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Developing new colors for the food industry is challenging, as colorants need to

be compatible with a food flavors, safety, and nutritional value, and which ultimately

have a minimal impact on the price of the product. In addition, food colorants

should preferably be natural rather than synthetic compounds. Micro-organisms already

produce industrially useful natural colorants such as carotenoids and anthocyanins.

Microbial food colorants can be produced at scale at relatively low costs. This review

highlights the significance of color in the food industry, why there is a need to shift

to natural food colors compared to synthetic ones and how using microbial pigments

as food colorants, instead of colors from other natural sources, is a preferable option.

We also summarize the microbial derived food colorants currently used and discuss

their classification based on their chemical structure. Finally, we discuss the challenges

faced by the use and development of food grade microbial pigments and how to

deal with these challenges, using advanced techniques including metabolic engineering

and nanotechnology.

Keywords: microbial pigments, natural colorants, Monascus pigments, metabolic engineering,

microencapsulation, food color

INTRODUCTION

Color plays a significant role in the food production and processing sector, contributing to the
sensory attribute of food. It signifies freshness, nutritional value, safety, and aesthetic value of
a food, directly affecting the market value of the colored food product (1–3). Food coloring is
presumed to have originated back in 1500 BCE (4). Ancient Roman and Egyptians writings show
activities such as the coloring of drugs and wine. In earlier times, most of the food coloring agents
were derived from natural sources such as paprika, berries, turmeric, indigo, saffron, and various
flowers (5, 6). In the 1800’s there was a shift toward development of synthetic colors due to their
chemical stability, low production cost, and larger ranges of hue and shade. The first synthetic
dye, Perkin’s Mauve pigment, appeared in 1856 (4), which also lead to the discovery of other
synthetic dyes. However, possible side effects of synthetic colors like hyper-activity in children,
allergenicity, toxicological, and carcinogenicity problems, has led to the banning of many synthetic
food colorants further leading to a transition from the use of synthetic food colors, to natural ones
(7–9). An increase in the desire to label food as natural has also contributed to a decline in the use
of synthetic food colorants.
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Research on natural food colors has become a key area in the
food industry, particularly the discovery of new natural colorants.
The use of compounds as food colorants is highly regulated,
whether the colors are naturally derived or synthetically
produced. Organizations such as the United States Food and
Drug Administration (FDA), the European Food Standards
Authority (EFSA), and The World Health Organization (WHO)
have advocated safe dosages for the use of these colors in food,
drugs, and cosmetic items (9–11).

Food colorants exempt from certification generally include
natural pigments, but no legal definition for the term ‘natural’
has been adopted yet, leading to consumer, and industrial
confusion. Colorants exempted from certification include a
variety of pigments obtained from microbial, plant, mineral and
animal sources but also include synthesized compounds that are
identical to natural products, despite the common belief that
colorants exempt from certification are all natural (12).

Natural colors are assumed safe if they are non-allergic, non-
toxic, non-carcinogenic, and biodegradable, thereby rendering
no risk to the environment (5, 10). Due to the lower risk
advantage of natural colors and changing perceptions of
consumers to consume natural products, there is an increasing
interest in the discovery of new natural colors. The consumer
demand for natural colors and their growth as a category is
predicted to increase by 7% annually (13–15). In recent times,
natural food colors have varied applications in the food industry,
with almost all major natural pigment classes being used in at
least one sector of the food industry (Figure 1).

Despite the benefits, that come with using natural colors, these
pigments often have drawbacks compared with synthetic colors.
In many cases, potential natural pigments that can be used as
food colorants present many challenges such as higher cost and
lower stability.

FIGURE 1 | Summary of major natural pigment classes in the market and their

application in foods.

Natural colors are primarily derived from plants, insects,
mineral ores or microbial sources. Microbial colorants are
preferable because of scalability ease as well as a potentially
lower cost of production (4, 11). Microbial fermentation
for the production of natural pigments have several benefits
such as cheaper production, higher yields, easier extraction,
lower-cost raw materials, no seasonal variations, and strain
improvement techniques to increase natural pigment (16).
These can also have health benefits like anticancer activity,
antimicrobial activity and antioxidant activity (1, 17).
Microbes produce a variety of pigments that can be used as
food colors such as carotenoids, flavins, melanins, quinines,
monascins, violacein, amongst others. They can also be used as
additives, antioxidants, color intensifiers, and functional food
ingredients (3, 18).

