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Abstract

Background

Initiation of the antiarrhythmic medication dofetilide requires an FDA-mandated 3 days of

telemetry monitoring due to heightened risk of toxicity within this time period. Although a rec-

ommended dose management algorithm for dofetilide exists, there is a range of real-world

approaches to dosing the medication.

Methods and results

In this multicenter investigation, clinical data from the Antiarrhythmic Drug Genetic (AAD-

GEN) study was examined for 354 patients undergoing dofetilide initiation. Univariate logis-

tic regression identified a starting dofetilide dose of 500 mcg (OR 5.0, 95%CI 2.5–10.0,

p<0.001) and sinus rhythm at the start of dofetilide loading (OR 2.8, 95%CI 1.8–4.2,

p<0.001) as strong positive predictors of successful loading. Any dose-adjustment during

loading (OR 0.19, 95%CI 0.12–0.31, p<0.001) and a history coronary artery disease (OR

0.33, 95%CI 0.19–0.59, p<0.001) were strong negative predictors of successful dofetilide

loading. Based on the observation that any dose adjustment was a significant negative

predictor of successful initiation, we applied multiple supervised approaches to attempt to

predict the dose adjustment decision, but none of these approaches identified dose adjust-

ments better than a probabilistic guess. Principal component analysis and cluster analysis

identified 8 clusters as a reasonable data reduction method. These 8 clusters were then

used to define patient states in a tabular reinforcement learning model trained on 80% of

dosing decisions. Testing of this model on the remaining 20% of dosing decisions revealed

good accuracy of the reinforcement learning model, with only 16/410 (3.9%) instances of

disagreement.
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Conclusions

Dose adjustments are a strong determinant of whether patients are able to successfully initi-

ate dofetilide. A reinforcement learning algorithm informed by unsupervised learning was

able to predict dosing decisions with 96.1% accuracy. Future studies will apply this algorithm

prospectively as a data-driven decision aid.

Background

Decision analysis is an emerging field that uses outcomes from different decision approaches

to guide future decision-making[1]. In many cases, medical decisions can be formulated as

Markov-decision processes (MDPs), in which a given state of conditions can predict future

states based on a model for decision-making[2]. Reinforcement learning, a subset of machine

learning (ML), expands on MDPs by embedding reward-based feedback into decision out-

comes so that an optimal decision approach, termed the policy, can be identified[3]. In recent

years, this approach has achieved supra-human success rates in video and board games,

among other applications[4, 5].

Reinforcement learning is one of three main categories of ML gaining popularity in medical

applications, the other two being supervised and unsupervised learning[6]. Supervised applica-

tions use an example dataset to learn general rules (an algorithm) about the relationship of pre-

dictor variables (termed “features”) to an outcome of interest (termed a “label”). These general

rules can then be applied to a new dataset to predict outcomes. Unsupervised learning, in con-

trast, does not use labelled outcomes and, instead, discovers relationships between different

features on its own. The discovery process often restructures data into new classes, “shrinking”

and consolidating features for more nimble use in supervised applications. In many applica-

tions, these methods complement each other, but whereas supervised and unsupervised meth-

ods lead to descriptive analyses, feedback from outcomes allows reinforcement learning to

produce prescriptive analyses[7]. For this reason, reinforcement learning holds great promise

as a tool to enrich clinical decisions. Currently, however, there are relatively few published

applications in healthcare[8, 9].

Dofetilide is a common antiarrhythmic medication primarily used to treat atrial fibrillation.

It is one of the few anti-arrhythmic medications other than amiodarone that has been

approved for use in patients with coronary artery disease or cardiomyopathy. Like many other

Vaughan Williams class III agents, dofetilide blocks the rapid delayed rectifier, IKr current,

and thus can cause QT prolongation. Due to the risk of resultant fatal arrhythmias, the FDA

has mandated a 3-day monitoring period for drug initiation[10]. There is a recommended

algorithm for making dose adjustments during initiation, but these adjustments are still made

at the treating provider’s discretion[10, 11]. In this investigation, we examine the patterns of

dofetilide dose adjustment and the role of machine learning to develop algorithms aimed at

successful initiation of the medication.

