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Abstract
Background: Soon after the first algorithms for RNA folding became available, it was recognised
that the prediction of only one energetically optimal structure is insufficient to achieve reliable
results. An in-depth analysis of the folding space as a whole appeared necessary to deduce the
structural properties of a given RNA molecule reliably. Folding space analysis comprises various
methods such as suboptimal folding, computation of base pair probabilities, sampling procedures
and abstract shape analysis. Common to many approaches is the idea of partitioning the folding
space into classes of structures, for which certain properties can be derived.

Results: In this paper we extend the approach of abstract shape analysis. We show how to
compute the accumulated probabilities of all structures that share the same shape. While this
implies a complete (non-heuristic) analysis of the folding space, the computational effort depends
only on the size of the shape space, which is much smaller. This approach has been integrated into
the tool RNAshapes, and we apply it to various RNAs.

Conclusion: Analyses of conformational switches show the existence of two shapes with

probabilities approximately  vs. , whereas the analysis of a microRNA precursor reveals one

shape with a probability near to 1.0. Furthermore, it is shown that a shape can outperform an
energetically more favourable one by achieving a higher probability. From these results, and the fact
that we use a complete and exact analysis of the folding space, we conclude that this approach
opens up new and promising routes for investigating and understanding RNA secondary structure.

Background
RNA secondary structure analysis is a common task in
research on RNA and its manyfold functions. The first
algorithm capable of computing the structure with mini-
mum free energy (MFE) based on the nearest neighbour
energy model was introduced in [1]. It was capable of cal-
culating the MFE-structure only, and gave valuable results

for short sequences. Nevertheless, it was recognised that
although predicted RNA secondary structures contain, on
average, 73% of known base pairs for RNA sequences
divided into domains of less than 700 nucleotides [2], the
predicted structures are sometimes quite different from
the secondary structures obtained by comparative
sequence analysis. After two decades of refined measure-
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ments of thermodynamic parameters, the problem per-
sists [3], and the limited credibility of the MFE-structure is
attributed to intrinsic properties of the folding space, such
as its partioning into families of similar structures and the
kinetics of folding [4,5].

The state of an RNA molecule must be seen as a Boltz-
mann ensemble of structures, some very similar, some
quite distinct. The challenge of folding space analysis is to
determine whether there is some family of structures in
this ensemble that is internally similar, distinct from the
rest, and collectively dominates the probabilities of all
other families. The dominating family, if any, should be
the biologically relevant one. For this reason, it is of inter-
est to include suboptimal solutions in the process of struc-
ture elucidation. In [6] Zuker introduced an extended
version of his algorithm, which was also capable of pre-
dicting certain suboptimal structures. This allows a
researcher to check different predictions for correspond-
ence to experimental results. The most recent version of
the algorithm [2,7] is implemented in the MFOLD pack-
age [8].

A drawback of the Zuker algorithm is the use of heuristic
filters to circumvent the repeated output of the same struc-
ture. These filters remove not only redundant structures
but also similar structures. This is desirable from a human
observer's point of view, but precludes a probabilistic
analysis. In [9], an algorithm was introduced allowing for
non-redundant and complete suboptimal folding, which
is implemented in the tool RNAsubopt from the Vienna
RNA package [10]. It is designed to compute rigorously all
structures within a given energy range and is guaranteed
not to miss any structure that is feasible with respect to the
nearest neighbour energy model. The major advantage of
this approach is that it gives access to all suboptimal struc-
tures, i.e. the complete folding space of an RNA sequence.
However, as the number of structures is exponentially
related to sequence length [11], this method produces a
large number of structures, which are laborious to ana-
lyse.

The free energies of RNA structures can be imagined as a
rough landscape over the folding space. The folding space
is described by the notion of neighbourhood, which in
the case of RNA secondary structure is the difference in
exactly one base pair. A structure having only neighbours
with higher free energy is a local minimum and forms the
bottom of a valley. All structures that can be reached by
neighbour moves (opening or closing of a base pair)
while increasing the energy form a valley in the landscape
and can be seen as a family of structures. A structure having
neighbours in more than one valley is referred to as a sad-
dle point in the landscape. Rephrasing our challenge in this
alpine terminology, the task is not only to find the lowest

point overall, but to relate the depths of valleys to their
population sizes, and to determine the family of which
members are most likely to be encountered when this
landscape is explored. The first method (even prior to
RNAsubopt) for analysing the complete folding space in
order to assess the relevance of a secondary structure was
introduced by McCaskill in [12]. The author makes use of
the partition function to address this property. In general,
the partition function provides a measure of the total
number of states (structures) weighted by their individual
energies at a particular temperature. For an RNA sequence
and the set S of all possible structures for this sequence, it
is defined as follows:

where Ej is the energy of structure j, R the universal gas
constant (0.00198717 kcal/K) and T the temperature in
Kelvin. In words, this is the sum of the Boltzmann
weighted energies of all structures. The probability P of a
particular secondary structure x ∈ S is defined as:

where Ex is the energy of structure x in kcal/mol. Intrinsic
to this approach is that the probability is proportional to
the (Boltzmann weighted) energy of a structure. Hence,
this approach provides no further information on struc-
tural relevance. No individual structure can have a higher
probability than a structure with lower free energy, and
the MFE-structure is always the most probable one; albeit
with an individual probability that is often very close to
zero. This problem has already been stated in [12], and
the author also provides a means to alleviate it. Instead of
computing the probability of a complete structure, the
probabilities of atomic structural elements, i.e. base pairs,
are computed. Displaying these in a matrix, as squares
with area proportional to the probability, results in the so
called "dot plot" for base pairing probabilities. This visu-
alisation shows all possible base pairs and allows for the
detection of alternative structures with high probability.

The partition function cannot only be used to calculate
the probabilities of individual structures or base pairs. In
[4], Ding and Lawrence introduced a statistical sampling
algorithm that is implemented in the tool SFOLD. In each
step of the recursive backtracing procedure, base pairs and
the structural elements they belong to are sampled accord-
ing to their probabilities, obtained from the partition
function. Features of the sampling procedure are that each
run is likely to produce a different sample and that the
same structure can be sampled multiple times, where the
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MFE-structure is the most frequent structure, as it has the
highest probability. Nevertheless, the MFE-structure is not
guaranteed to be present in the sample, especially for long
sequences. The authors showed that sampling the folding
space of the Spliced Leader of Leptomonas collosoma could
give structures from two families. These two families,
which were defined by manual alignment of the sampled
structures, correspond to the alternating structures of this
conformational switch. This improves over a non-proba-
bilistic sampling procedure yielding simlar results
[13,14].

Another tool analysing the complete folding space of an
RNA, or part thereof, is barriers [15] by Flamm et al. It is
designed to find local minima and saddle points connect-
ing these, and in addition it generates the so-called "bar-
rier tree" as a visualisation of the landscape. In the barrier
tree, the local minima are leaves and saddle points are
nodes connecting either two local minima, a local mini-
mum and a saddle point, or two saddle points. The length
of an edge corresponds to the energy difference between
the connected elements.

Common to all approaches is the attempt to partition the
folding space into structural families and to derive fea-
tures of each such family. For the partitioning, Zuker uses
structural similarity based on a distance measure,
McCaskill base pairs, Ding and Lawrence similarity of
sampled structures and Flamm et al. the affiliation to the
same valley. One problem persists: exhaustive enumera-
tion is slow, while sampling cannot clearly designate a
dominating family.