Advances in organic chemistry and metabolic engineering
have enabled the mass production of microbes of interest.
Studying the biosynthetic pathway for pigment production
can help in understanding the roadblocks in the production
of pigments and to counter that, genes can be cloned,
and recombinant DNA technology can be used to increase
pigment production (19, 20). Using the appropriate fermentation
strategies and modifying conditions to be more suitable for
the production of pigments, developing low cost processes
and extraction processes, co-pigmentation strategies, have
all been applied for efficient microbial pigment production.
Newly emerging tools such as nanotechnology has also been
effectively used in the food industry, including in pigment
formulation (21). Nanotized natural food colorants derived
from microbial sources can increase stability, shelf life, or
solubility, leading to better delivery systems for food, and
feed (22). The present review focuses on the potential of
microbial pigments used as food colorants, their benefits
and challenges; explores possible strategies for simplifying
the process for overproduction of pigments in microbial
systems, as well as the methods to improve pigment stability
and formulation.

MICROBIAL PIGMENTS THAT CAN BE
USED AS FOOD GRADE COLORS

Some of the major pigments found in micro-organisms which
are used as food colorants are canthaxanthin, astaxanthin,
prodigiosin, phycocyanin, violacein, riboflavin, beta-carotene,
melanin, and lycopene, shown in Figure 2 and a more extensive
list given in Table 1. Microbial pigments can be either inorganic
or organic, although organic pigments tend to be more useful as
food colorants.

i. Canthaxanthin- is an orange to deep pink colored carotenoid
that is lipid soluble and a potent antioxidant. It is isolated from
Bradyrhizobium Sepp, is a trans-carotenoid pigment, and is
approved as a food colorant and used in a range of foods as
well as salmon and poultry feed (100–102).

ii. Astaxanthin- is a red-orange pigment, naturally found in
basidiomycetous yeast, microalgae, salmon and crustaceans,
red shrimp, cray fish, feathers of some birds, and is lipid
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FIGURE 2 | Chemical structures of some known microbial food grade pigments.

soluble (35, 37, 103–105). It’s an approved coloring agent used
in fish and animal foods (106).

iii. Prodigiosin- Many strains of Serratia marcescens, produce
a red pigment, which shows antibacterial, antimalarial,
antibiotic and antineoplastic activity (34, 70, 107). It has been

successfully applied as coloring agents in yogurt, milk and
carbonated drinks (108).

iv. Phycocyanin- is a blue pigment produced by chlorophyll
A containing cyanobacteria. Aphanizomenon flos-aquae and
Spirulina produces phycocyanin which is being used in the
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TABLE 1 | Microbial pigments that are being used or with high potential to be used as natural food colorants.

Sr. No. Pigment Color Microorganism Bioactivity Status* References

ALGAE AND MICROALGAE

1 Astaxanthin Pink-red Haematococcus pluvialis

Microalgae

Antioxidant photo protectant,

Anticancer, Anti-inflammatory

IP (23–26)

2 β- carotene Orange Dunaliella salina

Microalgae

Anticancer, Antioxidant

suppression of cholesterol

synthesis

IP (26–29)

3 Lutein Yellow Chlorella and others Microalgae Antioxidant IP (26, 30–32)

4 Phycoerythrin Red Porphyridium cruentum and

many other microalgae and

cyanobacteria Algae,

Cyanobacteria

Antioxidant, Antitumor activity,

Immunoregulatory

DS (26, 33)

5 Phycocyanin Blue Arthrospira sp. (formerly Spirulina

sp.) and many other microalgae

and cyanobacteria Algae,

Cyanobacteria

Antioxidant, Antitumor,

Immunoregulatory

IP (26, 34–37)

ARCHEA

6 Canthaxanthin Orange Haloferax alexandrines Archea Antioxidant, photoprotectant,

Anticancer, Anti-inflammatory

NK (38–41)

BACTERIA

7 Astaxanthin Pink-red Agrobacterium aurantiacum

Bacteria Paracoccus

carotinifaciens Bacteria

Antioxidant Anticancer

Anti-inflammatory, Antioxidant

Anticancer

RP/IP (23, 42)

8 Canthaxanthin Orange Bradyrhizobium spp.

Lactobacillus pluvalis.

Antioxidant, Anticancer RP (38–41)

9 Granadaene Orange-red Streptococcus agalactiae Antioxidant, detoxify ROS DS (43, 44)

10 Heptyl

prodigiosin

Red α-Proteobacteria Antiplasmodial DS (45)

11 Prodigiosin Red Serratia marcescens

Pseudoalteromonas rubra

Anticancer, DNA Cleavage,

Immunosuppressant

IP (46–49)

12 Phycocyanin Blue, green Pseudomonas spp. Cytotoxicity, Neutrophil

apoptosis, Ciliary dysmotility,

Proinflammatory

IP (50)

13 Rubrolone Red Streptomyces echinoruber Antimicrobial DS (51–53)

14 Staphyloxanthin Golden Staphylococcus aureus Antioxidant, detoxify ROS NK (54–56)

15 Tryptanthrin Light-dark Yellow Cytophaga/Flexibacteria AM13,1

Strain

Antioxidant, Anticancer NK (57)

16 Undecylprodigiosin Red Streptomyces sp. Antibacterial, Antioxidative,

UV-protective, Anticancer

NK (54, 55, 58,

59)

17 Violacein Purple Janthinobacterium lividum,

Pseudoalteromonas tunicate,

Pseudoalteromonas spp.