Methods

This study has been approved by the University of Colorado Internal Review Board (COMIRB

Protocol #16–2675), and the Partners Human Research Committee (#2013-P002623). All sub-

jects provided written informed consent.
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Study population

The Antiarrhythmic Drug Genetic (AADGEN) study is a multi-center collaboration that

includes investigators from the Massachusetts General Hospital (MGH, Boston, MA), Beth

Israel Deaconess Medical Center (Boston, MA), the Boston-area Veterans Affairs Medical

Center (West Roxbury, MA), the Cleveland Clinic (Cleveland, OH), the Mayo Clinic (Roches-

ter, MN), and the University of Colorado Hospital (Aurora, CO). Patients were enrolled from

July 7, 2014 to September 19, 2018, with the inclusion criterion being any patient admitted to

in-patient telemetry for monitoring of initiation of dofetilide. The exclusion criteria included

failure to provide written informed consent and failure to obtain a pre-dofetilide ECG. Massa-

chusetts General Hospital served as the study’s coordinating center for this investigation.

Internal Review Board approval was obtained at all enrolling centers. This study is a sub-study

of a larger investigation into the genetic predictors of cardiac repolarization and drug toxicity

of antiarrhythmic medications (Clinicaltrials.gov identifier: NCT02439658).

Demographic and clinical information were obtained on all study participants that included

age, height, weight, body mass index (BMI), medications, past medical and cardiac history,

including history of pacemaker/defibrillator, atrial fibrillation, ventricular fibrillation, left ven-

tricular function from transthoracic echocardiogram, recent lab values including creatinine,

potassium, and magnesium, and electrocardiograms that include underlying rhythm, rate, and

relevant intervals (PR, QRS, QT). QT interval was corrected for heart rate using Fridericia’s

formula[12]. The timing of electrical cardioversion was also recorded.

The outcome of interest was successful loading of dofetilide, defined as discharge on dofeti-

lide at any dose after at least 5 administrations. Data for all participants was collected retro-

spectively, after completion of the hospitalization; no clinical adjustments or changes were

made by treating physicians as part of this investigation. Data was maintained in a centralized

RedCap database managed by the study coordinating center at MGH.

Data processing

Prior to analysis, quality control was performed by study investigators, with manual review of

outlier values for ECG parameters (i.e., QTc> 600 ms) and for discordant data values (e.g., PR

interval on an ECG with rhythm listed as ‘atrial fibrillation’). When resolution or validation

was not possible, values were replaced as missing. Summary and descriptive statistics are based

on analysis of non-missing data; only 4.2% of the total dataset was missing. Due to the restric-

tions of machine-learning algorithms for complete datasets, missing values needed to be

imputed with the median for numerical and integer values and most common for categorical.

Categorical variables were also coded using ‘one-hot’ encoding and numerical variables were

rescaled using min-max rescaling. Dose adjustments were only included if they were a

decrease in dose from a higher dose, as FDA guidelines for dofetilide initiation suggest starting

at the highest dose based on kidney function, and adjusting downward based on the QT

changes on ECG; as such, any dose increase during the hospitalization was off-label. Based on

this criterion, 14 patients who underwent dose increases were excluded. For all model evalua-

tions, data were split into training (80% of total data) and testing sets (20% of total data) at the

patient level.

Supervised analysis

Basic stepwise logistic regression was performed for successful initiation of dofetilide using a p

value for exclusion of greater than 0.05. Based on the observation that dose adjustments were a

significant predictor of successful initiation, we used ensemble methods to develop predictive

models of the dose adjustment process. These models included L1 regularized logistic
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regression, random forest classification, a boosted decision tree classifier, support vector classi-

fication (radial basis function kernel), and K-nearest neighbors classification with a maximum

of 10 neighbors. Comparison measures included accuracy, precision and recall scores, F1-

score[13, 14], and area under ROC curve.