In principle, the local minima in the folding space neigh-
bourhoods can be taken as representatives of all the fam-
ilies. Unfortunately, no algorithm has been found that
computes these representatives directly, i.e. without
explicit enumeration of all individual structures. From a
more macroscopic point of view, the notion of neighbour-
hood based on base pair opening and closing seems too
low-level anyway: two alternative structures may both
have (say) a cloverleaf shape, but not share a single base
pair, and hence belong to different families. Having the
same shape is therefore a stronger abstraction. It retains
adjacency and nesting of stacks and hairpins. It gives us
the option of regarding or disregarding the presence of
bulges. And it completely abstracts from individual base
pairs and their location in the sequence. This idea has
been formalized in the approach of abstract shape analy-
sis of RNA [16]. Each shape is a distinct class of structures,
which has a representative structure, shrep for short, of
minimal free energy within the shape. These shreps can be
computed directly – avoiding the burden of exhaustive
enumeration of individual structures. It has been shown
that computing the k lowest-energy shreps provides useful

information. Abstract shape analysis, as described in [16],
can also provide precise accounts of the number of struc-
tures within each shape – but perhaps surprisingly, it does
not provide the overall probability of a shape. This is the
classical challenge formulated above, and a solution
based on the concept of shapes will be described in this
contribution.

Outline of probabilistic shape analysis
Complete probabilistic shape analysis computes, for each
shape, the probability sum of the structures within that
shape. While this goal is simply stated, it is more difficult
and computationally more costly to achieve than simple
shape analysis. Our presentation is organised as follows:

We first show how to compute the shapes and Boltzmann-
weighted energies of individual structures, and, by analo-
gous means, the partition function. We then combine
these calculations by a programming technique called
classified dynamic programming. It allows to accumulate
the Boltzmann-weighted energies of all structures by
shape. We then study the algorithmic efficiency of this cal-
culation, where we find that it avoids exponential rela-
tionship to the number of structures, but is exponentially
related to the number of shapes. In sharp contrast to the
number of structures, the number of shapes is typically
small enough to make the approach practical. Finally, we
report on applications of complete probabilistic shape
analysis to several types of RNA, and discuss the results.

Results
In the first three subsections, we explain the mathematical
model underlying our new type of analysis. (Algorithmic
details and efficiency concerns are deferred to the Meth-
ods section.) Subsequently, we report on the findings of
various applications of the method.

Modelling the folding space
RNA secondary structures can be represented as strings,
base pair lists, graphics, and in many other forms. When
they are to be analysed under different objective func-
tions, and when pseudoknots are not involved, RNA sec-
ondary structures are most conveniently represented as
trees. Trees allow the pattern of helix adjacency and nest-
ing that characterises a secondary structure to be repre-
sented naturally. The tree-like representations presented
here will not subsequently be computed. Instead, various
secondary structure features will be computed (such as
their free energy, shape, string representation, etc.), and
the tree-like structure representations will serve as a com-
mon model for the precise and uniform definition of
these derived features.

Our structure representations are rooted, ordered, labelled
trees. On their leaf nodes, in left to right order, the labels
Page 3 of 23
(page number not for citation purposes)



BMC Biology 2006, 4:5 http://www.biomedcentral.com/1741-7007/4/5
spell out the primary sequence, built from nucleotides A,
C, G and U. The inner nodes of the tree are labelled by
operators related to the structural features of RNA: single
stranded regions (SS), hairpin loops (HL), stacked base
pairs that form stacking regions (SR), 5' and 3' bulges (BL
and BR), internal loops (IL) and multiloops (ML). Multi-
loops comprise a closing base pair and a list of adjacent
(AD) structure elements inside. For mathematical com-
pleteness, we also need operator E denoting an empty list
of adjacent structures.

Figure 1.1 gives an example tree. It shows the representa-
tion of a small hairpin embedded in two single strands. In
the more familiar dot-bracket notation, its representation
would be ". . ( ( ( ( . ( . . . . ) . ) ) ) ) .". While the string
representation is easier for us to read, the trees are mathe-
matically more convenient. Each operator can also be
seen as a function symbol, taking a fixed number of argu-
ments of fixed types. For example, the BL operator accepts
a (closing) pair of bases, say (a, b), a single stranded
region l, and a closed substructure x. We can write the for-
mula BL(a, l, x, b), which is equivalent to the tree. This
interpretation of operators as function symbols that com-
pose structures is summarized in Table 1. Our example
structure is shown as a formula in Figure 1.2.

It is important to note that not all such trees or formulas
represent legal structures. For example, ML('C', HL('A',
"CCC", 'U'), 'G') is valid as a formula – every operator has
the right number and type of arguments – but not valid as
a structure, since the notion of a multiloop implies that
there are at least two closed substructures inside. Rules for
building trees that are valid structures can be given in the
form of a tree grammar. The mathematical appeal of a tree
grammar is that, besides providing a precise definition of
the folding space associated with a given RNA molecule, it
can automatically be converted into a parsing algorithm,

based on dynamic programming, that evaluates this fold-
ing space. For example, it can find the minimal free energy
structure, or derive any other type of information that can
be described in the systematic fashion introduced below.

A tree grammar for RNA secondary structures is shown in
Table 2. We use an ASCII representation of grammar rules,
which is both easy to read and suitable for algorithm gen-
eration. A clause such as

u = f <<< x ~~~ y | | |

g <<< z

says that a tree of type u can be built either with operator
f being applied to subtrees of type x and y, or with opera-
tor g being applied to a subtree of type z.

Our grammar has been written to exclude structures with
isolated base pairs, as such "lonely pairs" can be consid-
ered not to occur in native structures. Where such lonely
pairs are energetically favourable, this is probably an arte-
fact of the energy model used (Gerhard Steger, personal
communication). Optionally, however, our program
RNAshapes offers calculations that include such pairs. The
grammar also imposes a minimal length of 3 on the turns
inside hairpin loops. Readers are invited to derive some
trees with this grammar, to assure themselves that invalid
structures cannot be derived.

The folding space F(s) of a sequence s is now formally
defined as the set of all trees of type struct that exhibit s as
their sequence of leaves. Care has been taken to ensure
that the grammar is non-ambiguous: Each structure can
be represented uniquely by a tree, derived by the rules of
the grammar in exactly one way. Such non-ambiguity is
essential for a mathematically correct probabilistic analy-

Table 1: Secondary structure operators. Operators build terms by application to (sub-)terms. Operators can be interpreted in 
different ways with algebras, such as the Boltzmann-weighted energy algebra. In this case, terms evaluate to real numbers. 
Interpreting operators as mere symbols leads to symbolic terms that represent structures, (cf. also Figure 1)

operator description

SS(l) single-stranded region l
HL(a,l,b) hairpin loop with single stranded region l, closed by basepair (a,b)
SR(a,x,b) stacking region, closed by basepair (a,b); x is a closed structure
BL(a,l,x,b) bulge left with single stranded region l, closed by basepair (a,b); x is a 

closed structure
BR(a,x,l,b) bulge right with single stranded region l, closed by basepair (a,b); x is a 

closed structure
IL(a,l,x,l',b) internal loop with single stranded regions l and l', closed by basepair 

(a,b); x is a closed structure
ML(a,c,b) multi-loop, closed by basepair (a,b)
AD(x,c) list of adjacent structures; x is a structure, c a (possibly empty) list of 

adjacent structures
E empty list of adjacent structures
Page 4 of 23
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sis, as has recently been analysed in [17-19]. Showing the
non-ambiguity of a grammar is often difficult. For our
grammar, we succeeded with the automatic proof tech-
nique presented in [19].

The grammar presented here is actually a simplified ver-
sion of the full grammar used in our implementation.
More details of the full grammar are given in the sections
on algorithmics and efficiency analysis.