Chromobacterium violaceum

Antioxidant, detoxify ROS NK (60–62)

18 Zeaxanthin Yellow Staphylococcus aureus,

Flavobacterium spp.,

Paracoccus zeaxanthinifaciens,

Sphingobacterium multivorum

Bacteria

Photoprotectant, Antioxidant DS (63)

CYANOBACTERIA

19 Scytonemin Reddish Brown Cyanobacteria Cyanobacteria Anti-inflammatory,

Antiproliferative

NK (64)

FUNGI

20 Ankaflavin Yellow Monascus sp. Antitumor, Anti-inflammatory IP (65, 66)

21 Anthraquinones Red and other

hues Known as

Arpink red or

Natural Red

Penicillium oxalicum (and many

other fungi)

Antifungal, Virucidal IP (67–69)

(Continued)
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TABLE 1 | Continued

Sr. No. Pigment Color Microorganism Bioactivity Status References

22 Azaphilones Red Talaromyces atroroseus

Penicillium purpurogenum

Antioxidant, Anticancer

Antioxidant

DS (70–75)

23 β- carotene Yellow-orange Blakeslea trispora, Fusarium

sporotrichioides, Mucor,

circinelloides, Neurospora

crassa, Phycomyces,

Blakesleeanus

Anticancer, Antioxidant,

suppression of cholesterol

synthesis

IP (24, 35, 66,

76–78)

24 Canthaxanthin Orange, pink Monascus spp. Antioxidant, Anticancer NK (34, 35, 39,

40, 79)

25 Cycloprodigiosin Red Pseudoalteromonas denitrificans Antiplasmodial, Anticancer DS (80, 81)

26 Lycopene Red Fusarium Sporotrichioides,

Blakeslea trispora

Antioxidant, Anticancer RP/DS (82, 83)

27 Monascorubramin Red Monascus spp. Antioxidant, Anticancer IP (34, 84)

28 Naphtoquinone Deep blood red Cordyceps unilateralis Anticancer, Antibacterial,

Trypanocidal

RP (70, 85–87)

29 Riboflavin Yellow Ashbya gossypi Anticancer, Antioxidant,

protection against cardiovascular

diseases, in vision

IP (34, 88–90)

30 Rubropunctatin Orange Monascus spp. Anticancer IP (84, 91)

31 Xanthomonadin Yellow Xanthomonas oryzae protection against photo damage NK (35, 92)

YEAST

32 Astaxanthin Pink-red Xanthophyllomyces dendrorhous

formerly Phaffia rhodozyma

Antioxidant, photoprotectant,

Anticancer, Anti-inflammatory

DS (93–95)

33 Melanin Black Saccharomyces, Neoformans Antimicrobial, Antibiofilm and

antioxidant

NK (96)

34 Torularhodin Orange-red Rhodotorula spp. Antioxidant, Antimicrobial DS (97–99)

* Industrial status adopted from Dufossé. (34, 42, 66).

DS, Development stage; IP, Industrial production; RP, Research project; NK, Not Known.

food and beverage industry as the natural coloring agent ‘Lina
Blue’ and is also found in sweets and ice cream (36, 109, 110).

v. Violacein- Chromobacterium violaceum is one of the
most prominent producers of this purple pigment, other
bacterial species also produces the pigment and mostly
have a purple hue. It exhibits antifungal, antibiotic,
antitumor and antibacterial properties. Violacein has
shown potential use in food, cosmetic and textile industries
(34, 60–62).

vi. Riboflavin- Water soluble vitamin B2, is a yellow colored
pigment and produced by various microorganisms. It is used
in diary items, breakfast cereals, baby foods, sauces, fruit
drinks, and energy drinks (34, 88–90).

vii. Beta-carotene- A red-orange colored organic pigment,
mostly extracted from the beta-carotene rich algae,Dunaliella
salina (111). Production of β-carotene through fermentation
of Blakeslea trispora produces a pigment equivalent to
pigments produced through a chemical process and is an
acceptable coloring agent (24, 35, 66, 76–78). It is used in a
variety of food items ranging from red to yellow in color.

viii. Melanin- Melanins are natural pigments present in
animals, plants and in many micro-organisms. They
are widely used in eye glasses, cosmetic, food items,
sunscreen protection creams, pharmaceuticals and food items
(35, 70, 96, 109, 112, 113).

ix. Lycopene- widely present and consumed in tomatoes, a
brilliant red pigment consisting of carotenoid. It has been
isolated from microbes like Fusarium, Sporotrichioides, and
Blakeslea trispora, and has the potential to attenuate persistent
diseases such as some types of cancers and coronary heart
disease (82, 83). It is used in meat coloring in countries like
the USA, Australia and New Zealand.

