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Abstract
Significant changes have been made on audio-based technologies over years in several different fields. Healthcare is no
exception. One of such avenues is health screening based on respiratory sounds. In this paper, we developed a tool to
detect respiratory sounds that come from respiratory infection carrying patients. Linear Predictive Cepstral Coefficient
(LPCC)-based features were used to characterize such audio clips. With Multilayer Perceptron (MLP)-based classifier, in
our experiment, we achieved the highest possible accuracy of 99.22% that was tested on a publicly available respiratory
sounds dataset (ICBHI17) (Rocha et al. Physiol. Meas. 40(3):035,001 2019) of size 6800+ clips. In addition to other popular
machine learning classifiers, our results outperformed common works that exist in the literature.
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Introduction

Respiratory diseases are the third leading cause of death
worldwide. As rapid growth of respiratory diseases is
witnessed around the world, medical research field has
gained interest in integrating potential audio signal analysis-
based technique. Like in other application domains, audio
signal analysis tools can potentially help in analyzing
respiratory sounds to detect problems in the respiratory
tract. Audio analysis aids in timely diagnosis of respiratory
ailments more effortlessly in the early stages of a respiratory
dysfunction. Respiratory conditions are diagnosed through
spirometry and lung auscultation. Even though, spirometry
is one of the most commonly available lung function tests,
it is limited to patient’s cooperation. As a result, it is error
prone. Auscultation is a technique that involves listening
to the internal human body sounds with the aid of a
stethoscope. Over several years, it has been an effective
tool to analyze lung disorders and/or abnormalities. Such
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procedure is limited to trained physicians. Besides, for
various reasons (e.g., faulty instrument), false positives
can happen. Therefore, it opens a door to develop
computerized respiratory sound analysis tools/techniques,
where automation is integral.

Lung sounds are difficult to analyze and distinguish
because they are non-stationary and non-linear signals.
Automated analysis was made possible with the use of elec-
tronic stethoscope. In 2017, the largest publicly available
respiratory sound database was compiled and encouraged
the development of algorithms that can identify common
abnormal breath sounds (wheezes and crackles) from clin-
ical and nonclinical settings. Respiratory sounds are gen-
erally classified as normal or adventitious. Adventitious
sounds are RS superimposed on normal respiratory sounds,
which can be crackles or wheezes. Crackles are discontin-
uous sounds, explosive, and non-musical. that are typically
less than 20 ms that occur frequently in cardiorespira-
tory diseases associated with lung fibrosis (fine crackles)
or chronic airway obstruction (coarse crackles). Wheezes
are high pitched sounds that last more than 100 ms. They
are common in patients with obstructive airway diseases
and indicate obstructive airway conditions, such as asthma
and COPD. The dataset contains respiratory cycles that
were recorded and annotated by professionals as wheezes,
crackles, both, or no abnormal sounds.

Rao et al. [19] discussed acoustic techniques for pul-
monary analysis. They studied acoustic aspects for different
lung diseases. It includes different type of sounds in the

http://crossmark.crossref.org/dialog/?doi=10.1007/s10916-020-01681-9&domain=pdf
http://orcid.org/0000-0003-4176-0236
mailto: santosh.kc@usd.edu


   19 Page 2 of 9 Journal of Medical Systems           (2021) 45:19 

thick of internal and external sounds. Aykanat et al. [3]
presented a convolutional network plus mel frequency cep-
stral coefficient-support vector machine-based approach for
lung sound classification. On a dataset of 17930 sounds
from 1630 subjects, an accuracy of 86% (for healthy-
pathological classification) was reported. Pramono et al.
[18] classified normal respiratory sounds and wheezes
on a dataset of 38 recordings. Of 425 events, 223 were
wheezes and the rest were normal. They reported a AUC
value of 0.8919 with MFCC-based features. Acharya et
al. [1] presented a deep learning-based approach for lung
sound classification. They reported an accuracy of 71.81%
on the ICBHI17 dataset of size 6800+ clips. Dokur [10]
used machine learning approaches to distinguish respiratory
sounds. In their experiments, nine different categories from
36 patients were used. An accuracy of 92% was reported by
using Multilayer Perceptron (MLP).