Deriving features from structures
As our structures are formulas, we can derive various kinds
of information in a most uniform way: We simply inter-
pret the operators as functions operating on a particular

domain of interest, such as shapes, energies or strings.
Such interpretations consist of one function per operator,
and will be called evaluation algebras. The value resulting
from the interpretation of a structure x in algebra α will be
denoted xα. The convenience of this formalization is that
whatever feature of interest we cast in terms of an evalua-
tion algebra, we can be sure that the parsing algorithm
that evaluates the folding space can compute this feature
[20]. We will specify evaluation algebras that compute
free energies, Boltzmann-weighted energies, shapes and
string representations of structures. When an interpreta-
tion is given, by convention, operator names are con-
verted to lower case and superscripted. This means, for
example, that operator SR will be given many different

Table 2: Basic secondary structure grammar. This grammar is a simplified version, included for illustrative purposes. The grammar 
that is actually used for calculating shape probabilities is larger, owing to the requirement to be unambiguous; see the discussion in 
paragraph "A non-ambiguous grammar with correct dangles" and Table 6. Part a) shows the grammar in its algebraic form. | | | 
signifies alternative right-hand sides of productions, ... h the application of choice function h, ~~~ juxtaposition of terms. <<< denotes 
application of the operator to its left-hand side to the arguments of its right-hand side. Operators are as in Table 1, plus ul(x) as an 
abbreviation for ad(x,e), str for structures, and blk for blocks. The axiom of the grammar is struct. Part b) shows the same grammar in 
EBNF notation, naturally without the operators to be applied.

a)
struct = str <<< comps |||

str <<< singlestrand |||
str <<< (e <<< empty) ... h

block = ad <<< singlestrand ~~~ closed ... h
comps = ad <<< block ~~~ comps |||

block
ad <<< block ~~~ singlestrand ... h

singlestrand = ss <<< region
closed = (hl <<< base ~~~ region3 ~~~ base |||

sp <<< base ~~~ closed ~~~ base |||
sr <<< base ~~~ (bl <<< region ~~~ closed) ~~~ base |||
sr <<< base ~~~ (br <<< closed ~~~ region) ~~~ base |||
ml <<< base ~~~ (ad <<< block ~~~ comps) ~~~ base |||
sr <<< base ~~~ (il <<< region ~~~ closed ~~~

region) ~~~ base)
'with' basepairing ... h

region3 = region 'with' (minsize 3)
b)
struct = comps |

singlestrand |
empty

block = singlestrand closed |
comps = block comps |

block |
block singlestrand

singlestrand = region
closed = base region 3 base |

base closed base |
base region closed base |
base closed region base |
base region closed region base |
base block comps base

region3 = base base region
region = base |

base region
base = 'A' | 'C' | 'G' | 'U'
Page 5 of 23
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interpretations – as function sren, which adds the free
energy increment of stack extension to the enclosed struc-
ture's energy, as srbw, which computes the Boltzmann-
weighted energy of the extended substructure in the same
situation, as srπ, which computes the stack extension's
effect on the shape xπ. of structure x, and as sr(·), which
adds another pair of brackets around the string represen-
tation of the enclosed substructure.

String representation of structures
As a simple first example, we define the interpretation x(·)

that derives the dot-bracket representation of structure x.
"(·)" is meant as an abbreviation for "dot-bracket repre-
sentation".

ss(·)(l) = ...|l|  (3)

hl(·)(a, l, b) = (...|l|)  (4)

sr(·)(a, x(·), b) = ( x(·) )  (5)

bl(·)(a, l, x(·), b) = (...|l|  x(·) )  (6)

br(·) (a, x(·), l, b) = ( x(·)  ...|l|)  (7)

il(·)(a, l, x(·), l', b) = (...|l|  x(·)  ...|l'|)  (8)

ml(·)(a, c(·), b) = ( c(·) )  (9)

ad(·)(x(·), c(·) = x(·)  c(·)  (10)

Different interpretations of operatorsFigure 1
Different interpretations of operators. Trees showing different interpretations of operators: 1.1 as symbolic construc-
tors, 1.2 as the tree  representation of the formula that computes the Boltzmann-weighted energy of the structure. Note that  
the trees are isomorphic.
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Structures and shapesFigure 2
Structures and shapes. Trees representing 2.1 a structure and its shapes according to 2.2 π5 and 2.3 π3.
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e(·) = ε  (11)

where ...k means k dots, |l| is the length of string l, ε denotes
the empty string and  is string concatenation. The added
characters (,) or . are given in boldface.

Free energy
In the energy algebra, each operator, representing a struc-
tural feature, is interpreted as a function adding a certain
free energy increment to the energy of its embedded sub-
structure(s). Evaluating structure x under this interpreta-
tion yields energy value xen. Base pairs and stack
extensions add stabilising (negative) energies, while most
kinds of bulges and loops add destabilising (positive)
energies. The concrete energy parameters have been deter-
mined experimentally [2,21,22]. We abbreviate them by
δSR, δBL etc. Using these parameters, we can interpret SR by
function sren in the following way:

sren (a , xen, b) = δ SR (a, b) + xen  (12)

Energy functions for the other operators can be given in a
similar way. Comparing SR(a, x, b) to its free energy inter-
pretation sren(a,xen, b), we see that the tree representing a
structure has simply been replaced by an isomorphic for-
mula that computes its free energy. (Technically, a and b
have to be base coordinates here, not just bases, since δSR
is defined on stacked base pairs, not just single base pairs.)
Under this interpretation, our example structure from Fig-
ure 1 becomes

Boltzmann-weighted energies

When computing probabilities of structures according to
Eq. 2, it is convenient to defer division by Q until the very
end, and compute Boltzmann-weighted energies instead,

according to the equation xbw = 

Hence, the Boltzmann-weighted energy algebra can be
derived from the free energy algebra:

Again, the other functions can be derived in a similar way.
Like energies summate over substructures; Boltzmann-
weighted energies multiply.

For our example structure, the Boltzmann-weighted
energy is 774.6261 and Q = 793.9457, resulting in a prob-
ability P = 0.9756663.

Shapes
RNA abstract shapes are a generic concept. They are
defined by means of abstraction functions preserving var-
ying amounts of detail. These functions are homomor-
phisms from structures to another tree-like domain,
preserving adjacency and nesting of substructures. For the
trees representing shapes, we use 4 operators: OP
("open") represents the shape of all structures without
base pairs, CL ("closed") represents a helical region, AD
and E are re-used here to represent lists of adjacent
(sub)shapes. We present two shape abstraction functions
π5 and π3, known as level-5 and level-3 abstraction [16].

π5 maps all helices to the CL operator, abstracting from
helix length and interruptions by bulges or internal loops.
Except for the completely unpaired structure, no single-
stranded regions at all are retained. In contrast to this, π3
introduces a new CL operator in the shape tree, whenever
a helix is interrupted by a bulge or internal loop. However,
the type of interruption is not recorded. Figure 2 shows a
structure and the two shape trees according to π5 and π3.

Complete probabilistic shape analysis
Given the tree grammar defining valid structures, and a
particular RNA sequence s, a parsing algorithm can con-
struct the complete folding space F(s). For all x ∈ F(S), it
can compute values xen, xbw,  xπ and x(·), where π is one of
our shape abstraction functions. We shall make use of the
notion of an exploded folding space, which is a list of
derived values, one for each member of F(s). Exploded
folding spaces are convenient for formal definitions, but
they must be avoided in actual computations, as their size
increases exponentially with the length of s. This is possi-
ble with dynamic programming.
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To explain the model underlying complete probabilistic
shape analysis, we proceed in three steps. We first review
simple shape analysis (as described in [16]). Then we
describe the computation of the partition function as well
as the structure of maximal Boltzmann weight. Finally, we
combine the objectives of both types of analysis to define
shape probabilities.

Simple shape analysis
Consider the list Lshreps of all shape-representative struc-
tures (shreps) for s, together with their energies and shapes,
and sorted on the energy component. Here, π (F(s)) is
short for {xπx ∈ F(s)}; it is called the shape space of s.

Lshreps(s) = [(x(·), xen, xπ)|xπ ∈ π(F(s)), xen = min{zen|z ∈ F(s),
zπ = xπ}]  (18)

For given k, simple shape analysis computes the first k ele-
ments of this list, in O(kn3) time and O(n2) space.

Computing Boltzmann-weighted energies
Our new goal is to compute Boltzmann-weighted energies
of shapes, defined as the accumulated Boltzman-weighted
energies of all structures within a shape. We want to com-
pute the value triple

where , the sum of all Boltzmann-

weighted energies, and xopt ∈ F(s) is the structure of maxi-

mal Boltzmann-weighted energy.