THE BENEFITS OF USING MICROBIAL
PIGMENTS AS FOOD GRADE COLORING
AGENTS

Micro-organisms are found in almost every environmental niche
and have various roles in nature. They are also affiliated with
food and are accountable for the fermentation of food products.
Microbial pigments are a better alternative to synthetic food
colors compared to plants because of their availability, non-
seasonality, scalability, higher yield per hectare, and straight
forward down streaming processing.Microbial pigments like that
of Monascus, Arpink Red (natural red- industrial name) from
Penicillium oxalicum, β-carotene from Blakeslea trispora and
Astaxanthin from various microbes are already used in the food
industry to color foods (34, 113, 114). A lot of research has been
done to lower production and processing costs for natural colors,
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to increase stability and shelf life, so that it can compete with the
use of synthetic colors. Many of these pigments not only work
as coloring agents but also impart health benefits (Bioactivity
of various microbial pigments mentioned in Table 1). Micro-
organisms produce an large quantities of pharmacologically and
biologically active compounds that can have a diverse range
of activities, including antioxidants, antimicrobial, anticancer,
immuno-regulatory, and anti-inflammatory compounds.

Antioxidant Activity
Microbial pigments like violacein, carotenoids, anthocyanins,
and naphthoquinone have been shown to be potent antioxidants
agents. Violacein which is a purple pigment largely produced
by Pseudoalteromonas and Chromobacter violaceum (60, 62)
is a powerful antioxidant which stimulates mucosal defense
mechanisms to protect against oxidative damage in gastric ulcers
(115, 116). Staphylococcus aureus produces a yellow pigment
called staphyloxanthin, that prevents carbon tetrachloride
induced oxidative stress in swiss albino mice (117). There are
many other pigments that can act as antioxidants such as
Astaxanthin, Granadaene, Canthaxanthin, Lycopene, Riboflavin,
β- carotene, Torularhodin, etc.

Anticancer Property
Anticancer activities in microbial pigments have been reported in
a number of studies. These pigments can induce apoptosis, which
lead to the destruction of cancerous cells. Scytonemin which is
a green-yellow pigment, produced by the aquatic cyanobacteria,
inhibits the action of the cell cycle regulatory protein kinase,
thereby showing an antiproliferative effect (64). Prodigiosin
is red pigment which is a potent anticancer compound,
produced by Serratia marcescens and Pseudomoalteromonas
rubra. It shows an apoptotic effect against human cervical
carcinoma (118). Anticancer activity is shown by synthetic
indole derivatives and analogs of prodigiosin in-vitro (119).
Violacein showed cytotoxic effects on HL60 leukemia cells
through a TNF signaling cascade and the activation of Caspase-
8 and p38 MAPK (120). There are various pigments that can
act as anticancer agents such as Astaxanthin, Canthaxanthin,
Lycopene, Monascorubramin, Riboflavin, Rubropunctatin, β-
carotene, Torularhodin, and others.

Antimicrobial Activity
Manymicro-organisms produce antimicrobial compounds, some
of which are presently used as antibiotics. A pigment obtained
from an endophytic fungus was shown to bemore potent than the
commercially available antibiotic Streptomycin. It was effective
against bacteria like Klebsiella pneumoniae, Staphylococcus
aureus, Salmonella typhi and Vibrio cholera (121). It is known that
violacein causes growth inhibition, additionally also killing the
bacteria. It also exhibits antifungal, antiprotozoal and antiviral
activities (76, 77, 122). The recent emergence of antibiotic and
multi drug resistant microbial strains has led to a search for new
and novel compounds that can be used as antibiotics. Finding
novel microbial pigments that have both pigment producing and
antimicrobial properties is highly advantageous (123).

CHALLENGES FACED IN NATURAL FOOD
COLORS

Even though there are many types of natural pigments from
various microbial sources, the commercial development of
natural pigments as food colorants is challenging. Regulatory
hurdles are high for the development of any new compounds
for food use, including as a colorant. The cost of using natural
colors is five times more than using synthetic colors, especially
when used in confectionary items, where it can be 20 times
more expensive (124). Substantial quantities of raw materials
are required to produce equal quantities of natural colors than
synthetic colors. Higher dosages of a natural color are normally
needed for the desired hue, thereby increasing the cost.

