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Abstract
Crescentic glomerulonephritis represents a group of kidney diseases characterized by rapid loss of kidney function and 
the formation of glomerular crescents. While the role of the immune system has been extensively studied in relation to the 
development of crescents, recent findings show that parietal epithelial cells play a key role in the pathophysiology of crescent 
formation, even in the absence of immune modulation. This review highlights our current understanding of parietal epithe-
lial cell biology and the reported physiological and pathological roles that these cells play in glomerular lesion formation, 
especially in the context of crescentic glomerulonephritis.
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Introduction

Chronic kidney disease (CKD) has been recognized as a 
global health problem of pandemic proportions (GBD 
Chronic Kidney Disease Collaboration 2020). CKD eventu-
ally progresses to end-stage kidney disease (ESKD), reach-
ing a clinical stage that requires renal replacement therapy 
(i.e. dialysis) or kidney transplantation in order to prolong 
the patient’s life. While over 10 million people worldwide 
require dialysis or transplantation, many do not receive these 
interventions due to financial constraints or lack of resources 
(Himmelfarb et al. 2020). Furthermore, given that dialysis 
does not provide a cure and there is a great disparity between 
the number of patients requiring transplants and the number 
of available organs (Hippen et al. 2009), there is an urgent 

need for the development of additional therapeutic strategies 
that may prevent or slow-down CKD/ESKD.

Crescentic glomerulonephritis (cGN) is one of the most 
aggressive conditions that can quickly lead to CKD/ESKD 
(Jennette and Thomas 2001). cGN is characterized by the 
presence of extensive and destructive glomerular cellular 
crescents, usually in more than 50% of glomeruli, which 
explains the sudden and progressive loss of renal function. 
The pathological definition of crescents varies depending 
on the specific disease, but cellular crescents are commonly 
defined as two or more layers of proliferating cells in Bow-
man’s space. Previous evidence suggests that parietal epi-
thelial cells (PECs) are the main cell type populating cres-
cents (Smeets et al. 2009a) as they undergo an activation 
process characterized by increased capacity for proliferation, 
migration and production of extracellular matrix (Ohse et al. 
2009a).

PEC activation in cGN usually occurs during a complex 
immune response, namely, macrophage and T cell infil-
tration. Multiple studies have shown that modulating the 
immune system can both exacerbate and inhibit crescent 
formation (Krebs et al. 2017) suggesting potential interac-
tions between PECs and the immune system. Given the role 
of PECs as effector cells in crescent formation, it is likely 
that immune reactions may serve as a trigger leading to PEC 
activation. Furthermore, crescents are also characterized by 
immune cell infiltration, which is dependent on the integrity 
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of Bowman’s capsule (BC) (Chen et al. 2018), a structure 
that is in immediate contact with PECs and that may be 
directly affected in this activation process.

While the involvement of PECs in crescent formation is 
well established, basic physiological roles of PECs remain 
incompletely understood. It has been proposed that PECs 
may serve as a barrier to prevent ultrafiltrate leakage into 
the interstitium (Ohse et al. 2009a) and to prevent immune 
cell infiltration into the glomerulus (Chen et al. 2018). Fur-
thermore, PECs have primary cilia (Arakawa and Tokunaga 
1977). Given that PECs are continuously exposed to flow 
from the glomerular filtrate, it has also been proposed that 
these cilia may serve as chemical and mechanical sensors 
(Ohse et al. 2009b), which could facilitate inter-cellular 
communication without direct contact. Additionally, PECs 
have been proposed as cellular reservoirs of podocytes that 
can contribute to postnatal podocyte gain (Shankland et al. 
2017), a topic that still remains under continuous debate 
(Moeller and Tharaux 2019). However, recent studies have 
shown evidence of podocyte loss in humans (Zimmermann 
et al. 2021) and mice (Henique et al. 2017; Puelles et al. 
2019a) during cGN, suggesting that, in this condition, the 
potential for postnatal podocyte gain is limited and does not 
seem to be able to compensate for podocyte loss.