We define a function hB, which computes B from the
exploded folding space

Lbw(s) = [(xbw, xbw, x(·)) | x ∈ F(s)].  (20)

by accumulation of Boltzmann-weighted energies in the
first component and maximization of Boltzmann-
weighted energies in the second, while recording the
structure of highest Boltzmann weight in its string repre-
sentation in the third component. For a single structure,
both energy sum and individual energy coincide, which
explains why xbw occurs twice in Equation 20. Details are
given in the Methods section.

Computing shape probabilities
Our ultimate goal is to compute the probabilities of all
shapes in π(F(s)). To this end, we need to accumulate
Boltzmann-weighted energies per shape. The accumulated
weight of shape p is

and the shape's probability is .

Along with the accumulated weights, we also want to
compute the shapes themselves, together with their shreps

 and their Boltzmann-weighted energies .

(The latter will eventually be converted back to free ener-
gies in the output of our program.) Our desired result is
therefore a complete list of all these values, in the form

We define a function hP that computes P from the
exploded folding space

Lsh (s) = [(xπ, (xbw, xbw, x(·)))|x ∈ F(s)]  (23)

by computing shape abstractions in the first component,
and applying hB on the other components in a shape-wise
fashion. Details are given in the Methods section.

We now report our findings from applications of com-
plete probabilistic shape analysis to various types of RNA.

Transfer RNA
Applying the shape probability algorithm to the alanine
tRNA of Natronobacterium pharaonis (embl:AB003409.1)
gives the results shown in Figure 3.

The shape holding the MFE-structure (shape 1) shows a
high probability, whereas the other shapes have probabil-
ities below 1%. This means that this unmodified RNA is
very unlikely to occur in the cloverleaf shape. This is con-
sistent with biological knowledge and clearly expresses
the need for other mechanisms, such as base modifica-
tions, to ensure that the cloverleaf structure is actually
achieved.

Attenuator
The pheS-pheT-Attenuator of E. coli (embl:V00291.1/
3682-3746) is known to switch from a translationally
inactive to a translationally active conformation under
specific conditions. These two conformations correspond
to two valleys in the structure landscape that are separated
by a saddle point (energy barrier). In terms of shape anal-
ysis, this means that two shapes should be present with
reasonable probability. The corresponding experiment
yields the results summarised in Figure 4. The analysis
shows that Shapes 1 and 3 are rather similar with respect
to their shreps, so their probabilities can be added. This
means that the shape with two hairpins, which may be
embedded in a multiloop, has a probability of 0.635765
and the shape with one hairpin has a probability of
0.324386. Shape 1+3 corresponds to the "off" position of

B Q x xopt
bw

opt= ( )⋅( , , )( ) 19

Q x x F sbw= ∈∑{ | ( )}

x x x F s x pp
bw bw
∑ = ∈ = ( )∑{ | ( ), }π 21

x Qp
bw
∑ /

xopt p,
( )⋅ xopt p

bw
,

P p x x x p F sp
bw

opt p
bw

opt p= ∑ ∈ ( )⋅[( ,( , , ))| ( ( ))], ,
( ) π 22
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Shreps of the N. pharaonis tRNA-alaFigure 3
Shreps of the N. pharaonis tRNA-ala. Shreps of the three most probable shapes of the N. pharaonis tRNA-ala together with 
the probabilities of the shapes (sorted by increasing energy).
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the switch and the higher probability inidcates that this is
its native position. The "on" position (Shape 2) is less
probable, indicating the need for some external effector to
trigger the switch.

Leader of ptsGHI
The ptsGHI operon in B. subtilis (gb:Y11193/1016-1107)
includes the genes involved in glucose transport by the
phosphotransferase system. In [23], it was shown that
expression of this operon is controlled at the level of tran-
script elongation by a protein-dependent riboswitch. In
the absence of glucose, a transcriptional terminator pre-
vents elongation into the structural genes. In the presence
of glucose, the GlcT protein is activated and binds and sta-
bilises an alternative structure that overlaps the terminator
and prevents termination. Applying RNAshapes to calcu-
late probabilities of shapes gave the results shown in Fig-
ure 5. The first striking result of this analysis is that a shape
holding an energetically less favourable shrep (shape 3) is
the most probable one. Again, we can further merge
shapes by looking at their shreps. Only Shreps 2 and 4 carry
the antiterminator hairpin (the small hairpin at the 5'-end
of shrep 3 does not alter the terminator hairpin), whereas
Shreps 1 and 3 carry the terminator hairpin. Summation of
the probabilities gives 0.788176 for the terminating con-
formations and 0.173566 for the read-through conforma-
tions. This corresponds to experimental results showing
that the switch is natively in the "off" position and is trig-
gered by the GlcT protein to enable transcript elongation.

Precursor of microRNA lin-4
microRNAs (miRNAs) are small (~22 nt) regulatory RNAs
that are processed from larger precursors, for which the
secondary structure is assumed to play an important role.
A common feature of all known precursors is that they
form a hairpin with significantly lower energy than for
random sequences of the same dinucleotide distribution
[24]. This suggests a well-defined secondary structure,
which implies that the corresponding shape should have
a very high probability. An analysis of the precursor of C.
elegans lin-4 (miRBase:MI0000002) [25] reveals the shape
[] with probability 0.999996, which means that only 1 in
250,000 molecules has a different shape, or that each
molecule spends 99.9996% of its lifetime in the single
hairpin shape. A probability cut-off of 10-6 was used for
the output, which might be the reason that no further
shapes appear.

Another fact that has to be considered is that the shape
abstraction might have been too strong. For this reason,
we performed an analysis with abstraction level 3, retain-
ing more structural detail, and giving the results shown in
Figure 6.

All shreps are very similar, so it is reasonable to combine
them in the single hairpin shape. Their probability sum is
0.999956, which except for rounding inaccuracies is the
same as the probability of the single hairpin shape.

mRNA
The previous sections show how the probabilities of
shapes can be used to analyse functional RNAs and their
specific structural properties. But what about messenger
RNA (mRNA)? As the structure of an mRNA is generally
assumed to be less important, and because evolution has
to ensure the correct coding of amino acids, we would
expect the results to be inclonclusive. Interestingly, analy-
ses of numerous mRNA coding sequences revealed a wide
variety of results. In Figure 7 we give two examples that
can be seen as extremal observations. The "expected" case
is observed for ENST00000328857.1 (see Figure
FIG:CDS:PROBS:A), where we find nine shapes with
remarkably high probabilities, and four cases of "overtak-
ing", where the shape probability ranking contradicts the
ranking of shreps by energy. The other extreme is observed
for ENST00000326531.1 (see Figure FIG:CDS:PROBS:B),
where we find a hairpin shape with probability 0.999819
inside the coding sequence. Reasons for this diversity of
results may be that at least some coding sequences carry
structural features necessary for correct function, or that
structure, no matter whether well-defined or ill-defined,
was never selected for or against.

Approximating shape probabilities via sampling

In the Methods section, we show that complete probabil-
istic shape analysis has a "slow" exponential term in its
runtime requirements. This makes probabilistic shape
analysis unfeasible for long sequences. Hence, to allow
the analysis of such sequences, we combine the stochastic
sampling introduced in [4] with a-posteriori shape
abstraction. A sample from the structure space holds M
structures together with their shapes, on which classifica-
tion is performed. The probability of shape p can then be
approximated by its frequency fp in the sample. The accu-

racy of this approach depends on the sample size M,
which must be large enough to achieve statistical confi-
dence. Assuming the counts to have a Poisson distribution
with parameter Mp, we can approximate them with a nor-
mal distribution with mean Mp and variance Mp for large
sample sizes. To allow 10% deviation of the estimated fre-
quency fp within a 95% confidence interval, we require

that  ≤ 0.1 mean or Mp ≥ 400, or, with lspoi being

the lowest shape probability of interest, M ≥ 400/lspoi.
Thus, M = 1000 is sufficient to achieve reasonable results
for the shapes with high probability, and this number is

2 var
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independent of the sequence length. This result was con-
firmed by empirical analyses (see Table 3).