Melbye et al. [14] studied the classification of lung
sounds by 12 observers. They worked with 1 clip each from
10 adults and children and obtained fleiss kappa values
of 0.62 and 0.59 for crackles and wheezes, respectively.
Among the 20 cases, they found that in 17 cases, the
observers concluded presence of atleast 1 adventitious
sound. Bahoura and Pelletier [4] used cepstral features to
distinguish normal and wheezing sounds. They worked with
12 instances from each class and reported the highest true
positive value of 76.6% for wheezing sounds. They also
reported 90.6% true positives for normal sounds with fourier
transform-based features. Ma et al. [13] developed a system
to distinguish lung sounds using a resnet-based approach.
On ICBHI17 dataset, an accuracy of 52.26% was reported.
Emmanouilidou et al. [11] proposed a robust approach to
identify lung sounds in the presence of noise. In their
experiments, with 1K+ volunteers (over 250 hours of data),
an accuracy of 86.7% was reported.

To analyze lung sounds, Sen et al. [23] used Gaussian
mixture model and support vector machine-based classifier.
Using 20 healthy and non-healthy subjects, they reported
an accuracy of 85%. Demir et al. [9] used a CNN-based
approach. On ICBHI17 dataset, the highest accuracy of
83.2% was reported. Chen et al. [7] used a S-transform-
based approach coupled with deep residual networks to
classify lung sounds: crackle, wheeze, and normal. In
their study, the reported accuracy was 98.79%. Kok et al.
[12] employed multiple features, such as MFCC, DWT,
and time domain metrics to distinguish healthy and non-
healthy sounds. In their study, they reported accuracy,
specificity, and sensitivity values of 87.1%, 93.6%, and
86.8%, respectively on the ICBHI17 dataset.

Chambers et al. [6] developed a tool to identify healthy/
non-healthy patients using respiratory sounds. They used
several spectral, rhythm, SFX, and tonal features coupled
with decision tree-based classification. In their study, they

reported an accuracy of 85% on a dataset of 920 records.
Altan et al. [2] developed a deep learning-based approach
to detect chronic obstructive pulmonary disease. Their
tool used Hilbert-Huang transform on multi-channel lung
sounds. In their experiment, an accuracy of 93.67% was
reported on a dataset of 600 sounds collected from 50
patients. Cohen and Landsberg [8] classified 7 different
type of sounds using linear predictive coefficient-based
technique. In their experiments, out of 105 instances, 100
were classified correctly.

Even though there exists a rich state-of-the-art literature
for lung sound analysis, they do not guarantee optimal
performance. Moreover, non-healthy cases are composed of
several issues/criteria. Distinguishing healthy sounds from
non-healthy sounds is not trivial. Handcrafted feature-based
systems are preferred over deep learning-based systems,
where computational resource is considered. Secondly, prior
to deeper analysis of non-healthy sounds, it is essential to
distinguish healthy and non-healthy sounds. A hierarchical
approach can aid to reduce the workload of medical experts
in resource-constrained regions. After ensuring that whether
a person has lung infection, the true positive case can be
taken for further treatment(s)/processing.

In this paper, we developed an automated tool, where
LPCC-based features are employed. LPCC-based features
were chosen due to its ability of modeling a variety of audio
signals [15, 16]. In our experiments, on a dataset ICBHI17
(of size 6800+ clips), we achieved an accuracy of 99.22%
using MLP.

The remainder of the paper is organized as follows.
“Dataset description” discusses on dataset. In “Proposed
method: LPCC-based features and MLP”, we describe the
proposed tool. Experimental results are provided in “Results
and analysis”. We conclude the paper in “Conclusion”.

Dataset description

To develop of a robust system, it is important to ensure
that the dataset mimics real-world problems. Our system
was trained on a publicly available respiratory sound
database [20], which is associated with the International
Conference on Biomedical and Health Informatics (ICBHI).
Most of the database consists of audio samples recorded
by the School of Health Sciences, University of Aveiro
(ESSUA) research team at the Respiratory Research and
Rehabilitation Laboratory (Lab3R), ESSUA and at Hospital
Infante D. Pedro, Aveiro, Portugal. The second research
team, from the Aristotle University of Thessaloniki (AUTH)
and the University of Coimbra (UC), acquired respiratory
sounds at the Papanikolaou General Hospital, Thessaloniki
and at the General Hospital of Imathia (Health Unit of
Naousa), Greece.
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Fig. 1 200 audio clips
(original): healthy class (left)
and non-healthy class (right)

To collect data, disparate stethoscopes and microphones
were used. The audios were recorded from the trachea and
6 other chest locations: left and right posterior, anterior,
and lateral. The audios were collected in both clinical and
non-clinical settings from adult participants of disparate
ages. Participants encompassed patients with lower and
upper respiratory tract infections, pneumonia, bronchiolitis,
COPD, asthma, bronchiectasis, and cystic fibrosis.

