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INTRODUCTION

DNA mismatch repair (MMR) deficiency is a well 
characterised form of genetic instability in cancer [1–5], 
characterized by a failure to repair DNA replication-
associated errors. A defective MMR system leads to the 
persistence of mismatched mutations across the genome, 
particularly in regions of repetitive DNA (microsatellites), 
leading to microsatellite instability (MSI). MSI causes the 
production of truncated protein products, resulting in the 
development of life-threatening malignancies [1–9]. 

Constitutional Mismatch Repair Deficiency 
(CMMRD) (also known as Biallelic Mismatch Repair 
Deficiency: BMMRD) is a hereditary cancer predisposition 
that presents in infancy or young adulthood at an incidence 

of approximately 1 per million patients [10]. CMMRD 
occurs as a result of mutations in well characterised 
MMR genes including mutS homolog 2 (MSH2); mutL 
homolog 1 (MLH1); mutS homolog 6 (MSH6); post-
meiotic segregation increased 2 (PMS2); and post-meiotic 
segregation increased 1 (PMS1) [11, 12]. The major 
function of these genes are to eliminate the mismatch 
of base-base insertions and deletions that occur as a 
consequence of DNA polymerase errors during DNA 
synthesis (Figure 1) [13]. Single-nucleotide variations 
(SNV) result from errors during base pair incorporation 
whilst slippages of the polymerase result in insertions 
and deletions [14]. MMR genes act to promote genome 
stabilization through correcting these errors, ensuring 
the fidelity of genetic recombination and the initiation of 
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ABSTRACT

Mismatch repair (MMR) proteins remove errors from newly synthesized DNA, 
improving the fidelity of DNA replication. A loss of MMR causes a mutated phenotype 
leading to a predisposition to cancer. 

In the last 20 years, an increasing number of patients have been described with 
biallelic MMR gene mutations in which MMR defects are inherited from both parents. 
This leads to a syndrome with recessive inheritance, referred to as constitutional 
mismatch repair-deficiency (CMMRD). CMMRD is a rare childhood cancer predisposition 
syndrome. The spectrum of CMMRD tumours is broad and CMMRD-patients possess 
a high risk of multiple cancers including hematological, brain and intestinal tumors. 
The severity of CMMRD is highlighted by the fact that patients do not survive until 
later life, emphasising the requirement for new therapeutic interventions. 

Many tumors in CMMRD-patients are hypermutated leading to the production 
of truncated protein products termed neoantigens. Neoantigens are recognized as 
foreign by the immune system and induce antitumor immune responses. There is 
growing evidence to support the clinical efficacy of neoantigen based vaccines and 
immune checkpoint inhibitors (collectively referred to as immunotherapy) for the 
treatment of CMMRD cancers. In this review, we discuss the current knowledge of 
CMMRD, the advances in its diagnosis, and the emerging therapeutic strategies for 
CMMRD-cancers. 

www.oncotarget.com                               Oncotarget, 2018, Vol. 9, (No. 83), pp: 35458-35469

           Review



Oncotarget35459www.oncotarget.com

apoptosis in response to DNA damage (Figure 1). MMR 
genes have been extensively studied and their contribution 
to disease has been reviewed in several reports [11, 15].

Heterozygous (monoallelic) mutations in MMR 
genes can impair MMR functionality resulting in a cancer 
condition termed Lynch Syndrome (LS), previously 
known as hereditary non-polyposis colorectal cancer 
(HNPCC) syndrome [9, 11, 16–19]. LS is characterized 
by gastrointestinal and genitourinary cancers during 
adulthood and represents 1–7% of all cases of colorectal 
cancer (CRC) [9, 11, 18]. For LS to be defined, germline 
mutations in at least one of the repair genes must be 
identified [17]. In contrast, biallelic germline mutations 
in the MMR genes that cause LS leads to CMMRD. The 
estimated carrier frequencies for mutations in the MMR‐
genes are 1 in 1946 for MLH1, 1 in 2841 for MSH2, 
1 in 758 for MSH6 and 1 in 714 for PMS2 [20, 21]. If 
both parents have LS, the CMMRD risk to the siblings is 
25% chance of having CMMRD, 25% chance of no LS 
mutations and a 50% chance of LS (Figure 2). Individuals 
with CMMRD develop a large variety of malignant 
neoplasms during early life with the majority of sufferer’s 
failing to reaching adulthood [8, 20, 22–27].