Shreps of the AttenuatorFigure 4
Shreps of the Attenuator. Shreps of the three most probable shapes of the Attenuator together with the probabilities of 
the shapes (sorted by increasing energy). Together, they cover 0.95 probability, ruling out further shapes of biological impor-
tance.

...((((..(((....(((..........)))......))).)))).((((((((....))))))))......

4.1 Shrep of shape 1: [][], −21.2kcal/mol, P = 0.538190

.(((((((((((.((((((.................)).)))).....)))))))...))))...........

4.2 Shrep of shape 2: [], −20.93kcal/mol, P = 0.324386

...(((((.....((((((.................)).))))...(((((((((....))))))))))))))

4.3 Shrep of shape 3: [[][]], −19.33kcal/mol, P = 0.097575

Shreps of the leader of the ptsGHI operonFigure 5
Shreps of the leader of the ptsGHI operon. Shreps of the four most probable shapes of the leader of the ptsGHI operon in 
B. subtilis together with the probabilities of the shapes (sorted by increasing energy).

....................(((((.((((((((.((..((((((((((((.....)))))))).)))).....)))))))..))).)))))

5.1 Shrep of shape 1: [], −22.9kcal/mol, P = 0.237024

....(((((((((((.....)).)))))))))...(((((((.((((((((.....)))))))).)))).....)))......((....)).

5.2 Shrep of shape 2: [][][], −22.5kcal/mol, P = 0.099918

.((.(((...))).))....(((((.((((((((.((..((((((((((((.....)))))))).)))).....)))))))..))).)))))

5.3 Shrep of shape 3: [][], −22.3kcal/mol, P = 0.551132

.((((((((((((((.....)).))))))))....(((((((.((((((((.....)))))))).)))).....))).........))))..

5.4 Shrep of shape 4: [[][]], −22.1kcal/mol, P = 0.073648
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The remaining question is, when to use the exact algo-
rithm and when the sampling? The running times for the
two methods are summarised in Table 4 and show that for
sequences up to 100 nt the exact algorithm should be
used, whereas for longer sequences the sampling algo-
rithm is favourable.

More recently, the approach of [4] was extended by a clus-
tering step and computation of centroids for each cluster
[26]. The clusters can be seen as analogous to our shapes,
though without an explicit notion of abstraction.

Discussion
Mathematical and algorithmic aspects
Abstract shapes are a mathematically precise, intuitively
simple and non-heuristic means for partitioning the fold-
ing space into classes of structures. They enable us to
derive synoptic properties of these classes such as the
shreps of each class [16] or the accumulated class probabil-
ities, as introduced here. The granularity of the partition-
ing can be adapted to the length of the sequence by
choosing different abstraction levels. Simple shape analy-
sis is possible with the same algorithmic complexity as
standard MFE folding (O(n3)), while probabilistic shape
analysis requires O(n3·Pn), where P depends on the
abstraction level chosen (see Methods). When the expo-
nential term becomes problematic, one can switch to

probabilistic sampling with subsequent shape classifica-
tion. However, there remains the challenge of finding an
algorithm for probabilistic analysis for the k best shapes
that avoids the O(Pn) factor.

Given such satisfactory mathematical and algorithmic
properties, the question of whether shapes constitute an
abstraction that is also biologically meaningful must not
be overlooked.

Biological adequacy of shapes
Our idea is that a shape class comprises similar structures
that can potentially perform the same function – with the
consequence that looking at the shreps and their shape
probabilities gives us a precise and complete account of a
molecule's functional potential. This incurs the risk of
overlooking an important feature when shapes exhibit
substantial internal variation, while only their shrep is
submitted for further scrutiny.

We address this concern about variation within shape by
two examples. In Figure 8, we show three extremal mem-
bers of shape [] for the C. elegans lin-4 miRNA precursor.

This example shows that a shape can (and will) hold
structures with little similarity to that of the shrep. But note
that these structures are taken from energy ranges high

Shreps of the four most probable shapes of the C. elegans lin-4 precursorFigure 6
Shreps of the four most probable shapes of the C. elegans lin-4 precursor. Shreps of the four most probable shapes of 
the C. elegans lin-4 precursor at shape abstraction level 3, together with the shape probabilities (sorted by decreasing probabil-
ity).

.((((((((.((((..(((.((((.((((.(((((((.(((.......)))))))))).)))).)))).)))...)))).)))...)))))...

6.1 Shrep of shape 1: [[[[[[[[]]]]]]]], −42.1kcal/mol, P = 0.760632

.((((((((.(((((.(((.((((.((((.(((((((.(((.......)))))))))).)))).)))).))).)).))).)))...)))))...

6.2 Shrep of shape 2: [[[[[[[[[]]]]]]]]], −40.1kcal/mol, P = 0.219114

.((((((((.(((((.(((.((((((.((.(((((((.(((.......)))))))))).)))).)))).))).)).))).)))...)))))...

6.3 Shrep of shape 3: [[[[[[[[[[]]]]]]]]]], −38.8kcal/mol, P = 0.015652

.((((((((.((((..(((.((((.((((.(((((((..............))))))).)))).)))).)))...)))).)))...)))))...

6.4 Shrep of shape 4: [[[[[[[]]]]]]], −38.64kcal/mol, P = 0.004558
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above the MFE, and therefore should not play a functional
role. Our second example shows 116 members of the clo-
verleaf shape of Myc. capricolum tRNA-Leu
(embl:X16754.1) (Figure 9). This is a complete snapshot
of the low-energy membership of shape [[] [] []] in the
range of 3.1 kcal/mol above the MFE. All the members in
this energy range resemble the shrep.

From our observations so far, it appears that the low-
energy segment shows low variation within shape. Never-
theless, a deeper mathematical analysis or empirical study
of variation within shape is desirable.

Significance of predicted structures
There has been an ongoing debate about the significance
of low free energies achieved by a structure [24,27-30]. It
is significant because of the need to assign some signifi-

Shape probabilities of non-structural and structural RNAsFigure 7
Shape probabilities of non-structural and structural RNAs. The sequence in 7.1 shows a result which one would 
expect for coding sequences where structure plays no  role, while 7.2 shows a coding sequence that seems to have a rather 
well-defined structure.

>ENST00000328857.1|ENSG00000184686.1 assembly=NCBI34|chr=17|strand=forward|coding sequence of transcript

ATGGAACCACAGGTTACTCTAAATGTGACTTTTAAAAATGAAATTCAAAGCTTTCTGGTTTCTGATCCAGAAAATACAACTTGGGCTGATATCGAAGCTATGGTGAGTGTTACTTTA

-21.3 .((((.....(((((((.......))))))).............((((((((....))))).)))))))...(((((.(((..((((........))))..)))..)))))...... 0.138247 [[][]][]

-21.0 .....((((((((((..........(((.(((((....))))).)))....(((((((........)))))))....)))))).(((........)))..))))............. 0.149831 [[[][]][]]

-21.0 ..........(((((((.......)))))))...(((.(((.(((((....(((((((........)))))))..........((((........))))....))))).))).))). 0.432154 [][[][]]

-20.7 ..........(((((((.......))))))).....................((((((........))))))(((((.(((..((((........))))..)))..)))))...... 0.056336 [][][]

-20.2 .....((((.(((((((.......)))))))....................(((((((........)))))))..........((((........)))).))))............. 0.093333 [[][][]]

-19.8 ..(((((((.(((((..........(((.(((((....))))).))).)))))..)))))))..........(((((.(((..((((........))))..)))..)))))...... 0.022990 [][]

-19.5 ....(((...(((((((.......)))))))...........(((((....(((((((........)))))))..........((((........))))....))))))))...... 0.055005 [[][[][]]]

-19.1 .(((((((...)))...))))....(((.(((((....))))).))).....((((((........))))))(((((.(((..((((........))))..)))..)))))...... 0.016782 [][][][]

-18.7 .......(((.((((((.......))))))..............(((.((((((..(((.((...(((((..........)))))..)).))))))))).)))...)))........ 0.028357 [[][]]

7.1 ENST00000328857.1

>ENST00000326531.1|ENSG00000181208.1 assembly=NCBI34|chr=10|strand=forward|coding sequence of transcript

GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATTTGGCTAAAAAATTATACTGCCAAAATTACTGATTATAAATACTTGACTACACTGATTGATGGGACAAAATGA

-17.44 ................(((((.((..((((.((((...(((..((((((..............))))))..)))....)))).))))...))))))).................... 0.999819 []

-13.34 ((((((..((((.((((.(((..((..((....))..))..)))(((((..............)))))..........)))).))))...)).)))).................... 0.000176 [[][]]

-11.04 ..........................((((.((((...(((..((((((..............))))))..)))....)))).))))(((.(((((.....)).)))..)))..... 0.000005 [][]

7.2 ENST00000326531.1

Table 3: Comparison of sampling frequencies and exact probabilities. Comparison of sampling frequency and exact probability for the 
four most probable shapes of the pheS-pheT-Attenuator from E. coli; the Spliced Leader of L. collosoma (gb:S76723/1-56) and the 
leader of the HIV-1 genome (gb:K02013/1-281), all of which are conformational switches. The sample size for each was 1000 and the 
analyses were repeated 1000 times.