The ICBHI database consists of 920 audio samples from
126 subjects. These are annotated by respiratory experts,
and used as a benchmark in the field. Each respiratory cycle
in the dataset is annotated amidst 4 classes. The annotations
basically cover 2 broad groups: healthy and non-healthy.
The non-healthy category is further divided into wheeze and
crackle with some cycles having both issues. Among 6898
cycles totaling to 5.5 hours, 1864 cycles have crackles while
886 have wheezes. There are 506 cycles, which have both
wheezes and crackles.

While recording, the participants were seated. The acqui-
sition of respiratory sounds was performed on adult and
elderly patients. Many patients had COPD with comorbidi-
ties (e.g., heart failure, diabetes, and hypertension). Further,
noise exists, such as rubbing sound of the stethoscope with
the patient’s dress, and background talking. Such varieties
in the data made it challenging to identify problems in the
respiratory sounds. One of the most challenging aspects of
the audio clips was the presence of heartbeat sound along
with the breath sounds. No preprocessing was performed to
remove the heartbeat sounds.

For better understanding, visual representations of 200
audio clips from the healthy and non-healthy sounds are
shown in Fig. 1. In Table 1, a complete dataset is provided.

Table 1 Respiratory sound database [20]

Clip type Number of clips

Healthy 3642

Non-healthy 3256

Proposedmethod: LPCC-based features
andMLP

Respiratory sound representation: LPCC-based
features

As audio clip contains high deviations across its entire
length, its analysis is not trivial. Therefore, each audio
clip is broken down into smaller segments called frames to
facilitate analysis. In our study, we divided each clip into
frames consisting of 256 sample points with a 100-point
overlap in between them. The parameters were empirically
designed. The same 200 audio clips (as in Fig. 1) are shown
in Fig. 2 after framing. The number of Sz sized overlapping
frames Of with O overlapping points for a signal having S

points is presented below:

Of =
⌈S − Sz

O
+ 1

⌉
. (1)

After framing audio clips (into shorter segments), it was
observed that in various instances the starting and ending
points were not aligned in a frame. These discontinuities/
jitters lead to smearing of power across the frequency
spectrum. This posed a problem in the form of spectral
leakage during frequency domain analysis which produced
additional frequency components. To tackle this, the frames
were subjected to a window function. Hamming window
was selected for this purpose due to its efficacy as reported
in [16]. The same frames (Fig. 2) are presented in Fig. 3
after windowing. The hamming window is mathematically
illustrated as

A(z) = 0.54 − 0.46 cos

(
2πz

Sz − 1

)
, (2)

where A(z) is the hamming window function and z is a point
within a frame.

Thereafter, we performed Linear Predictive Coefficient
(LPC) based analysis [15] on each of them. The previous
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Fig. 2 200 audio clips (as in
Fig. 1) after framing: healthy
class (left) and non-healthy class
(right)

P samples are used to present the rth sample in a signal
s() as

s(r) ≈ p1s(r − 1) + p2s(r − 2) + p3s(r − 3)

+, . . . , +pP s(r − P), (3)

where p1, p2,. . . , pP are the LPCs or predictors. The error
of this prediction E(r) bounded by the actual and predicted
samples: (s(r) and ŝ(r)) can be explained as

E(r) = s(r) − ŝ(r) = s(r) −
P∑

k=1

pks(r − k). (4)

The error of sum of squared differences (as shown below)
is minimized to generate the unique predictors for a x sized
frame, which can be expressed as

Er =
∑
x

[
sr (x) −

P∑
k=1

pksr (x − k)
]2

. (5)

Thereafter, a recursive technique is used to compute the
Cepstral coefficients (C), which is expressed as

C0 = loge P

Cr = pr +
r−1∑
q=1

q

r
Cqpr−q, f or1 < r ≤ Pand

Cr0. =
r−1∑

q=r−P

q

r
Cqpr−q, f orr > P

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

Since clips in the dataset were of unequal lengths and
number of frames obtained varied. When features were
extracted in frame level, it produced different dimensions.
To handle this, we performed two operations: a) grading and
b) standard deviation measurement.