In summary, this review will highlight current evidence 
regarding the central role of PEC activation and functional 
impairment in the origin and progression of cellular cres-
cents and thereby cGN.

Immune triggers of crescent formation

Most forms of cGN are pathophysiologically regarded as 
immune-mediated (Couser 2012; Anders and Fogo 2014). 
However, in most of the cases, the specific etiology remains 
unknown. It has been hypothesized that crescent forma-
tion may be the result of triggers from both the adaptive 
and the innate immune system, leading to diverse clinical 
and pathologic manifestations (van den Berg and Weening 
2004; Kitching and Hutton 2016). For more comprehensive 
reviews on the role of immune cells in cGN, please refer 
to Krebs et al. (2017), Tang et al. (2019), Antonelou et al. 
(2020) and Kurts et al. (2020).

Briefly, human cGN is characterized by glomerular 
accumulation of neutrophils, monocytes, T cells and mac-
rophages (Hooke et al. 1987). Based on this observation, 
multiple studies have suggested that these immune cells play 
key roles in the initiation of immune responses leading to the 
formation of cellular crescents (Neale et al. 1988).

Neutrophil infiltration is observed in the biopsies of 
patients with cGN irrespectively of the cause (Suh et al. 
1999). Neutrophil recruitment within glomerular capil-
laries following IgG deposition has been shown to be 
further enhanced by transgenic expression of the human 

Fc receptor Fc gamma RIIA, which promotes glomeru-
lar neutrophil accumulation (Nishi et al. 2017). Through 
MPO-mediated oxidative activity, release of proteases, 
activation of the complement cascade and release of 
NETs that recruit red blood cells and promote fibrin 
deposition, the increased dwell time of neutrophils in 
glomerular capillaries promotes endothelial injury. Mul-
tiphoton and spinning disk confocal intravital microscopy 
have revealed that the major effect of acute inflamma-
tion is to increase the duration of leukocyte retention in 
the glomerulus. Furthermore, multicellular intravascular 
patrolling involving both monocytes and neutrophils was 
uncovered (Devi et al. 2013). Monocytes patrol both unin-
flamed and inflamed glomeruli using beta2 and alpha4 
integrins and CX3CR1. Monocyte depletion reduced glo-
merular injury, demonstrating that these cells promote 
inappropriate inflammation in this setting. Monocyte 
depletion also resulted in reductions in neutrophil recruit-
ment and dwell time in glomerular capillaries and in reac-
tive oxygen species generation by neutrophils, suggesting 
a role for cross-talk between monocytes and neutrophils 
in induction of cGN (Finsterbusch et al. 2016).

CD4 + T cells play a key effector role due to their ability 
to recruit macrophages. Interestingly, CD4 + T cell depletion 
in a rodent model of cGN effectively prevented glomerular 
macrophage recruitment and crescent formation (Huang 
et al. 1994). Furthermore, Heymann et al. (2009) showed 
the ability of CD4 + T cells to orchestrate the formation of 
focal periglomerular mononuclear infiltrates, which play a 
key role in the invasion of CD8 + T cells through BC, ampli-
fying crescentic lesion formation (Chen et al. 2018).

Previous studies have shown that T helper type 1 (Th1) 
cytokine deficiencies (e.g. IL-12 (Kitching et al. 2005) 
and IFN-γ (Kitching et al. 1999a)) as well as blocking 
Th1 cytokines (Tipping and Holdsworth 2006) attenu-
ate the development of crescents. In addition, adminis-
tration of IL-12 exacerbates experimental cGN, which 
confirms the key role of this cytokine (Kitching et al. 
1999b). Importantly, mice lacking RORγt are unable to 
produce T helper 17 (TH17)-mediated immune responses, 
which protects mice against cGN (Krebs et al. 2017). 
Interestingly, deficiencies in the p19 subunit of IL-23 and 
IL17A lead to attenuation of experimental cGN (Paust 
et al. 2009). Together, these studies represent excellent 
examples of a direct effect of T cells in the pathogenesis 
of cellular crescent formation.