Shape Frequency Probability

pheS-pheT-Attenuator (74nt)

[] [] 0.538146 ± 0.012546 0.5381897
[] 0.324908 ± 0.011745 0.3243859

[[] []] 0.097263 ± 0.007509 0.0975747
[] [] [] 0.038984 ± 0.004872 0.0388670

Spliced Leader (56nt)

[[[[[]]]]] 0.4966 ± 0.012635 0.4962782
[[[[]]]] 0.348569 ± 0.011618 0.3491818
[[[]]] 0.060008 ± 0.005976 0.0595903
[[]] 0.056138 ± 0.005741 0.0559218

HIV-1 Leader (281nt)

[] [[] [[] []]] 0.629139 ± 0.015878 0.6164011
[] [[[] [[] []]] []] 0.337976 ± 0.014817 0.3492262

[[] [] [[[] [[] []]] []]] 0.017246 ± 0.003252 0.0169983
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cance measure to a structure prediction. In various ways,
these approaches compare the MFE of the native sequence
to that of random sequences of the same mono- or dinu-
cleotide distribution. According to the most recent study
[31], several classes of structural RNA, such as type III
hammerhead ribozymes and U2 small nucleolar RNAs,
have lower folding energy than random RNA of the same
dinucleotide frequency.

Conclusion
Probabilistic shape analysis allows us to approach the
question of the significance of predicted structures from a
new angle. We take the view that in the evolution of struc-
ture, competition comes not so much from sequence var-
iation (akin to randomizing effects) as from alternative
structures within the folding space. A different structure
can come to dominate the native one because of very few
mutational events, with the effect that a functional RNA
becomes nonfunctional. Hence, evolution should strive
to make the shape of a functional structure clearly domi-
nate over other shapes. This not only stabilizes this struc-
ture in the overall Boltzmann ensemble of the native
sequence, but also protects against immediate loss of
function because of a small number of mutations, so that
there is time (on an evolutionary scale) to restabilize the
structure by compensatory mutations, which we often
observe.

This line of thought is consistent with our observations
reported here, but it is by no means proven. An observa-
tion like that for ENST00000326531.1 calls for further sta-
tistical or experimental work, to disprove or prove the
biological relevance of a structural motif with shape prob-
ability 0.999819 inside this coding sequence. We propose
that dominance of shape should be further investigated as
a measure of structural significance.

Methods
Algorithmics and efficiency analysis
In this section we are concerned with two algorithmic
problems:

1. We define our objective functions hB and hP and show
that they can be implemented via dynamic programming.

2. We analyse and discuss the asymptotic efficiency of
complete probabilistic shape analysis achieved by this
implementation.

We shall define our objective functions hB and hP as evalu-
ators of an exploded folding space.

Subsequently, we will show that they can be computed
efficiently via dynamic programming because they satisfy
the condition known as Bellman's Principle. Thus, we
start with a discussion of this principle.

Notation

We define objective functions on lists. The empty list is
denoted as []. [x1, ..., xn] is the list of n elements x1 to xn

where n can also be zero, the list thus being empty. In

expressions like [...|x1 ← z1,...,xn ← zn] the leftarrow ←
denotes list membership. The operator  concatenates two
lists. The function map applies a function elementwise to
a list. The function concat concatenates a list of lists into a
single list. As above, features that can be derived from a
structure x are its free energy xen, its Boltzmann weight xbw

and its notation as a "Vienna string" x(·). According to
their subscripts, Boltzmann weights can be summed-up

( ) or optimised ( ).  is the Vienna string of an

energetically optimal (sub-)structure x. The shape of struc-
ture x is denoted by xπ.

Bellman's Principle
Bellman's Principle [32] captures the essence of dynamic
programming. It states the conditions under which a
search space can be pruned by applying an objective func-
tion at each intermediate step, whenever a list of alterna-
tive intermediate results has been obtained. Solutions to
sub-optimal subproblems can be discarded, yet the over-
all optimal solution will be found.

Bellman's Principle can be formally captured in the fol-
lowing two equations (cf. [20]):

xbw
∑ xopt

bw xopt
( )⋅

Table 4: Comparison of running times for the exact algorithm and the sampling approach. Comparison of running times for the exact 
algorithm and the sampling approach (1000 samples) on an Intel Xeon 2.8 GHz CPU.(n = sequence length; * computed on an 
UltraSparc III 900 MHz using 64-bit.)

n Sampling Exact Algorithm

57 nt 6.42 s 0.33 s
74 nt 17.36 s 0.93 s
94 nt 69.56 s 31.85 s
108 nt 36.24 s 57.43 s
130* nt 184.85 s 12016.68 s
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Variation within shapeFigure 8
Variation within shape. Three members of the [] shape of C. elegans lin-4 miRNA precursor. The structure shown in 8.1 is 
the  shrep of the [] shape and also the MFE-structure. 8.2 and 8.3 show members which are structurally  dissimilar to the 
shrep. Note the very low probabilities of the latter two.
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h([f(x1,...,xk)) | x1 ← z1,...,xk ← zk]) = h ([(f(x1,...,xk)) | x ←
h (z1),...,xk ← h(zk)])  (24)

h(z1  z2) = h(h(z1)  h(z2))  (25)

where the zi denote lists of intermediate results, ← denotes
list membership, and  denotes list concatenation. In our
context, functions f will be sren, srbw and so on.

It is not generally true that a function that computes the
desired result from the exploded search space will also
produce this result when applied at intermediate steps in
a dynamic programming algorithm. But it is easy to see
that the conditions 24 and 25 together guarantee that this
is in fact the case.

Definition and justification of objective function hB

Function hb computes B = ( , , ) from the

exploded folding space

Lbw(s) = [(xbw,xbw,x(·))|x ∈ F(s)] (see Equations 19 and 20).

Definition of hB

where si = ( , , ),  is a sum of Boltzmann-

weighted energies,  is the optimal Boltzmann-

weighted energy seen so far, and x(·) is the string represen-
tation of a structure with this Boltzmann-weighted energy;
likewise for y. Thus, this choice function sums up Boltz-
mann-weighted energies of structures and keeps track of
the structure that has the optimal energy. The result list
has at most one element.

The function h not only extracts the desired information
from the exploded folding space, it also satisfies Bellman's
Principle of Optimality, as will be shown next.