1. Firstly, the sum of LPCC coefficients in each of the
frequency ranges (bands) across all the frames was
computed. Based on the sum of these energy values,
bands were graded in an ascending order. This sequence

of band numbers was used as features that helped in
identifying dominance of different bands for the clips
from various categories.

2. Secondly, standard deviation was computed for every
band. These two metrics were stacked to form the
feature, which is independent of the clip length. 10, 20,
30, 40 and 50 dimensional features were extracted for
the 2 classes. The trend of the 30 dimensional feature
values (best result) for the 2 classes is shown in Fig. 4.

Classification: MLP

We emplpyed MLP classfier – feed-forward artificial neural
network – for classification purpose [17]. Feedforward
neural networks are made up of the input layer, output
layer and hidden layer. It is a supervised learning algorithm
trained on a dataset using a function f () : Zn −→ Zo,
where n and o represent the dimensions for input and output.
For a given set of features P = p1, p2, . . . , pn and aim
x, a non-linear function is learned for classification. The
difference between MLP and logistic regression lies in the
existence of one or more non-linear layers (hidden layers)
between the input and the output layer. MLP consists of
three or more layers (input layer, output layer and one or
more hidden layers) of non-linear activating neurons. The
number of hidden layers can be increased according to the
requirement of developing a model to accomplish certain
task.

The initial layer is the input layer which comprises
of a set of neurons {pi | p1, p2, . . . , pn} denoting the
features. Each neuron of the hidden layer modifies the
values from the previous layer using sum of weights as
w1p1 + w2p2+, . . . , +wnpn.

The activation function that represents the relationship
between input and output layer in of non-linear nature.
It makes the model flexible in defining unpredictable
relationships. The activation function can be expressed as

yi = tanh(wi) and yi = (1 + ewi )−1, (7)
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Fig. 3 Representation of 200
audio clips (as in Fig. 1) after
windowing: healthy class (left)
and non-healthy class (right)

where yi and wi denotes the outcome of the ith neuron
and weighted sum of the input features. The values from
the ultimate hidden layer are provided to the output layer
as output values. Each layer of MLP contains several fully
connected layers as each neuron in a layer is attached to
all the neurons of the previous layer. The parameters of
each neuron are independent of the remaining neurons of
the layer ensuring possession of unique set of weights. The
initial momentum and learning rate were set to 0.2 and 0.3
respectively.

Results and analysis

Evaluationmetrics and protocol

Accuracy is not enough to measure the performance of
any system. It is also much important to analyze the
disparate misclassifications. Hence, to evaluate our tool,
the following performance metrics are used: Precision,
Accuracy, Sensitivity (Recall), Specificity, and Area under
ROC curve (AUC). They are computed as

Accuracy = TP + TN

TP + TN + FP + FN

,

Precision = TP

TP + FP

,

Sensitivity (Recall) = TP

TP + FN

,

Specificity = TN

TN + FP

, and

F1 score = 2 × Precision × Recall

Precision + Recall
, (8)

where TP , TN , FP , and FN refer to true positive, true
negative, false positive, and false negative, respectively.

To avoid possible bias in evaluation, 5-fold cross valida-
tion was used.

Our results

The performance of the different features are provided in
Table 2. It is observed that the best result was obtained with
30 dimensional features and it’s corresponding confusion
matrix is provided in Table 3.

Next, the momentum was varied from 0.1 to 0.5 with a
step of 0.1, and results are provided in Table 4. The best
result was obtained for a momentum of 0.1 whose inter-
class confusions are provided in Table 5. As compared to
the default scenario, there were 4 more misclassifications in

Fig. 4 Representation of 30
dimensional features for the
audio clips: healthy class (left);
non-healthy class (right)
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Table 2 Performance of different feature dimensions using MLP

Feature dim. Accuracy(%)

10 93.91

20 90.01

30 99.07

40 89.19

50 98.78

the case of the healthy cases (and 9 less misclassifications
for the non-healthy cases).

Finally, the momentum was varied from 0.1-0.6 with a
step of 0.1 whose results are provided in Table 6. In our
experiment, the highest performance was obtained when a
learning rate of 0.5 was selected. We presented a confusion
matrix for this setup in Table 7. It is observed that the
number of misclassifications for both classes was reduced
as compared to the initial setup. The misclassified instances
were analyzed, and it was found that many of them had
heartbeat sounds. Along with this, other unwanted artefacts,
such as talking and movement of the probe helped in
misclassifying.