HISTORY

Nearly twenty years ago, case reports presented a 
phenotype of offspring from consanguineous marriages 
within LS families (both carried MLH1 mutations) [28]. 
The offspring developed malignancies during early 
childhood. Of note, the individuals displayed clinical 
features reminiscent of neurofibromatosis type 1 (NF1) 
(tumor formation on nerve tissues), now commonly 
associated with CMMRD [28]. Since those studies, close 
to 200 paediatric and young adult CMMRD cancer cases 
have been reported in at least one of the MMR genes 
involved in LS [10, 29]. Contrary to traditional LS, 
CMMRD patients lack expression of the MMR protein(s) 
in both cancer and normal tissue (27). This recessively 
inherited condition is now fully recognised as a distinct 
childhood cancer predisposition syndrome [1, 30–33]. 

Although unproven at the molecular level, Jacques 
Turcot is attributed to have described the first cases of 
CMMRD in siblings with colorectal adenomatous polyps, 
colorectal carcinoma and malignant brain tumours [34]. 
‘Turcot syndrome’ classically refers to a combination of 
colorectal polyposis and primary tumors of the Central 

Figure 1: (A) Schematic of MMR in a healthy cell (adapted from [12]). The proofreading capability of the DNA polymerases (POL) and 
the MMR system recognises and prevent errors (black circles) during DNA replication. (B) CMMRD. Inherited MMR defects (X) that lead 
to a loss of MMR function/expression lead to accumulated mutations and a predisposition to cancer during adulthood. When a combination 
of mutations affect POL and MMR function, the accumulation of mutations become more rapid and the onset of cancer occurs in young 
children (CMMRD). 
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Nervous System (CNS) [34–47]. CMMRD was referred to 
under Turcot syndrome for many years, until it was noted 
that this definition was too restrictive, as the manifestation 
of CMMRD also includes early-onset hematologic 
malignancies and cafe-au-lait spots suggestive of NF1  
[31, 48]. Other non-neoplastic features have now emerged 
that are indicative of CMMRD in paediatric cancer 
patients, but until recently the CMMRD diagnostic criteria 
was lacking [49, 50]. The ability to accurately diagnose 
CMMRD is of critical importance to patient treatment and 
care, particularly in Arab and developing countries due 
to their high prevalence of consanguinity and increased 
susceptibility to this syndrome. 

CMMRD DIAGNOSIS

The rapid identification of CMMRD is crucial for 
patient management and for afflicted family members. 
However, given the complex nature of CMMRD, 
diagnosis is often delayed or in some instances, not-
stated. A major reason for the lack of CMMRD awareness 
amongst pediatric oncologists can be explained by the 
diagnostic difficulties that result from the lack of clear 
disease-specific clinical features that combine the full 
spectrum of CMMRD tumors. This has, on occasion, 
resulted in the refusal of standard CMMRD treatment due 
to families being unconvinced by the initial diagnostic 

Figure 2: CMMRD genetics. LS is an autosomal dominant disorder caused by defects in one of DNA MMR genes. Siblings of two 
parents with LS can develop CMMRD (biallelic MMR mutations). The spectrum of cancers observed for CMMRD are more severe than 
those found in LS. Up to 50% of children develop brain tumours, around 50% digestive tract cancers and approximately 33% develop 
haematological malignancies.
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criteria [5]. To address this issue, a newly established 
European consortium named “Care for CMMRD” 
developed a scoring system of clinical criteria used 
to confirm CMMRD diagnosis (summarized in Table 
1). However, these guidelines are however difficult 
to follow due to the rarity of CMMRD cases and the 
diversity of cancer presentation [11, 12]. Various clinical 
characteristics that suggest CMRRD include any child or 
young adult with an LS associated tumor, hypermutated 
tumors, adenomatous polyposis, pediatric cancer in the 
setting of consanguinity, loss of MMR protein expression 
in normal and tumor tissues, and café au lait spots without 
NF1 diagnosis. It is also recommended to consider 
CMMRD syndrome in individuals with brain cancer, 
leukemia or lymphoma that lack a history of radiation 
exposure. As with the majority of autosomal recessive 
diseases, the index case of CMMRD typically lacks a 
family history of cancer that would raise a suspicion of 
CMMRD. Many of the cases identified to date are thus 
ascertained only after another sibling becomes affected 
by cancer. 