Unsupervised analysis

For unsupervised analysis, we first performed principal component analysis. Plotting the num-

ber of principal components (PC) versus variance, we hoped to identify the number of PCs

that would account for greater than 90% of the variability in the data. We then performed a

cluster analysis based on within cluster variation (sum-of-squares), and used the ‘elbow’

method to determine cluster numbers with sufficiently low within-cluster variability. We then

used a K-means approach to create these clusters for use in subsequent reinforcement learning

analyses.

Reinforcement learning

We next applied reinforcement learning using the SARSA algorithm (state–action–reward–

state–action) for selecting dose adjustments based on a negative reward for unsuccessful initia-

tion[15]. We applied two broad approaches to creation of action-value estimates (i.e., Q values)

[16]. First, we defined 8 states created using K-means clustering from all clinical features, and

performed tabular updates to a Q table based on dynamic programming (step-by-step

updates). Alternatively, we performed linear function approximation for the Q values using

linear weights (termed ‘Q learning’[17]), with updates using stochastic gradient descent based

on experience[15]. The available actions in the Q value estimates included ‘continue the same

dose’ or ‘decrease the dose’. The reward was selected to be -10 for doses leading to stopping of

the medication (last dose before stopping) and 0 for all other doses, in order to penalize deci-

sions resulting in a negative outcome.

The SARSA algorithm[15] updates a Q table with expected reward values based on state

and action selected based on the following variation of the Bellman equation[15]:

QnewðSt; AtÞ ¼ QoldðSt; AtÞ þ a
�½ðRt þ g

�QðStþ1; Atþ1ÞÞ � QoldðSt; AtÞ�

The Q table was initialized at 0 for all values, with gamma (discount factor) of different val-

ues ranging from 0.1 to 1.0, and alpha (learning rate) of 0.1. Of note, a gamma close to 1 puts

more weight on future states and rewards while a gamma of close to 0 tends to put more

weight on immediate rewards. We experimented with a range of learning rates (0.05 to 0.3).

The learning rate is the extent to which Q-values are updated with new iterations of data. Rein-

forcement learning algorithms were fitted with the testing set (per above, 80% of doses) and

compared with actual decisions on the held-out test set (per above, 20% of doses). Additional

analyses were performed using k = 4 and k = 6 (number of clusters).

Analysis

Descriptive statistical analysis, including chi-square for categorical and t-test for continuous

comparison, as well as univariate logistic regression, was performed using Stata IC, Version

15.1 (StataCorp, LLC, College Station, TX). Machine learning, including unsupervised, super-

vised, and reinforcement learning algorithms, were performed using Python 3, running scripts

on Jupyter notebook (v5.0.0) deployed via Anaconda Navigator, on a Macbook Pro laptop

computer (High Sierra, v10.13.6). Primary source of machine learning packages was scikit-
learn (see Supplemental Methods for details).
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Results

The baseline characteristics of the cohort are shown in Table 1. A total of 354 subjects were

enrolled, with successful initiation (discharged on dofetilide) in 310 patients (87.1%) and

unsuccessful in 44. Use of calcium channel blockers and initial dose of dofetilide were different

between patients with successful vs. unsuccessful initiation of dofetilide, although none of

these p values reached statistical significance after Bonferroni adjustment for multiple compar-

isons (probability of false positive = p/(# of rows in Table 1) = 0.05/24 = 0.002). There were no

other differences in baseline parameters between patients.

Table 1. Baseline demographics and clinical characteristics. A total of 354 subjects were enrolled in the Anti-arrhythmic Drug Genetic (AADGEN) study, with success-

ful initiation (discharged on dofetilide) in 310 patients (87.1%) and unsuccessful in 44. Note: Dose excludes 4 patients with a different starting dose than listed.