It is observed that the misclassified instances was
reduced by almost 15.63% as compared to the original setup
using default settings. As compared to best result, after
momentum tuned, a decrease of nearly 8.47% occurred for
the misclassified instances.

A deeper analysis of the misclassifications revealed
that approximately 0.74% of the healthy cases were
misclassified as opposed to non-healthy. In the case of non-
healthy instances, approximately 0.83% of the clips were
misclassified as healthy, which we call false negative.

The different performance metrics were computed for
the default setup, best momentum, and best learning rate
(overall highest). Such results are provided in Table 8. The
ROC curves for these scenarios are shown in Fig. 5.

Comparative study

The performance of several other classifiers was compared
in order to establish the efficacy of MLP. For comparison,
the 30 dimensional feature set (best performance) was
chosen. We experimented with BayesNet, SVM, RNN,

Table 3 Inter-class confusions for the 30 dimensional features (Best
result) using MLP

Healthy Non-healthy

Healthy 3611 31

Non-healthy 33 3223

Table 4 Performance for different momentum values on 30 dimen-
sional features with learning rate of 0.3

Momentum Accuracy(%)

0.1 99.14

0.2 99.07

0.3 99.04

0.4 99.07

0.5 99.12

Table 5 Inter-class confusions for momentum value of 0.1 on 30
dimensional features

Healthy Non-healthy

Healthy 3607 35

Non-healthy 24 3232

Table 6 Performance for different learning rates with momentum of
0.2

Learning rate Accuracy(%)

0.1 99.03

0.2 99.13

0.3 99.07

0.4 99.06

0.5 99.22

0.6 99.13

Table 7 Interclass confusions for learning rate of 0.5 and momentum
of 0.2 on 30 dimensional features

Healthy non-healthy

Healthy 3615 27

non-healthy 27 3229

Table 8 Performance metrics for default scenario, best results after
tuning momentum value and best result after tuning learning rate

Metrics Default Best momentum Best learning rate

Sensitivity 0.9915 0.9904 0.9917

Specificity 0.9899 0.9926 0.9926

Precision 0.9909 0.9834 0.9917

False positive rate 0.0101 0.0074 0.0074

False negative rate 0.0085 0.0096 0.0083

Accuracy(%) 99.07 99.14 99.22

F1 score 0.9912 0.9919 0.9917

AUC 0.9994 0.9995 0.9993
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Fig. 5 ROC curves: a default settings, b best momentum value (0.1), and c best learning rate (0.5, overall highest result)

Table 9 Performance of different classifiers on the 30 dimensional
features

Classifier Accuracy(%)

BayesNet 98.26

Naı̈ve Bayes 88.98

SVM 98.59

RBF Network 95.82

LibLINEAR 98.59

Simple Logistic 98.70

Decision Table 98.62

RNN 93.82

Multilayer Perceptron 99.22

Naive Bayes, RBF network, Decision Table, LibLINEAR,
and Simple logistic. The results are provided in Table 9.

We also compared the performance of our system with
reported works by Kok et al. [12] and Chambers et al. [6].
The average accuracies for both the systems along with the
proposed system are provided in Table 10.

Table 10 Comparison with reported works

Work Accuracy(%)

Kok et al. [12] 87.10

Chambers et al. [6] 85.00

Proposed technique 99.22
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Conclusion

In this paper, we developed a tool to detect respira-
tory sounds that come from respiratory infection carrying
patients. We have employed Linear Predictive Cepstral
Coefficient (LPCC)-based features to characterize respi-
ratory sounds. With Multilayer Perceptron (MLP)-based
classifier, in our experiment, we have achieved the high-
est possible accuracy of 99.22% (AUC = 0.9993) on a
publicly available dataset of size 6800+ clips. In addition
to other popular machine learning classifiers, our results
outperformed common works that exist in the literature.

Not limiting to binary classification (health/non-healthy),
our immediate plan is to classify disease types from non-
healthy category. This will help identify the nature and
severity of infection. As we observed that COVID-19 could
possibly screened by analyzing respiratory sound [5], we are
now extending our experiments on COVID-19 [21, 22].
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