The evolution of sequencing technologies has 
benefited diagnosis as the rapid detection of characteristic 

CMMRD mutational patterns can be obtained from patient 
blood and tumor samples [51, 52]. This can be used 
simultaneously to facilitate downstream germline testing 
[25, 51, 52] and be used to offer genetic counseling to 
families with “at-risk” siblings. [8]. This information can 
also provide personalized targeted treatment programs, 
once the genetic basis of the CMMRD tumor is understood  
[52, 53].

CMMRD TUMOR SPECTRUM 

The prognosis of CMMRD is poor; current statistics 
suggest over 50% of patients develop malignant brain 
tumours, 40% develop digestive tract tumours and 
30% develop haematological malignancies, all during 
childhood [27]. The most frequent CMMRD cancers are 
brain gliomas (diagnosed at an average age of 9.5 years), 
non-Hodgkin’s lymphomas (diagnosed at 5 years) and 
colorectal cancers (CRCs) (diagnosed at 16 years) [10]. 
The cancer spectrum is related to the nature of the MMR 
gene mutated; patients with MSH6 and/or PMS2 mutations 
develop brain tumours within 10 years of life and over 
40% of patients homozygous for PMS2 mutations develop 

Table 1: Diagnostic scoring criteria for CMMRD from the European consortium “Care for CMMRD” [10]

Indications for CMMRD-Testing More than 3 points

Maligancies or pre-malignancies: one is mandatory. If more than one is present add points

LS carcinoma* at age less than 25 years 3 points

Multiple bowel adenomas at age less than 25 years and absence of APC/MUTYH or a single 
grade dysplasic adenoma (also at age less than 25 years). 3 points

WHO grade III or IV glioma at age less than 25 years 2 points

NHL of T-cell lineage or sPNET at age less than 18 years 2 points

Any malignancy in a patient under 18 years 1 point

Additional features: if more than one of the following are present add points

Clinical NF1 diagnosis or more than 2 hyper/hypo-skin pigmentations (greater than 1 cm) 2 points

Diagnosis of LS in a 1st and/or 2nd degree relative 2 points

LS carcinoma*, high grade glioma, sPNET, or NHL 1 point

Sibling with a childhood cancer 1 point

Multiple pilomatricomas present 2 points

One pilomatricoma present 1 point

Agenesis of the corpus callosum or non-therapy induced cavernoma 1 point

Consanguineous parents# 1 point

Deficiency/reduced levels of IgG2/4 and or IgA 1 point

LS cancers: CRC, endometrial, small bowel, renal pelvis, ureter, biliary tract, bladder, stomach.
#more common in Arab/Developing countries.
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second primary malignancies [29]. By comparison, 
patients homozygous for MLH1/MSH2 mutations are less 
likely to develop second primary malignancies (22%). This 
difference is because patients with homozygous PMS2 
mutations often survive their first malignancy, unlike 
MLH1/MSH2 patients who develop more aggressive 
haematological malignancies [10]. Consanguinity of the 
parents and/or homozygosity for a founder mutation is 
observed in over 50% of CMMRD-cancers [10, 17] the 
most common of which are reviewed in [21].