Successful initiation

(N = 310)

Unsuccessful initiation

(N = 44)

P value

Age (Mean ± SD) 66.6 ± 10.7 67.7 ± 9.7 0.53

Female Sex (%) 91 (29.4%) 18 (40.9%) 0.12

BMI (Mean ± SD) 30.2 ± 7.2 29.6 ± 7.5 0.57

History of:

AF (%) 297 (95.8%) 44 (100%) 0.17

VT (%) 12 (3.9%) 0 (0%) 0.18

PPM (%) 20 (6.5%) 3 (6.8%) 0.93

ICD (%) 20 (6.5%) 3 (6.8%) 0.93

HTN (%) 142 (45.8%) 18 (40.9%) 0.54

DM (%) 38 (12.2%) 3 (6.8%) 0.29

CAD (%) 68 (21.9%) 7 (15.9%) 0.36

CHF (%) 35 (11.3%) 8 (18.2%) 0.19

LV EF (%) (Mean ± SD) 54.8 ± 12.3 50.9 ± 16.2 0.10

Medications:

Beta blockers (%) 117 (57.1%) 27 (61.4%) 0.59

Calcium channel blockers (%) 67 (21.6%) 17 (38.6%) 0.01

Baseline lab values:

Potassium (mmol/L) 4.3 ± 0.47 4.4 ± 0.36 0.28

Magnesium (mg/dL) 2.0 ± 0.26 2.0 ± 0.19 0.98

Creatinine (mg/dL) 1.01 ± 0.25 1.04 ± 0.28 0.46

Baseline ECG:

Sinus Rhythm (%) 114 (37.8%) 12 (27.3%) 0.18

HR 80.8 ± 20.5 86.3 ± 24.0 0.11

PR 179.2 ± 40.8 190.2 ± 56.9 0.39

QRS 102.4 ± 25.8 98.8 ± 25.1 0.38

QT 428.2 ± 50.4 436.5 ± 59.4 0.33

QTc 445.0 ± 39.2 451.9 ± 39.2 0.25

Initial Dose

500 mcg 227 (73.5%) 25 (56.8%) 0.02

250 mcg 74 (24.0%) 16 (36.4%) -

125 mcg 4 (1.3%) 3 (6.8%) -

Abbreviations: SD = Standard deviation; BMI = Body mass index; AF = Atrial fibrillation; VT = Ventricular tachycardia; PPM = Presence of a permanent pacemaker;

ICD = Presence of an implantable cardioverter-defibrillator; HTN = Hypertension; DM = Diabetes; CAD = Coronary artery disease; CHF = Congestive heart failure; LV

EF = Left ventricular ejection fraction; ECG = electrocardiogram; HR = heart rate; PR/QRS/QT = cardiac intervals (not abbreviations); QTc = corrected (heart rate) QT

interval; mcg = micrograms.

https://doi.org/10.1371/journal.pone.0227324.t001
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Fig 1 shows representative dosing approaches for dofetilide, as well as timing of cardiover-

sions. The most common dose regimens included subjects with no adjustments throughout

the 5–6 dose course in order to obtain a steady-state of the medication (n = 204, 57.6%). Step-

wise univariate regression was performed for successful initiation across the course of dofeti-

lide initiation, which revealed that dose number, dose amount, dose adjustment, ejection

fraction, history of heart failure, sinus rhythm, QRS, QTc, presence of a pacemaker, and coro-

nary artery disease were predictors of successful discharge on dofetilide at p< 0.05 (Table 2).

The strongest predictors for successful initiation of dofetilide were starting dose of 500 mcg

(OR 5.0, 2.5–10.0, p< 0.001) and dose adjustment during initiation (OR 0.19, 0.21–0.31,

p< 0.001), which was a negative predictor. Because it had such a strong effect, we selected

dose adjustment as the target for machine learning techniques.

Fig 1. Dose patterns of dofetilide. A schematic of the most common dosing approaches for dofetilide (color-coded

rows) among patients who were successfully initiated (discharged on medicine0. The numbers in each individual cell

correspond to the number of electrical cardioversion procedures performed after that specific dose within that specific

dosing scheme. 29 patients with atypical dosing regimens (i.e. increases in dose) are excluded. The bottom row

represents patients who were not successfully initiated on Dofetilide (n = 44).

https://doi.org/10.1371/journal.pone.0227324.g001

Table 2. Association with successful loading of dofetilide. Univariate logistic regression results for associations with

successful loading of dofetilide (discharged on medication). Dose position refers to an integer from 1 to 6, in which 1

would have been the first dose and 5 or 6 would have been the final dose. Dose adjustment is any decrease in dose from

the prior dose. Sinus rhythm refers to patients in sinus rhythm at the time of the dosing decision.