Justification of objective function hB

Equation 25 is easy to verify: every  is added once and

the optimal structure is determined by looking at each one
on the left-hand side once and on the right-hand side
twice, which gives the same result. For Equation 24, we
have to differentiate between three kinds of operators: the
first is of the form f = c, meaning it is a constant that does

not depend on sub-solutions (operators SS, HL and E);
the second is of the form f = a·x, where a scalar a is mul-
tiplied with an evaluated sub-solution x (operators SR, BL,
BR, IL, and ML); the third is of the form f = a·x1·x2, where

a scalar a and the values of two sub-solutions are multi-
plied (operator AD). The first case (f = c) is trivial, since we
do not have any answer lists z, and h is thus applied only
once. In the second case ( f = a·x), we sum up terms using
a·x1 + a·x2, which is equal to a·( x1 + x2), or choose the

maximum using max ( a·x1 , a·x2) which is equal to

a·max ( x1, x2). In the third case ( f = a·x1·x2), we sum up

terms using ),

which is equal to a·( )·( ), or choose the

maximum using max

( ), which is equal

to a·max ( )·max ( ).

Definition and justification of objective function hP

Function hP computes P = [(p, ( , , ))| p ∈

π (F(s))] from the exploded folding space Lsh(s) = [(xπ,

(xbw,xbw, x(·))) |x ∈ (F(s)) ](See Equations 22 and 23).

Definition of objective function hP
Using the previous objective function hB, we define the
classifying objective function hP as:

hP(z) = concat (map(hB, split(z)))  (27)

where map applies function hB elementwise to a list,

map (f, [a1,..., ar]) = [f(a1),..., f(ar)]  (28)

and concat concatenates a list of lists into a single list.

Function split splits answer list z into sublists, one for
each occuring shape:

where cs is a list of classes (shape-attributed lists of data),
xs and ys are attributes (shapes), and x and y are the data to
be classified. (x:y) inserts x into the front of list y. reverse

xbw
∑ xopt

bw xopt
( )⋅

h s s h s s

h p p

h p s
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1 1
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…
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reverses a list. ( , )m denotes the m-th (last) element of a list
of pairs.

This definition of the classifying objective function can be
rewritten as:

where ( , )m again denotes the m-th (last) element of a list
of pairs. Note that list [p1,...,pm] can be empty. For long
lists of classes, the above insert function is inefficient,

ˆ([ , , ]) ˆ ([],[ , , ])

ˆ ([ , , ],[]) [ , , ]

h s s h s s

h p p p p

n n

m m

1 1

1 1

… …

… …

= ′

′ =
ˆ̂ ([ , , ],[ , , ]) ˆ ( ( ,[ , , ]),[ , ,′ = ′h p p s s h s p p s sm n m1 1 1 1 2… … … …insert nn
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tRNA cloverleaf shape members (skating on a winter pond)Figure 9
tRNA cloverleaf shape members (skating on a winter pond). Complete snapshot of 127 low-energy members of the 
cloverleaf shape of Myc. capricolum tRNA-Leu in the energy range of 6 kcal/mol above the MFE. All resemble the shrep very 
closely. Artistic arrangement by S. Konermann.
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since on average it has to run through half the list ele-
ments. This can be remedied by using a more efficient
data structure, e.g. a hash of which the keys are shapes.

Given this definition, it is clear that  computes the
desired information from the exploded folding space Lsh.

That this can also be achieved efficiently via dynamic pro-
gramming needs yet to be established.

Dynamic programming with classification
By dynamic programming with classification we refer to an
analysis that splits up the search space into (disjoint)
classes, and applies some objective function class-wise.
The classes are not predefined, but arise from information
that is also derived from the search space. Almost cer-
tainly, this type of problem has arisen before in the 50
year history of dynamic programming. To the best of our
knowledge, however, it has not been described as a
generic method.

In DP with classification, we compute a classification
attribute together with each score value, such that scores
can be attributed to a particular class of (sub)solutions.
The classification attribute is derived by interpreting solu-
tions in a particular algebra, in our context the shape alge-
bra. We then apply the optimization objective h separately
for each class, returning, for example, the k best scores for
each solution class. To this end, we must provide a classi-

fication function  for each fi, such that we can compute

(attribute/score) pairs: (  ×fi) ( , a), ( ,b)) = (  ( , ),

f (a, b)). The function  applies h separately on each class
and is defined (consistent with our earlier definition) as

(x) = concat (map ( h, split (x)))  (31)

where split separates a list of attribute/value pairs into
sublists, one for each attribute occurring, (map (h, z))
applies h to each sublist of z, and concat rejoins sublists.

We show that  satisfies Bellman's Principle when h does.
This means that classification can be applied with any DP
algorithm.

Theorem

When h satisfies Bellman's Principle, and  is defined as

above, then  also satisfies Bellman's Principle, i.e. we
have for each list xs, ys of attribute/score pairs and all eval-
uation functions f:

 (xs  ys) =  ( (xs)  (ys))  (33)

Proof
Equation 33 is simple to show. When solution xs and ys
are classified separately, the objective function h is applied
for each attribute twice, once on the corresponding sublist
from xs, once on that from ys. Since by assumption h sat-
isfies Bellman's Principle, it satisfies Equation 25 by itself,
and applying h to the joined sublists for each attribute
yields the same result.

To prove 32, we successively transform the LHS into the
RHS.

We first complete the proof under the additional assump-
tion that the classification functions are confusion free –

( , ) = ( , ) implies  =  and  = . In this

case, rj uniquely determines attributes x and y from which

it arises via . The definition of  simplifies to

Since classification is the identity on lists where all entries
have the same attribute, and h satisfies 25, we can write

Together with the above definition of rj, we obtain

ĥ

f̂i

f̂i â b̂ f̂ â b̂

ĥ

ĥ

ĥ

ĥ

ĥ

ˆ ˆ ( , )| , ˆ ˆ ( , )| ˆ( ), ˆh f f x y x xs y ys h f f x y x h xs y×( ) ← ←



( ) = ×( ) ← ← hh ys( )



( ) ( )32

ĥ ĥ ĥ ĥ

ˆ [( ˆ )( , )| , ]

,

h f f u v u xs v ys

r wj
i
j

× ← ←( ) =

( )











concat  wherre

r f x y x x xs y y ys

w h f x y x x xs

j

i
j

← ← ←{ }
← ←

ˆ( ˆ, ˆ)|( ˆ, ) ,(ˆ, )

( , )|( ˆ, ) ,,(ˆ, ) , ˆ( ˆ, ˆ)y y ys f x y r j← =





f̂ â b̂ f̂ ĉ d̂ â ĉ b̂ d̂

x̂ ŷ

w h f x y x x xs y y ysi
j ← ← ←([ ( , )|( , ) ,( , ) ])

w h f x y x x h xs y y h ysi
j ← ← ←



( )( , )|( , ) ( ),( , ) ( )

Table 5: Shape space sizes. Comparison of the shape space size for the 5 shape levels.

Shape level 1 2 3 4 5
Growth with n 1.26n 1.23n 1.16n 1.20n 1.10n
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Table 6: The full unambiguous grammar in EBNF notation. This is the full unambiguous grammar in EBNF notation. Note that 
dangling bases are not represented explicitly by a special terminal symbol, but as a 'base'. Their dangling property is accounted for by 
the derivation path, e.g. the secondary structure .( (...) ). for sequence 'ACCUAUGGG' will be derived as struct → left_dangle → 
edanglelr left_dangle → base initstem base left_dangle → base initstem base empty. The two unpaired bases in 'base initstem base' 
have been derived via ' edanglelr', which accounts for their dangling property. We do not give an explicit representation for dangling 
bases, as the need to derive them explicitly is due to the energy model and not to handling them as discrete structural elements, i.e. a 
dangling base is nothing more than an unpaired base next to a stem, but it has a non-positive energy contribution that cannot be 
neglected.

