore, cAMP signaling, MAPK signaling,
regulation of pluripotency, and miRNAs in cancer were also
enriched. Therefore, we hypothesized that oxidative stress
might participate in regulating the morphology, pluripotency,
energy metabolism, and small noncoding RNA processing in

porcine GCs, which requires confirmation in future research.
Although the expression profiles of RNAs (mRNAs and miR-
NAs) were discussed and multiple differentially expressed
RNAs were verified by qRT-PCR in the present study, further
studies are required to support the results in vivo. Moreover,
the mechanism involved in the differential expression of
RNAs in responses to oxidative stress and how their interac-
tion network affects the state and function of porcine GCs
needs to be more precisely described in the future.

5. Conclusion

In summary, we constructed differentially expressed RNA
profiles using RNA-seq technology in this study and demon-
strated that dramatic changes in gene expression occurred in
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porcine GCs under oxidative stress. Functional annotation
analysis showed that these DEGs were mainly involved in
regulating the state and function of porcine GCs, which was
highly consistent with our observations that oxidative stress
significantly induced porcine GC apoptosis and dramatically
impaired cell viability. A DEmiRNA-DEmRNA pathway-
function coregulatory network and a PPI network were
established and indicated that multiple physiological
processes and signaling pathways were involved in the
response of porcine GCs to oxidative stress (Figure 5). The
integrated analysis of miRNA-mRNA interaction networks
also provides a series of potential therapeutic targets for
oxidative stress-induced female infertility.
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Figure 1S: oxidative stress impaired porcine granulosa cells. (a)
ROS levels in porcine GCs treated with 150 μM H2O2 were
detected by fluorescence microscopy (upper lane) and flow
cytometry analysis (lower lane). (b) The morphological
features of porcine GCs after 150μM H2O2 treatment were
observed and recorded by a stereomicroscope. (c) Cell viability
was measured in control (PBS) and oxidative stress groups
(H2O2) after treatment for 2h. (d) The apoptosis rate of por-
cine GCs treated with H2O2 was detected by flow cytometry
analysis. Data are represented as mean ± S:E:M. ∗∗P < 0:01
with two-tailed Student’s t-test. Figure 2S: functional annota-
tion of DEmiRNAs in porcine GCs under oxidative stress,
related to Figure 2. (a) The heat map depicting the Gene
Ontology (GO) enrichment analyses of DEmiRNAs in porcine
GCs treated with 150μM H2O2. Clustering analyses were
performed at both DEmiRNAs and GO term levels. (b)
DEmiRNA/KEGG pathway clustering was analyzed in
porcine GCs undergoing oxidative stress. 11 significant
enrichment signaling pathways existed in the heat map. Figure
3S: hub gene expression validation, related to Figure 3. The

expression levels of 6 hub genes were verified by qRT-PCR.
Black columns indicate data from RNA-seq, and red columns
indicate qRT-PCR data. Supplementary Table S1: primers
used for qRT-PCR in this study. Supplementary Table S2:
differentially expressed mRNAs in pGCs treated with H2O2.
Supplementary Table S3: differentially expressed miRNAs in
pGCs treated with H2O2. Supplementary Table S4: GO
enrichment analysis of DEmRNAs after H2O2 treatment.
Supplementary Table S5: KEGG pathway analysis of DEmR-
NAs after H2O2 treatment. Supplementary Table S6: GO
enrichment analysis of DEmiRNAs after H2O2 treatment.
Supplementary Table S7: KEGG pathway analysis of DEmiR-
NAs afterH2O2 treatment. Supplementary Table S8: hub genes
in the protein-protein interaction network. Supplementary
Table S9: hub genes andmiRNAs in themiRNA-mRNA inter-
action network. (Supplementary Materials)
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