OR CI p value

500mcg dose� 5.0 2.5–10.0 <0.001

250 mcg dose� 1.5 0.8–2.9 0.21

Dose position 1.3 1.1–1.5 0.001

Dose adjustment 0.19 0.12–0.31 < 0.001

Sinus rhythm 2.8 1.8–4.2 < 0.001

PPM 3.3 1.4–7.4 0.004

LVEF 1.03 1.01–1.05 0.001

CHF 1.8 1.0–3.0 0.04

QRS 1.02 1.01–1.03 0.001

QTc 0.992 0.987–0.997 0.002

CAD 0.33 0.19–0.59 < 0.001

PPM = Presence of a pacemaker; LVEF = Left ventricular ejection fraction (by transthoracic echocardiogram);

CHF = Congestive Heart Failure; QRS = QRS interval; QTc = Corrected QT interval; CAD = Coronary artery

disease. �Comparison is with 125mcg dose.

https://doi.org/10.1371/journal.pone.0227324.t002
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The 354 subjects in our analysis collectively received a total of 2037 doses of dofetilide. Out

of a possible 2037 opportunities to adjust the dose of dofetilide, dose adjustments were made

in 144 instances. This corresponds to a dose change probability of 7.1%, indicating that a naïve

approach that predicted only no dose adjustment would be accurate 92.9% of the time, which

was used as the comparison for machine-learning approaches developed to predict whether a

dose adjustment would be made. However, none of the supervised analyses resulted in

improvement in identification of a medication adjustment by providers over a naïve approach

(based on accuracy, or any of the other classification metrics applied) as shown in Table 3.

As described above, unsupervised principal component analysis was performed across 25

patient and dosing characteristics. We noted that the first two principal components (PCs)

accounted for 65.0% of the total variance and 90% of the total variance could be explained by

the first 8 PCs (Fig 2A). Cluster analysis using within-cluster sum-of-squares identified cluster

numbers of k = 4 or greater as providing sufficiently low within-cluster variability, and vali-

dated use of k = 8 clusters (Fig 2B). Qualitative assessment of each PC revealed that there was

apparent clustering along the first PC into 6 groups, which likely represent the dose number

(S1 Fig). Characteristics of each PC cluster are described in Table 4.

After training the model on the training set (80% of data, 1627 doses), the accuracy of a tab-

ular reinforcement-learning model for predicting actual decisions on the testing set (20%, 410

doses) was good, with only 3.9% disagreement (16/410) noted. Sensitivity analysis using a

range of learning rates (alpha) and discount rates (gamma) had no impact on the accuracy of

prediction; only the absolute Q values changed (not relative values). The least disagreement

was observed in the Q table cluster with the smallest (most negative) values for rewards

(Table 5). The analysis was repeated with use of k = 4 (S1 Table) and k = 6 clusters (S2 Table)

which predicted actual decisions with less accuracy than the model with k = 8 clusters (98/410,

23%, correct for k = 4 clusters and 336/410, 82%, correct for k = 6 clusters).

A linear reinforcement-learning policy function was able to achieve equal accuracy to tabu-

lar learning for certain hyper-parameter choices (alpha and gamma). Unlike the tabular learn-

ing model, however, the linear model was highly labile depending on hyper-parameter choices

(S2 Fig). These models also had unstable weight estimates (See S3 Table) across parameters.

Discussion

In this investigation of decision-making surrounding dofetilide initiation, we examined several

approaches for evaluating dose adjustment decisions. It is important to note that while

Table 3. Supervised learning approaches to decision-making. A naïve approach to dose adjustment classification, in which dose adjustments were predicted based

purely on the basis of a dose change probability of 7.1%, was used as a comparator for supervised approaches to predict dose adjustments.