Natural pigments have many product challenges with respect
to cost, application, process, and quality. Microbial pigments
have a weaker tinctorial strength and may react on different food
matrices, causing undesirable flavors and odors. Synthetic food
colorants that the food industry came to rely on over the past
50–60 years are relatively well-behaved and consistent in their
performance. Replacement of synthetic colors with natural colors
in the food industry is challenging, particularly with regard to
the relatively low range of natural colors approved for food use.
Deodorization is another issue that arises in natural pigment
products as many of the available natural pigments have an odor
that is undesired in the food products. Furthermore, natural
colors are generally more sensitive to light, pH, UV, temperature,
oxygen, and heat, leading to color loss caused by fading and
a decreased shelf life. Some natural pigments are sensitive to
other ambient conditions like metal ions, proteins or organic
compounds (10, 125, 126). It is well-known that vitamin C will
enhance the stability of beverage products, which are colored
with carotenoids like beta-carotene and paprika oleoresin, but the
same vitamin will cause the degradation of anthocyanins (127).

Major microbial pigments like carotenoids, chlorophyll,
anthocyanins, and others also face such limitations. Carotenoids,
which are strongly colored isoprenoid plant compounds and
highly conjugated, are unstable when exposed to oxygen or
light (128–130). Chlorophyll undergoes rapid degradation due
to enzymatic reactions or factors like light, oxygen, heat
or acid, leading to the formation of chlorophyll derivatives
(131). Formulation of these natural colors is challenging and
methods such as micro-encapsulation can be applied to improve
stability and in some cases solubility. Many fungal pigments
are prohibited as natural colorants due to the presence of
mycotoxins (132). It is therefore important to use non-toxic and
non-pathogenic strains for natural pigment extraction. When a
promising pigment-producing microbe is discovered, metabolic
engineering can be used for controlled biosynthesis of the
pigment and toxin production.

TECHNOLOGIES FOR ENHANCING
PIGMENT PRODUCTION

The idea is to bring microbial pigments out of petri plates and on
to the market (3, 34). There is a need to find alternative colorants
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that are cost effective, completely natural, non-toxic and which
do not produce any recalcitrant intermediates. Commercial
success of a natural pigment is dependent on the investment
made to obtain the final product, its regulatory approval and
its influence in the market. Three key operations are important
in the industrial production of natural pigments: Discovery of
newer and novel alternative sources; cost effective production
with uniform quality; and improved applicability (133). Rigorous
trials are required to develop methods that stabilize natural
pigments in different food matrices, increase shelf life, prevent
the influence of various environmental parameters on the
pigment, finding inexpensive organic substrates for the growth
of the pigment producing micro-organisms and making the
fermentation process more cost effective (134).

Newly Developed Smarter Screening
Methods
There are many new advances in the quick and easy detection of
microbial pigments. One of the best examples is the condensed
handheld Raman spectrometer, used for detecting pigments
with the help of a 532 nm excitation laser. This can detect
common and uncommon carotenoids, bacterioruberin and other
known pigment compounds. This hand-held device has been
used to identify microbial pigments in various ecological niches
including halophilic micro-organisms (135, 136).

Intelligent screening also includes having prior knowledge
of the toxic metabolite pathway of the pigment producer, so
that toxic and pathogenic pigment producers can be ruled
out or manipulated for food coloring purposes. Fusarium
venenatum produces a mycelial food product QuornTM, which
is also known to produce a cytotoxic compound called 4, 15-
diacetoxyscirpenol (137).

Mass spectrometry with electrospray ionization can also be
used for faster identification of pigment producing fungal strains
and for grouping them in classes and subclasses (138). More
than 15,000 microbial metabolites are already known and so
rapid dereplication and identification of known compounds is
important. HPLC, mass spectrometry, LCMS, nuclear magnetic
resonance (NMR), and UV-VIS spectra can be applied to the
rapid identification of known compounds even within relatively
complex mixtures, without the need for individual compounds
purification (139).

Strain Development and Fermentation
There are several challenges linked to scaling up the production
of microbial pigments, but recent advances in technology has
helped in somewhat overcoming these challenges. The use of
fermentation tanks for large scale production of pigments, the use
of strain improving techniques and strain development through
randommutagenesis and multiple selection rounds has helped to
develop a cost effective and industrially viable production process
for pigments and other natural compounds. Strain development
is important because the pigments produced by wild type strains
are often too low in quantity and take longer fermentation times,
making the process uneconomical. Strain improvement is done
by common mutagens like 1-methyl-3-nitro-1-nitrosoguanidine
(NTG), Ethyl methyl sulfonate (EMS) and Ultraviolet

(UV), which can lead to a several-fold increase in pigment
production (140–142).