CMMRD SURVEILLANCE

CMMRD tumors in the CNS are often observed 
during infancy, and as such MRI scanning is generally 
performed in the first two years of life. Brain MRI is 
recommended at diagnosis and every 6 months thereafter 
[54, 55]. Repeated CT scanning of the brain is not 
recommended due to the possible induction of tumours 
due to radiation [54]. For digestive tract cancers (including 
CRC), colonoscopy is used for surveillance. Colonic polyps 
have been reported in CMMRD patients as early as 6 years 
of age, so surveillance is generally initiated at this age [56]. 
Once polyps are identified, colonoscopy is performed every 
6 months under general anaesthesia. Flat and non-polypoid 
lesions can be missed so colonoscopy is recommended 
for their detection [27, 54]. Colectomy is considered 
in patients with high-grade dysplasia as these present a 
significant risk of carcinoma [54]. Small bowel polyps 
develop later in life so upper endoscopy is recommended 
at 8 years of age in these patients. For the detection of 
duodenal cancers, upper GI endoscopy is performed 
at the same time as colonoscopy. Lymphoid and other 
hematologic malignancies represent the third most common 
malignancies in CMMRD, but effective tools for diagnosis 
are still lacking [57]. Information on the natural history of 
CMMRD lymphomas is sparse and the natural course of the 
disease may differ from sporadic cases [54]. These typically 
present with tumours and clinical manifestations a month 
prior to diagnosis. Standard surveillance is performed every 
six months including repeated blood counts and abdominal 
ultrasounds [27, 54]. This strategy is useful to assess the 
natural history of the lymphoma. 

A modification to current protocols now includes the 
implementation of whole body MRI to be implemented 
once a year at 6 years of age (when anaesthesia is not 
needed). This is not recommended as a replacement for 
ultrasound and brain MRI, but may present benefits for 
CMMRD diagnosis as the spectrum of CMMRD cancers 
continues to increase [54]. 

CURRENT CMMRD TREATMENT 

Children with CMMRD have a high risk of 
developing multiple cancers and early diagnosis does 
not guarantee detection at a curable stage [49, 50]. 

Preventive treatment strategies would represent a major 
advance for CMMRD therapy and the benefits of novel 
long-term conventional therapies such as acetylsalicylic 
acid (aspirin) are emerging [58]. As CMMRD is rare, 
information on its optimal therapeutic strategies are 
limited and current knowledge of treatment regimens 
and their outcomes are limited to individual case reports, 
often with variable disease phenotypes [29, 36, 39, 42, 
46, 59–70]. Chemotherapy remains a frontline treatment, 
but toxicity is a major issue in children. Selection of 
appropriate chemotherapy drugs [71–74] is generally 
based on their toxicity profile [75, 76] and the knowledge 
of tumor resistance [71]. 

CHEMOTHERAPY 

Many frequently used chemotherapeutic agents 
require a functional MMR system to initiate tumor 
damage. Accordingly, MMR deficient cells are frequently 
resistant to chemotherapeutics [77–95]. This includes 
resistance to mercaptopurine and temozolomide, drugs 
commonly used to treat hematopoietic and glioma 
cancers, respectively [55, 96–115]. MMR resistance 
is exemplified by temozolomide, the drug of choice for 
glioblastomas multiforme (GBM), a highly malignant 
CMMRD-brain tumor [24, 54, 116, 117]. The response to 
temozolomide is limited in CMMRD-related GBM and its 
use is now avoided due to its known ability to increase the 
accumulation of somatic mutations in patients, increasing 
the risk of secondary tumors [15, 71, 118]. No obvious lack 
of efficacy of other therapeutic agents such as alkylating 
agents has been reported, but effective chemotherapeutic 
therapies for CMMRD cancer are still lacking, and new 
effective therapies are urgently required [54]. 

CMMRD IMMUNOTHERAPY

The ultrahypermutation phenotype (≥ 100 mut/Mb  
compared to <10/MB in other childhood cancers) of 
CMMRD tumors does offer some opportunities for new 
approaches to treatment [117, 119]. When microsatellites 
in gene-encoding regions are mutated in CMMRD, the 
numerous frameshifts lead to the production of truncated 
and functionally inactive proteins that are frequently 
processed into mutanome-derived epitopes (termed 
neoantigens) that are presented to cytotoxic T lymphocytes 
(CTLs) [71]. Mutations in the exonuclease domain of the 
catalytic subunit of DNA polymerase epsilon (POLE) also 
exhibit such ultra mutated genomes (Figure.1). Neoantigen 
loads in CMMRD are substantially higher than in other 
cancer patients without the condition making these tumors 
more likely to be recognized by the immune system 
[120, 121]. Tumors that are recognized by the immune 
system have an improved prognosis. For example, greater 
densities of tumor-infiltrating lymphocytes are observed 
in cases of CRC with MSI [56, 122]. This improves their 
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prognosis when compared to microsatellite stable CRCs 
and alters the response to chemotherapeutics. The use of 
NGS technologies can therefore guide treatment regimens 
and identify hypermutated tumors (≥100 mut/Mb) most 
likely to respond to immunotherapy. Meier and coworkers 
also recently performed signature extractions from 215 
human CRC cases and 289 gastric adenocarcinomas 
revealing three novel MMR-associated signatures that 
strongly discriminate MS stable and unstable tumors, 
the knowledge of which can dictate treatment planning 
following identification [123]. 