Accuracy Precision Score Recall Score F1 Score AUC

Naïve (Probabilistic) Classifier 0.93 0.0 0.0 0.0 0.5

L1 Logistic Regression 0.93 0.0 0.0 0.0 0.5

Random Forest Classifier 0.93 0.0 0.0 0.0 0.5

Boosted Decision Tree 0.93 0.5 0.03 0.065 0.52

SVM with RBF kernel 0.93 0.0 0.0 0.0 0.5

KNN (k = 1) 0.86 0.14 0.17 0.15 0.54

KNN (k = 10) 0.93 0.0 0.0 0.0 0.5

SVM = Support vector machine, RBF = Radial basis function, KNN = K-nearest neighbor classification, Accuracy = # correct/total; precision score (positive predictive

value) = # of true positives/(true positives + false positives); recall score (sensitivity) = # of true positives/(true positives + false negatives); F1 score = 2 �

(precision�recall)/(precision + recall); AUC = area under receiver operator characteristic curve.

https://doi.org/10.1371/journal.pone.0227324.t003
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dofetilide initiation is performed in the hospital primarily for safety reasons (adverse event

monitoring), the goal of these admissions is successful initiation of the drug (discharge on

dofetilide) while minimizing the risk of subsequent TdP or potentially fatal ventricular

arrhythmias[11]. With this in mind, there are important insights to be drawn from this novel

application of advanced analytics and machine learning to decision-making surrounding dofe-

tilide initiation.

First, it was evident from several models that making dose adjustments, particularly at later

time points, was associated with less probability of successful initiation of the medication. This

association was evident in both simple logistic regression models, as well as reinforcement-

learning models in which the cluster with the most negative reward (#5) was composed of

doses at a later state in the hospitalization (dose 4–5 vs. 1–2), and of smaller size. This finding

suggests that making a decision to lower the dose of dofetilide in a patient who has already

received 3–4 doses and is already on a lower dose (250 or 125mcg) is very unlikely to result in

Fig 2. Principal component analysis. A. Cumulative and per-component variance explained for each sequential

principal component (PC). B. Cluster analysis based on within-cluster sum-of-squares.

https://doi.org/10.1371/journal.pone.0227324.g002
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successful initiation. While further work is needed to validate these models prospectively, this

finding could have an important impact on reducing healthcare costs. It would save time and

money to stop the initiation process early in a patient in whom the probability of successful

initiation is unlikely, rather than staying another day or night in the hospital, or perhaps start

at a lower dose in patients at higher risk of an unsuccessful initiation.

Second, we found that none of the supervised learning algorithms were able to improve pre-

diction about providers’ dose decisions based on the clinical information available. In other

Table 4. Cluster characteristics. Unsupervised principal component analysis was performed across 25 patient and dosing characteristics.

Cluster 1 2 3 4 5 6 7 8

Number 241 229 255 287 369 251 184 221

Dose position (%

of dose)

2–125 (51.9%)

3–116 (48.1%)

4–229 (100%) 1–255 (100%) 5–166 (57.9%)

6–121 (42.2%)

5–167 (45.3%)

6–202 (54.7%)

3–135 (53.8%)

4–116 (46.2%)

2–98 (53.3%)

3–86 (46.7%)

1–99 (44.8%)

2–122 (55.2%)

Dose amount 500mcg-241

(100%)

500mcg-182

(82.0%)

250mcg-40

(18.0%)

500mcg-255

(100%)

500mcg-287

(100%)

250mcg-218

(79.9%)

125mcg-55

(20.1%)

250mcg-197

(84.6%)

125mcg-36

(15.5%)

500mcg-184

(100%)

250mcg-188

(90.8%)

125mcg-19

(9.2%)

Age (years) 62.6 ± 10.5 64.6 ± 10.8 64.6 ± 10.2 64.9 ± 9.8 68.0 ± 10.9 70.1 ± 10.2 67.3 ± 8.3 70.8 ± 10.6

Female Sex 55 (22.8%) 48 (21.0%) 64 (25.1%) 61 (21.3%) 138 (37.4%) 113 (45.0%) 44 (23.9%) 99 (44.8%)

Sinus Rhythm 125 (52.3%) 158 (70.5%) 93 (37.1%) 229 (80.6%) 284 (79.8%) 125 (51.4%) 87 (48.1%) 86 (40.4%)