Medium optimization is an important process for maximizing
yield of the fermentative product. Optimizing the medium
includes controlling operating conditions like temperature, pH,
aeration, agitation, and media components. Response surface
methodology (RSM) is an effective approach for the process
optimization of pigment production. This solves the multivariate
data obtained to solve multivariate equations, thereby reducing
the number of experimental trials needed to evaluate multiple
variables (142, 143). Su et al. developed an optimal medium
composition, which can be used for culturing Serratia marcescens
in the production of prodigiosin. Sucrose and glycine were
added as a carbohydrate and energy source, which increased
the production of prodigiosin by 2.12–2.15 folds. Inorganic
supplementation with KH2PO4 accelerated cell growth, leading
to the increased production of prodigiosin (144). To develop
an economical production process, efficient fermentation design
and standardization of the medium is important. Application of
statistical techniques can result in an improved output response
and can reduce variability and overall costs (21).

Cost-Effective Downstreaming
Developing more cost-effective recovery and separation
techniques for microbial pigments are also needed. Large-scale
separation and recovery of pigments using conventional methods
is costly. Extraction using organic solvents is a complicated and
time-consuming process, in which substantial amounts of
organic solvents are exhausted while the yield of the high purity
product can be extremely low. In addition, using solvents other
than water and ethanol can defeat the purpose of obtaining a
natural pigment for regulatory purposes, since most organic
solvents are not natural. The technique of using non-ionic
adsorption resins for an efficient separation and purification
has been applied to many nucleic acids, organic acids, peptides,
and others (145, 146). These resins have a high loading
ability, thereby helping in recovering of compounds in large
quantities. In addition, these resins can directly be used to adsorb
compounds from the culture broth. It helps in lowering the
cost of separation, by lessening the consumption of extraction
solvents and increasing its reusability. An efficient method
for prodigiosin separation and purification was described by
Wang et al. who used non-ionic resins directly from the culture
broth, thereby eliminating the cell separation step, yielding a
concentrated and semi-purified product (147).

Metabolic Enginerring
Recent developments in molecular biology and metabolic
engineering have led to the cloning of genes responsible for
pigment biosynthesis and enabled overproduction of these
pigments by gene manipulations. Pigment biosynthetic pathways
have been extensively studied and engineered to overproduce a
pigment and to change the pigments’ molecular structure and
color. Blue pigment Actinorhodin, produced by Streptomyces
coelicolor, has been genetically manipulated to produce a related
bright yellow polyketide known as kalafungin, that is used
to produce an antraquinone, which is a reddish-yellow color
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(148, 149). Heterologous expression has been used to develop
cell factories to efficiently produce pigments by expressing
biosynthetic pathways from novel or known pigment producers
(150, 151).

Understanding the biosynthetic pathways for microbial
pigments is an extremely important starting point, followed
by identifying genes and the gene cascades responsible
for pigment production, then engineering these genes for
over production. Cloning the genes responsible for pigment
biosynthesis into microbial vectors, like bacterial or yeast cells,
has become a cost-effective and more economical industrial
production process. Industrially reliable micro-organisms such
as E.coli, Bacillus subtilis, Pseudomonas putida, Corynebacterium
glutamicum, and Pichia pastoris, can be used to developof tailor-
made recombinants, genetically engineering the production of
pigments (152).

Techniques like selected and random mutagenesis are used
to obtain hyper-producing strains, and for this, chemicals
and physical methods such as 1-methyl-3-nitroguanidine,
antymicin A, or Ethyl methane sulfonate and Gamma radiation
and UV light are employed (153). Carotenogenic genes
from Xanthophyllomyces dendrorhous or Erwinia uredovora
or Agrobacterium aurantiacum, yeasts like Candida utilis
and Saccharomyces cerevisiae are genetically manipulated to
produce carotenoids like lycopene or β-carotene or astaxanthin
(154–156). At this time, engineering genes responsible for
carotenoid pigments, has been limited to non-carotenogenic
micro-organisms like C.utilis or S. cerevisiae. There is almost
no published data on the metabolic engineering of wild type
carotenoid producers like Dunaliella salina, B. trispora and R.
mucilaginosa. Wang et al. (157) used metabolic engineering and
mutagenesis to enhance carotenoid production in R.mucilaginosa
KC8, which produces carotenoids, mainly β-carotene and
torularhodin (157). Grewal et al. (158) described betaine
production in a heterologous microbial host Saccharomyces
cerevisiae, using glucose as a substrate. They also established that
novel betalain derivatives could be obtained by feeding different
amines in the culture (158).

In the case of Monascus, three polyketide pigments are
produced namely Citrinin, red pigments and monacolin K
(159, 160). Various techniques have been tried to decrease
the production of citrinin, a mycotoxin, and to increase the
production of the red pigment. Changes in the nitrogen
composition, dissolved oxygen, pH, and genetic alterations are
some of the various techniques tried to minimize citrinin. The
polyketide synthase gene responsible for biosynthesis of citrinin
has been studied in Monascus purpureus. In the industrial strain
M. purpureus SM001, the polyketide synthase gene pksCT
has been successfully cloned to eliminate citrinin production
(161–163).