Yet, the role of immune cells in cGN is not black and 
white. For instance, mice lacking the p40 subunit of IL‑23 
and IL‑12, the p19 subunit of IL‑23 or the p35 subunit of 
IL‑12 were only protected in the absence of IL‑23 signal-
ling, while the presence or absence of IL‑12 had no influ-
ence on disease onset (Ooi et al. 2009). Another example 
can be found in the process of dendritic cell maturation 
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during experimental cGN, which is generally mediated 
by the transcription factor nuclear factor-κB (NF-κB). In 
murine cGN, pharmacological inhibition of NF-κB dimin-
ished the maturation of DCs, but the subsequent loss of 
regulatory T cells exacerbated multiple features of cres-
centic disease (Gotot et al. 2016).

These examples highlight that complex immune-
mediated processes can serve as powerful triggers for 
crescent formation and evolution (Fig. 1). However, their 
direct effects on PEC activation remain unclear.

PEC dysfunction

Epithelial cells lining on Bowman’s capsule (BC) are 
referred to as PECs. Although this glomerular cell type 
was first described in the 1800s (Bowman 1842), only 
recently, PECs gained attention due to their potential con-
tribution to postnatal podocyte gain and proven role in 
glomerular lesion formation (Fig. 2).

During nephrogenesis, PECs and podocytes develop 
from the metanephric mesenchyme that is induced by 
the ureteric bud. Both cell types undergo a mesenchymal 
to epithelial transition forming the renal vesicle, which 
after a series of elongations and invaginations, generates 
S-shaped bodies. In the transition between S-shaped body 
and capillary loop stage, PECs differentiate into podo-
cytes through the upregulation of podocyte-specific genes 
and the de novo expression of the cyclin-dependent kinase 
inhibitor p27, and downregulation of PAX2 (Shankland 
et al. 2014).

PECs and podocyte gain

Podocytes are post-mitotic highly specialized epithelial cells 
unable to complete cytokinesis (Kriz et al. 1995; Lasagni 
et al. 2013) with a limited regeneration potential (Puelles 
and Moeller 2019b). It has been shown that podocyte loss 
is sufficient for the initiation of glomerulosclerosis (Kim 
et al. 2001; Wharram et al. 2005; Puelles et al. 2019a) and 
has been proposed as a unifying principle of glomerular dis-
ease (Wiggins 2007). While podocyte loss may be the main 
trigger for glomerulosclerosis, PECs serve as effector cells 
that initiate the formation of segmental lesions (Dijkman 
et al. 2005; Lazareth et al. 2020; Kuppe et al. 2019). How-
ever, is it possible that PECs can also play a role in some 
form of postnatal podocyte gain?

Sagrinati et al. characterized the expression of CD24 and 
CD133 in PECs, which initiated the hypothesis that PECs 
could exhibit stem cell-like properties (Sagrinati et al. 2006). 
Subsequent work by Ronconi et al. (2009) suggested that 
these cells may act as podocyte progenitors. Furthermore, 
Appel et al. (2009) showed using genetic lineage tracing 
that, in juvenile mice, a small number of PECs migrated 
into the glomerular tuft and co-expressed podocyte mark-
ers (e.g. nephrin and WT-1). Both of these studies sparked 
up an interesting debate regarding the possibility of podo-
cyte regeneration, something that until then was considered 
impossible. Three main theories remain: (1) PECs are a 
limited, but available source of podocyte progenitors in the 
adult period; (2) PECs represent a limited reservoir of dif-
ferentiated podocytes that migrate to the tuft when sufficient 
space is available (i.e. during glomerular growth); or (3) 

Fig. 1   Immune responses trigger parietal epithelial cell (PEC) activation. Both interstitial and circulating immune cells are able to produce 
mediators of PEC activation, which could lead to crescent formation
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PECs can acquire podocyte markers but do not functionally 
replace podocytes.