Heart rate (bpm) 74.7 ± 17.0 68.2 ± 15.4 80.7 ± 20.1 65.9 ± 13.6 70.0 ± 17.6 73.6 ± 18.5 71.9 ± 16.5 78.5 ± 21.0

QRS 100.0±21.2 103.7±24.1 102.8±24.9 104.3±24.8 100.9±24.0 102.5±30.9 107.5±38.3 103.3±26.5

QTc 465.1±34.5 469.5±35.1 443.7±35.6 468.6±35.2 477.1±39.0 486.1±42.2 463.1±36.6 466.6±46.7

Creatinine 0.96±0.21 1.00±0.25 0.98±0.22 0.98±0.23 1.04±0.27 1.07±0.28 0.99±0.22 1.09±0.31

Beta Blocker 122 (50.6%) 113 (49.3%) 144 (56.5%) 162 (56.5%) 217 (58.8%) 173 (68.9%) 108 (58.7%) 138 (62.4%)

CCB 39 (16.2%) 54 (23.6%) 53 (20.8%) 59 (20.6%) 90 (24.4%) 57 (22.7%) 59 (32.1%) 61 (27.6%)

CHF 12 (5.0%) 17 (7.4%) 27 (10.6%) 24 (8.4%) 54 (14.6%) 47 (18.7%) 26 (14.1%) 39 (17.7%)

CAD 24 (10.0%) 31 (13.5%) 47 (18.4%) 47 (16.4%) 88 (23.9%) 79 (31.5%) 49 (26.6%) 58 (26.2%)

HTN 0 (0%) 81 (35.4%) 106 (41.6%) 121 (42.2%) 182 (49.3%) 139 (55.4%) 184 (100%) 110 (49.8%)

DM 12 (5.0%) 22 (9.6%) 31 (12.2%) 35 (12.2%) 42 (11.4%) 33 (13.2%) 41 (22.3%) 23 (10.4%)

PPM 14 (5.8%) 14 (6.1%) 15 (5.9%) 20 (7.0%) 25 (6.8%) 16 (6.4%) 14 (7.6%) 13 (5.9%)

ICD 11 (4.6%) 12 (5.2%) 16 (6.3%) 16 (5.6%) 22 (6.0%) 22 (8.8%) 11 (6.0%) 18 (8.1%)

LVEF 54.6 ± 12.6 54.7 ± 12.3 54.3 ± 13.0 54.4 ± 13.0 54.5 ± 12.1 53.9 ± 13.0 53.6 ± 13.0 54.3 ± 13.1

All values listed at mean ± SD or number (%). Sinus rhythm = sinus or atrial paced rhythm (not atrial fibrillation/flutter); CCB = Calcium channel blocker; CHF = heart

failure; CAD = coronary artery disease; HTN = hypertension; DM = diabetes mellitus; PPM = pacemaker present; ICD = implantable cardioverter-defibrillator present;

LVEF = left ventricular ejection fraction based on transthoracic echocardiography

https://doi.org/10.1371/journal.pone.0227324.t004

Table 5. Q table. Expected reward for each action for each cluster. Based on alpha (learning rate) = 0.05 and gamma

(discount factor) = 0.2. Both alpha and gamma range from 0 to 1.

Cluster Keep Dose Lower Dose

1 0.0 0.0

2 -0.0057 0.0

3 0.0 0.0

4 -0.00002 0.0

5 -0.227 -2.26

6 -0.021 0.0

7 0.0 0.0

8 -0.00015 0.0

https://doi.org/10.1371/journal.pone.0227324.t005
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words, we were unable to ‘mimic’ the decisions of providers using a statistical model when it

came to making dose adjustments of dofetilide. This finding suggests that future efforts based

on a gold standard of human decision-making may not lead to the desired outcomes of creat-

ing a computer algorithm to replace humans in the process, and that focusing efforts on

approaches using reinforcement learning may be a better option.