struct = left_dangle | noleft_dangle
left_dangle = base left_dangle |

edanglel base noleft_dangle |
edanglel (noleft_dangle | empty) |
edanglelr left_dangle |
empty

noleft_dangle = edangler left_dangle |
nodangle (noleft_dangle | empty) |
nodangle base noleft_dangle

edanglel = base initstem
edangler = initstem base
edanglelr = base initstem base
nodangle = initstem
initstem = closed
closed = stack | hairpin | multiloop | leftB | rightB | iloop
multiloop = base base base ml_comps1 base base |

base base base ml_comps2 base base |
base base ml_comps3 base base base |
base base ml_comps2 base base base |
base base base ml_comps4 base base base |
base base base ml_comps2 base base base |
base base base ml_comps1 base base base |
base base base ml_comps3 base base base |
base base ml_comps2 base base

ml_comps1 = block_dl no_dl_no_ss_end |
block_dlr dl_or_ss_left_no_ss_end |
block_dl base no_dl_no_ss_end

ml_comps2 = nodangle no_dl_no_ss_end |
edangler dl_or_ss_left_no_ss_end |
nodangle base no_dl_no_ss_end

ml_comps3 = nodangle no_dl_ss_end |
nodangle base no_dl_ss_end

ml_comps4 = block_dl no_dl_ss_end |
block_dlr dl_or_ss_left_ss_end |
block_dl base no_dl_ss_end

block_dl = region edanglel |
edanglel

block_dlr = region edanglelr |
edanglelr

no_dl_no_ss_end = ml_comps2 |
nodangle

dl_or_ss_left_no_ss_end = ml_comps1 |
block_dl

no_dl_ss_end = ml_comps3 |
edangler |
edangler region

dl_or_ss_left_ss_end = ml_comps4 |
block_dlr |
block_dlr region |

stack = base closed base
hairpin = base base region base base
leftB = base base region initstem base base
rightB = base base initstem region base base
iloop = base base region closed region base base
base = ' A ' | ' C ' | ' G ' | ' U '
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and by the definition of , this is

This completes the proof under our additional assump-
tion of "no confusion". In the other case, the proof must

consider all pairs of attributes ( , ) that can yield rj =

( , ). As h distributes (by Equation 33) over the con-

catenation of these lists, the proof succeeds with an extra
application of Equation 33.

Why probabilistic shape analysis is expensive

Our algorithm computes accumulated probabilities (or
Boltzman-weighted energies) for all shapes. Since the
number of shapes grows exponentially with sequence

length n, runtime is  (n3Pn). It was determined empiri-

cally for shape level 5 in [16] that P ≈ 1.1. P is somewhat
larger for less abstract shapes, see Table 5. By contrast,

MFE folding runs in  (n3), and computing the k best

shape representatives takes  (n3·k), without incurring
an exponential factor.

Since a small number of top-ranking shapes can be
assumed to reveal all information relevant in applica-
tions, it seems plausible to compute probabilities for the
best k shapes only, achieving runtime O(kn3) and avoid-
ing the (albeit slow) exponential factor. Interestingly, this
seems impossible – at least with the techniques used so far
in simple and probabilistic shape analysis. The reason is
that an objective function that maximizes accumulated
shape probabilities would not satisfy Condition 2 (Eq.
25) of Bellman's Principle. An example suffices to demon-
strate this.

Consider two alternative rules of structure formation,
such as

sp <<< base ~~~ closed ~~~ base | | |

sr <<< base ~~~ (bl <<< region ~~~ closed) ~~~ base

Let the first alternative return probabilities 0.3 and 0.2 for
shapes [] and [[] []], and the second return 0.3 and 0.2 for
[[] [] []] and [[] []]. Clearly, the optimal choice for both is
0.3, but as the optimal probabilities are derived for differ-
ent shapes, they do not accumulate, and the overall best
choice would be 0.2 + 0.2 = 0.4 for shape [[][]].

As optimal choice does not distribute over combinations
of alternatives, Bellman's Principle is violated. However,
accumulating scores for all shapes (without a choice of an
optimal shape) is correct – at the extra cost of a slow expo-
nential term in the runtime asymptotics.

This consideration applies to all schemes that accumulate
scores over shapes. For example, if we score each structure
simply by 1, the accumulated score is just the size of each
shape's membership. This means that we have no polyno-
mial time algorithm that determines the k largest shapes.

Further implementation details
A non-ambiguous grammar with correct dangles
In the previous sections, we used the grammar attributed
to Wuchty [9] to describe the general idea on how to cal-
culate the probabilities of shapes. For expository reasons,
the grammar presented has been simplified, while a faith-
ful implementation of the current energy model requires
more sophistication, in Wuchty's program as well as in
ours.

A problem with Wuchty's full grammar is that it handles
dangling bases in a simplified way, meaning that the
grammar does not explicitly derive dangling bases.
Instead, the free energy increment is added by the algebra
irrespective of whether the bases are actually dangling. In
general, this leads to lower free energies, which the devel-
opers see as an approximation for coaxial stacking. The
effect of this inaccuracy would be that the partition func-
tion calculation and therefore the derived probabilities

concat  where( , )

( , )|( , ) ,( ,

r w

r f x y x x xs y y

j
i
j

j













← ← ))

( , )|( , ) ( ),( , ) ( )

←{ }
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( )
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w h f x y x x h xs y y h ysi
j

ĥ

ˆ ˆ ( , )| ˆ( ), ˆ( )h f f u v u h xs v h ys×( ) ← ←



( )

â b̂

f̂ â b̂






region = base |
base region

Table 6: The full unambiguous grammar in EBNF notation. This is the full unambiguous grammar in EBNF notation. Note that 
dangling bases are not represented explicitly by a special terminal symbol, but as a 'base'. Their dangling property is accounted for by 
the derivation path, e.g. the secondary structure .( (...) ). for sequence 'ACCUAUGGG' will be derived as struct → left_dangle → 
edanglelr left_dangle → base initstem base left_dangle → base initstem base empty. The two unpaired bases in 'base initstem base' 
have been derived via ' edanglelr', which accounts for their dangling property. We do not give an explicit representation for dangling 
bases, as the need to derive them explicitly is due to the energy model and not to handling them as discrete structural elements, i.e. a 
dangling base is nothing more than an unpaired base next to a stem, but it has a non-positive energy contribution that cannot be 
neglected. (Continued)
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also show inaccuracies. We therefore modified this gram-
mar in such a way that it handles dangling bases explicitly
and unambiguously. This is achieved by imposing the fol-
lowing rules during grammar design, which apply to the
external loop and to multiloops: (1) An unpaired base
(singlestrand or dangling base) has to be followed by an
unpaired base, either a singlestrand or a structural ele-
ment with a dangling base. (2) A structural element with-
out a dangling base on the 3'-end has to be followed by a
structural element without a dangling base on the 5'-end.
(3) We explicitly handle two structural elements with one
unpaired base in between, to be able to decide which of
the two possible dangling contributions is energetically
favourable.

With the grammar designed in this way, we are able to
derive all feasible secondary structures unambiguously
with their correct energies and, therefore, also the correct
partition function.

Practical efficiency
The nonambiguous, correct-dangle grammar has been
implemented together with the algebras described in the
previous section, yielding an algorithm for the exact calcu-
lation of probabilities for shapes. Application of this algo-
rithm to various RNA sequences, of which some are
shown in the Results Section, showed that the time and
space requirements are quite moderate, allowing us to
analyse sequences up to length 120 (with about 40 000
shapes) within 5 minutes on an Intel Xeon 2.8 GHz CPU.

Shape probabilities based on sampling
To be able to analyse longer sequences, we took up the
idea of stochastic sampling introduced in [4]. This is
achieved by changing the objective function h in the bw
algebra from summation to picking one element ran-
domly according to its Boltzmann weighted energy. This
version can be used to draw samples (structures together
with their shapes) of the structure space according to the
Boltzmann distribution. Based on the shapes, the sample
is partitioned into similarity classes and the frequency of
each shape is computed. If the sample size is large
enough, these shape frequencies come very close to the
exact probabilities and can therefore be used instead.

We use our complete probabilistic shape analysis on mod-
erate length sequences to evaluate how well the sample
probabilities approximate the true ones with growing
sample size, and relate the computational efforts required.
The Results Section summarizes our observations using
both algorithms.

Availability and requirements
Project name: RNAshapes; Project home page: http://
bibiserv.techfak.uni-bielefeld.de/rnashapes/. Operating

systems: Source distribution and precompiled binary ver-
sions for Linux (i386), Solaris 8 (Sparc, i386), Microsoft
Windows, MacOS X; See also [33].
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