Over time, new arguments were introduced, for exam-
ple, the co-expression of podocyte and PEC markers in glo-
merular cells (Ohse et al. 2010), the expression of podocyte 
markers in PECs (i.e. during aging (Puelles et al. 2016) and 
diabetic nephropathy (Andeen et al. 2015), and podocyte/
PEC phenotype control via miR-193a (Kietzmann et al. 
2015). Over the years, some studies failed to identify PECs 
as meaningful contributors to the podocyte pool during adult 
life (Wanner et al. 2014; Berger et al. 2014), and others have 
confirmed and expanded the initial findings (Eng et al. 2015; 
Romoli et al. 2018; Kaverina et al. 2019). For more exten-
sive discussions on this topic, we refer to Moeller and Tha-
raux 2019; Puelles and Moeller 2019; Shankland et al. 2017; 
Mazzinghi et al. 2016.

Classical definition of PEC activation

In parallel to the first studies suggesting that PECs could be 
a potential source of new podocytes, Smeets et al. (2009b) 
proposed that PECs (at the time referred to as “renal pro-
genitors”) were involved in the development of glomerular 
lesions, which included cellular crescents. This observation 
was also made in the mid-eighties by Guettier et al. (1986) 
as PECs were clearly identified as the main components of 
these lesions. Years later, lineage tracing experiments in 
rodents confirmed that PECs are the main cell type involved 
in the origins of two key patterns of glomerular pathology: 

segmental glomerulosclerosis and crescents (Moeller and 
Smeets 2014).

It has been proposed that PECs undergo a process of 
activation with a classical cascade, including increased 
potential for proliferation, migration, production of extra-
cellular matrix and de novo expression of certain markers 
(i.e. CD44 and CD9) (Lazareth et al. 2020). While crescent 
formation involves an initial stage of pronounced migration 
and proliferation, followed by a pro-fibrotic phase (Smeets 
et al. 2009a), segmental glomerulosclerosis tends to feature 
limited migration and proliferation but features marked 
extracellular matrix deposition (Smeets et al. 2011). In our 
opinion, this difference alone could suggest that PEC activa-
tion may be regulated by different signals that may shift the 
process from proliferative to fibrotic.

Not all PECs are the same

Interestingly, in normal glomeruli, “parietal podocytes” are 
described at the intersection of PEC and podocytes as cells 
expressing, both markers of PEC and markers of podocytes 
(Appel et al. 2009; Bariety et al. 2006; Gibson et al. 1992; 
Ronconi et al. 2009). In rats, such “transitional” PECs were 
found to express NCAM, Claudin1 and WT1 (Benigni 
et al. 2011). The significance of such findings is unclear, 
but observations report an increased number of these pari-
etal podocytes during rodent models of glomerular diseases 
with podocyte loss (Benigni et al. 2011; Ohse et al. 2010; 
Pichaiwong et al. 2013). Based on morphology, Kuppe et al. 

Fig. 2   Functional and pathological roles of PECs. a Glomerular sche-
matic showing the 3 different subtypes of PECs: flat (blue), inter-
mediate (pink) and cuboidal (red). b PECs potentially contribute to 
postnatal podocyte gain either as active progenitors or serving as a 

functional reservoir. c Activated PECs form cellular crescents via an 
activation process characterized mainly by an increased capacity to 
migrate and proliferate
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(2019) recently showed that there are different subtypes of 
PECs, namely, flat, intermediate and cuboidal, which have 
different activation potential. For example, while intermedi-
ate and cuboidal PECs seem to be particularly sensitive to 
activation in models of segmental glomerulosclerosis, flat 
PECs appear to be more stable. It remains unclear if these 
morphological differences and different activation potential 
also reflect different signalling pathways that are selectively 
activated in each PEC subtype.