CHECKPOINT INHIBITORS

In the presence of malignant tumors, 
immunoreactivity becomes compromised due to tumor 
induced immunosuppression. PD-L1 is overexpressed in 
many cancers and acts as a binding site for PD1. Binding of 
PD1 to PD-L1 within the tumor activates PD1 signalling, 
which in turn inhibits T cell activation allowing the tumor to 
evade immune attack [124, 125]. Inhibiting the interaction 
of PD1 and PD-L1 can thus enhance the anti-cancer T cell 
response and promote anti-tumor activity. This knowledge 
has been used to develop immunotherapies termed 
checkpoint inhibitors, that counteract the actions of proteins 
that impede the immune response to cancer. Blocking 
PD-1 in CMMRD tumors produces a significant clinical 
response and CMMRD tumors are more responsive to PD-1 
blockers than MMR proficient tumors [117, 124, 125].  
When PD1- blockers were used to treat children with 
CMMRD with recurrent GBM, shrinking of tumors 
through MRI was observed, indicating a successful clinical 
response [117]. Other recent data have demonstrated the 
effectiveness of checkpoint inhibitors in the treatment of 
some non-Hodgkin lymphomas [57]. This is of interest 
to CMMRD patients that often have non-Hodgkin’s 
lymphoma in addition to other cancers [26]. 

NEOANTIGEN VACCINATION

 Vaccination with neoantigens is another promising 
approach for CMMRD cancer and neoantigen-
loaded cell vaccinations are in clinical trials for CRC 
patients with MSI. Preliminary data from these trials 
suggests they are safe and well tolerated [126, 127]. 
Strong immune responses against neoantigen vaccines 
have been observed in LS patients that already show 
neoantigen-specific immune responses [126]. This 
holds promise for the use of adjuvant or preventive 
neoantigen-based vaccinations for CMMRD. However, 
the limited number of CMMRD patients means the 
identification of commonly mutated microsatellites is 
challenging. In addition, CMMRD vaccinations must be 
approached with caution since all cells of a CMMRD 
patient are MMR deficient [17–19] leading to a risk of 
autoimmune disease. It is likely that the combination of 

check-point inhibitors and neoantigen vaccination will 
hold the most promise for CMMRD. Indeed, our own 
recent studies highlight the benefits of incorporating 
genomic and/or molecular testing for CMMRD into 
routine paediatric oncology, whereby clinical care 
can identify a subset of patients likely to benefit from 
targeted treatment regimens, dependent on their MMR 
mutation status [53]. 

SUMMARY

CMMRD has emerged a rare childhood cancer 
syndrome and as such, consistency regarding its diagnosis 
and optimal treatment strategies have been challenging. 
The spectrum of CMMRD-associated tumours is broad 
and as sequencing technologies and thus diagnosis 
evolves, these are likely to expand further. The severity 
of CCMRD is well understood; CMMRD-patients possess 
a high risk of multiple cancers during childhood and 
typically do not survive to later life. Urgent CMMRD 
therapies are therefore required and hope in this area has 
been provided through immunotherapy interventions, 
including check-point-inhibitors and/or neoantigen 
vaccinations. The promise of anti-cancer immunotherapy 
must now be combined with our knowledge of the 
underlying genetic basis of CMMRD-tumors to produce 
personalised and targeted CMMRD treatment regimens. 
These will benefit current CMMRD patients, and future 
CMMRD-afflicted children. 
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