METABOLIC ENGINEERING USING THE
CRISPR-CAS9 SYSTEM

CRISPER-Cas9 has created a trend and various laboratories are
using the technology for newer applications in biology, especially

genome engineering. CRISPR stands for Clustered Regularly
Interspaced Short Palindromic Repeats. It consists of two key
components that brings about the change in DNA, the first being
the enzyme Cas9, which acts like molecular scissors and makes
double stranded cuts at the target location, helping in adding,
or removing pieces of DNA. The second component is a piece
of RNA, also known as the guide RNA, which is a pre-designed
sequence of about 20 bases, and which is located inside a longer
RNA scaffold. This scaffold binds to the target DNA sequences
and the guide RNAs directs the Cas9 enzyme to make cuts at
the right point in the genome. Due to the cuts being made, the
cell activates its DNA repair machinery and tries to repair the
damages, which can be efficiently used for introducing changes
to one or more genes in the genome (164). Hence CRISPER-
Cas 9 system can be very well used for metabolic engineering in
bacteria, yeast and fungi to make them cellular factories for cost
efficient production of natural food colors (165).

CRISPER- Cas9 has been efficiently used in the production
of industrially important metabolite compounds. It can be used
in a wide variety of bacterial cells such as Corynebacterium,
Escherichia coli, Pseudomonas, Staphylococcus, Bacillus,
Clostridium, Lactobacillus, Mycobacterium and Streptomyces,
genetically modifying them to produce metabolites such as
biofuel, biochemical, pharmaceutical precursors, or any other
significant metabolite (166). The CRISPER system has been used
in the industrial yeast Saccharomyces cerevisiae, as it is one of the
most noticeable cell factories for the industrial production of a
large number of products. It can also be engineered to produce
natural colors, if a color-producing gene is inserted into its
genome using the CRISPER-Cas9 system (167).

Metabolic engineering in filamentous fungi have been
extremely tough due to various reasons such as a lack of
genetic markers and even when they are available, it remains a
tedious process because of low gene-targeting frequencies. The
CRISPER-Cas9 system has been employed in Neurospora crassa
(168), Aspergillus nidulans (169) and in several other species
of filamentous fungi such as Magnaporthe oryzae (170) and
Trichoderma reesei (171). Nielson et al. have developed a system
for Aspergillus nidulans, harboring the CRISPER-Cas 9 system
that can potentially be applied in many fungal systems with
close to no adaptation. They showed that is was useful in an
extensive array of filamentous fungi (151). They even used the
same system in Talaromyces atroroseus, which is a major natural
red color producer in the food industry. Recently, the CRISPER-
Cas9 system was used in Penicillium chrysogenum (172) showing
a rapid improvement of engineering filamentous fungi. Limited
research studies on using CRISPER-Cas9 in micro-organisms for
pigment production exist. More research is required to optimize
the use of the CRISPER system for this application.

ADDRESSING INSTABILITY OF NATURAL
PIGMENTS

To be industrially useful, microbial pigments need to be stable
against environmental factors like light, pH, temperature, UV,
and foodmatrices.Manymicrobial pigments are rendered useless
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because of their instability against ambient conditions and have
short shelf life. There are various techniques available that can
produce a more stable natural pigment, which has a higher
shelf life and market value in terms of the cost-effective stability
measures taken.

Microencapsulation, Nanoemulsions, and
the Formation of Nanoformulations
Micro-encapsulation and nano-formulations can be applied to
stabilize, improve solubility and deliver natural pigments to
food matrices. Natural colors like anthocyanins and carotenoids,
have stability issues in various environmental conditions and
also present solubility problems in some matrices (173). Micro-
encapsulation can be defined as packing any solid, gas or liquid in
sealed capsules of sizes ranging from millimeters to nanometers
(174). The core or the active compound becomes the packaging
material, in this case the microbial pigment and the packaging
material, is called the wall or shell material (174). The wall
material used should have emulsifying properties, low viscosity,
be biodegradable, should have film forming properties, should
resist GIT, be low cost and should show low hygroscopicity
(175). There are various wall materials that are currently
used to encapsulate microbial pigments for use as food color
such as maltodextrins, modified starch, inulin, furcellaran and
others (176).