The key difference of reinforcement learning is that it allows the computer to ‘learn’ its own

approach to obtain a given reward, rather than relying on human behavior as the gold stan-

dard. This finding has already been noted in creation of algorithms to win at the board game

Go[4, 18], in which the AlphaGo algorithm based on supervised learning of human decisions

[18] was bested by the AlphaGoZero algorithm, which learned entirely on its own, without

attempting to replicate human decisions[4]. Reinforcement learning has been studied for

many years[19, 20], although the medical applications of reinforcement learning are only in

their infancy, and there is clearly an opportunity for this approach to greatly improve on clini-

cal decision-making. A number of investigators have recently used this approach to enhance

decision-making in clinical care[21], including in the intensive care unit[22].

Interestingly, while use of 8 clusters provided reasonable accuracy (96.1%) with regard to

the actual decision made by clinicians, use of smaller numbers of clusters (k = 4 and k = 6)

resulted in less accuracy, despite the fact that both of the methods with fewer clusters had

more complete Q table (less values of 0.0) and that examination of the first two PCs appeared

to suggest that 6 clusters may be a reasonable grouping for the data (S1 Fig). Examination of

the characteristics of the clusters for k = 6 (S2 Table) reveals that dose number itself was not

the only determinant of cluster composition, as several clusters were composed of mixed dose

numbers, although all clusters were composed of sequential dose numbers (for example, no

clusters were composed of dose numbers that were out of order, e.g., dose 1 and dose 5). This

finding raises a critical issue regarding examination of reinforcement learning for guiding clin-

ical decisions, which is that surrogate outcomes, such as consistency with actual decisions,

may not be the ideal approach for identification of the ‘optimal’ model for guiding decisions to

achieve a goal, which in this case was the probability of a successful loading of dofetilide. In

that regard, our study highlights a key limitation in applications of machine learning in health-

care data, in which the practical process of data and technology integration limits the ability to

build better learning systems. This study was entirely observational, which is in great contrast

with most other reinforcement learning applications in which the learning agent is able to

practice and improve its policy based on interaction with the environment. A key principle in

reinforcement learning is exploration[15], in which better policies can be found by randomly

attempting a new action that has been found to already provide the best reward. Without the

ability to act on behalf of the policies learned, we were unable to determine if these actions are

truly the optimal ones, or if there are conditions in which a decision to change the dose (per-

haps at an earlier time in the loading course) could result in a greater likelihood of successful

initiation. Whether this limitation was also responsible for the difference in accuracy with use

of different cluster numbers, or the lack of convergence we observed using linear function

approximation, which has been described in other circumstances[23, 24], remains to be deter-

mined. Only through future prospective applications can we verify that the approach applied

in this study is the best method to maximize likelihood of successful dofetilide initiation.

Limitations

There were a number of key limitations in this study. First, we did not examine long-term out-

comes, including recurrence of AF or drug toxicity, including torsade de pointes. This latter

limitation is of obvious importance, as the ultimate goal of the 3-day monitoring period is to
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prevent toxicity[11]; however, there are benefits to identification of factors and approaches to

maximize safe initiation of dofetilide as we identified, which can lead to improved patient sat-

isfaction and cost savings. A second limitation was that our investigation was limited to the

modest number of covariates collected on patients undergoing dofetilide initiation. To truly

capture the benefits of many methods of machine learning, particularly deep learning, we

would need to have a much larger number of patients and variables to include in the model. In

the future, through more efficient data collection and storage, especially of high-density data

such as telemetry information, we will be able to further leverage these ‘big data’ methods to

improve healthcare decision-making[25, 26]. Finally, as discussed above, we were unable to

prospectively apply and further improve the policy models developed from the observations in

this data. Future implementations of these models within a reinforcement learning framework

will be needed to determine if this approach is optimal, or if there are better algorithms for

ensuring safe and efficient initiation of dofetilide and other medications.

In conclusion, we found that although most patients admitted for initiation of dofetilide are

able to successfully complete the loading protocol (i.e., discharged on dofetilide), reinforce-

ment learning approaches to model dose adjustments offer promise to optimize decision mak-

ing. Future investigations are needed to explore this emerging approach to machine learning

and automated clinical decision support.
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