Encapsulated colors are easier to handle, have better solubility,
and show improved stability to ambient conditions, leading
to an increased shelf life. The wall material protects the
active core material from light, temperature, oxygen, humidity,
and matrix interactions. The major objectives of encapsulating
microbial pigments and their application in the food industry
are: Increasing shelf life, protecting the core material from
undesirable environmental conditions, ease, and flexibility of
handling and controlling the release time of the pigment and
suppressing any type of aroma or flavor. Various methods of
micro-encapsulation are available. Prominent examples used
in the food industry are spray-drying, coacervation, freeze-
drying and emulsion formation. There are numerous reports on
encapsulated microbial pigments, such as anthocyanin, in which
maltodextrin has been micro-encapsulated as the wall material,
using spray-drying (177). B-Carotene has been reported to be
encapsulated in modified starch as the wall material using freeze
drying (178). These encapsulated colors have also been applied
in food and beverage systems like yogurt, soft drinks, cake, and
others, and these have shown to be stable and effective (179–181).

Nano-encapsulation or nano-emulsions are droplet size,
100 nm or less, and can also be prepared to encapsulate microbial
pigments. Nano-emulsions contain three constituents, water, oil,
and emulsifier. The addition of an emulsifier is the most critical
step in forming a nano-emulsion, as it helps to decrease the
tension between the water and oil phases of the emulsion. It also
stabilizes the nano-emulsion by negating the steric hindrance
and repulsive electrostatic interactions. The emulsifiers used
are mostly surfactants, but proteins and lipids are also used.
Compared to micro- and macro-emulsions, nano-emulsions
have improved applications because of their large surface area per

unit, stronger kinetic stability and resistance to any chemical or
physical change (182). Importantly, nano-emulsions, and nano-
capsules are small enough to be invisible in solutions and are
therefore useful vehicles for the dispersion of poorly water-
soluble pigments in aqueous solutions. Creating nano-emulsions
for food colorants can provide various advantages. The small
sized droplets that are made in the formation of nano-emulsions
provide a much greater surface area and therefore greater
absorption. These nano-emulsions also are non-irritant in nature
and non-toxic, making them suitable for food industry use. These
can also be formulated in a wide range of formulations such as
creams, liquids, sprays, and foams. Nano-emulsions create no
undesired taste to the food particle and stabilize the colorant
within the emulsion from all environmental conditions (183).
Nano-emulsions of food colorants can significantly decrease the
amount of colorant needed to obtain the desired color food
particle, thereby proving to be cost effective. Various studies of
nano-emulsion formation of β-carotene have been carried out;
Yuan et al. studied the size and stability of nano-emulsions with
b-carotene against temperature, pH and surfactant type. Qian
et.al. prepared nano-emulsions with b-carotene and stabilized
them with beta-lactoglobulin, a biocompatible emulsifier (184).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Natural foods are an important and growing food category
that require natural ingredients and additives. Subsequently,
there is a great demand to replace synthetic pigments with
natural pigments in food and beverages. Microbial sources are
particularly useful as they can be scaled-up and are more readily
manipulated than plants or insects. Development and integration
of advancements like strain development in fermentations,
systems biology, metabolic, and protein engineering, can make
a substantial difference in both the quality and quantity of
natural food colors. Efficient fermentations include predictable
yields and no external influence of the climate or environment.
However, further research is required to optimize pigment
characteristics, like composition and yield, by finding the most
optimized parameters for growth, use of genetically modified
organisms to enhance production, and also the presence of
various elicitors for pigment production (185).

Metabolic engineering is useful but has its own regulatory
challenges. In terms of technology, metabolic engineering can
improve product yields, enable the transfer of pathways from
slow growing organisms to faster growing ones, and enable
directed biosynthesis of analogs of a pigment, to modify color
or other properties. Cell factories can be created by utilizing
CRISPER-Cas9 and heterologous expression of biosynthetic
pathways from known or novel pigment producers can provide
useful strategies (150, 151). Poor stability or low solubility of
natural food colorants can be addressed by techniques like
micro-encapsulations and nano-formulations, enabling a wider
application of microbial pigments to various food matrices.
Encapsulated colors are easier to handle, have better solubility
and show improved stability to ambient conditions, which lead
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to an increased shelf life. Nano-emulsions can be used to improve
solubility and provide invisible particles that are useful in the
coloring of clear and semi-clear beverages.

The current range of natural colors that can be added to
foods is relatively small compared to the large range of synthetic
colors. However, demand for natural foods and natural colors
is increasing. The discovery of new and novel natural colors is
therefore important, as is the development for technologies to
improve the cost effectiveness of production and formulation
of natural pigments. New natural sources to obtain pigment
producing micro-organisms are required, as well as process
improvements to make these strains more cost competitive
with synthetic pigments. The technology required includes the
development of low-cost organic substrates for the growth of
pigment producing microbes, newer methods to increase the
production of pigments, and stabilizing methods for improving

pigment application. Research on natural pigments should focus
on obtaining a wider variety of hues, using pigments with
health benefits, increasing pigment shelf life, and lowering
production costs.
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