One of the main features of PECs during crescent forma-
tion is their capacity to proliferate. A low level of prolif-
erative activity has been reported in PECs under baseline 
conditions (Pabst and Sterzel 1983). Flat PECs express Src-
suppressed protein kinase C substrate (SSeCKS), a multiva-
lent scaffolding A kinase anchoring protein (Schulte et al. 
2014) that is able to regulate cyclin D1 activity, which has 
been linked to an increased proliferative activity in inter-
mediate PECs during the initiation of segmental glomer-
ulosclerosis (Kuppe et al. 2019). Importantly, Burnworth 
et al. (2012) provided evidence that SSeCKS knockout mice 
showed PEC hyperplasia without any other stress stimuli 
and developed more severe cGN, characterized by increased 
PEC proliferation, which can be attributed to nuclear trans-
location of cyclin D1 upon activation. Together, these find-
ings suggest that our definition of PEC activation may not 
only need to consider differential triggers but also different 
activation profiles and different response states per PEC 
subtype.

Molecular basis for PEC activation

De novo expression of the cell surface glycoprotein CD44 
has been used as a central feature of PEC activation (Smeets 
et al. 2009a, 2011; Okamoto et al. 2013; Kim et al. 2016). 
This concept has also been extended to clinical scenarios, 
where expression of CD44 by PECs has even been used 
to differentiate between minimal change disease and focal 
segmental glomerulosclerosis (Smeets et al. 2014) and as a 
marker of renal function deterioration in paediatric patients 
(Froes et al. 2017).

A recent report characterized the role of tetraspanin CD9 
in the development of glomerulosclerosis and crescents 
(Lazareth et al. 2019). Using PEC-specific genetic deletion 
of CD9, Lazareth et al. showed that selective PEC inacti-
vation was sufficient to abolish lesion formation, even in 
the presence of significant podocyte loss. Interestingly, 
Cd9 gene targeting abrogated expression of CD44 in PECs 
both in crescentic GN and FSGS models, suggesting that de 
novo expression of CD9, is a requirement for further CD44 
expression and formation of extracapillary lesions (Lazareth 
et al. 2019). Furthermore, the authors also showcased the 
capacity of PECs to sense local changes in chemoattractants 

(i.e. PDGF-β and HB-EGF), linking PEC activation to fac-
tors emanating from the injured tuft.

Djudjaj et al. (2016) showed that local upregulation of 
macrophage migration inhibitory factor (MIF) and its recep-
tor complex CD74/CD44 mediated PEC activation and 
thereby crescent formation in cGN. In subsequent studies 
using CD44 global knockout mice, Roeder et al. (2017) and 
Eymael et al. (2018) demonstrated a significant attenuation 
of glomerulosclerosis and crescent formation, confirming 
the key role of CD44 in PEC activation.

In an intriguing study, Kuppe et al. (2017) characterized 
the action of glucocorticoids on activated PECs in cGN. 
While glucocorticosteroid administration attenuated cGN 
as expected, glucocorticosteroid receptor deficiency and 
pharmacological glucocorticosteroid antagonism also ame-
liorated crescent formation in mice. This duality may pro-
vide some experimental explanations for therapy resistance 
and relapses in cGN, which await future clinical validation.

PEC activation without immune triggers

To date, there is no doubt that immune triggers play an 
important role in crescent formation. However, evidence 
shows that PEC activation in the absence of these triggers 
might be possible as well.

A role for endothelial damage and activated coagulation 
cascade involving the thrombin receptor PAR-1 was shown 
in experimental cGN (Cunningham et al. 2000), suggest-
ing a potential mechanistic link between glomerular fibri-
noid necrosis and PEC recruitment. Similarly, Morigi et al. 
(2016) showed in a mouse model of protein overload that 
PEC activation occurred in response to podocyte depletion, 
which triggered complement activation, and glomeruloscle-
rosis. This was mirrored in human renal biopsies, showing 
concomitant PEC activation and glomerular C3/C3a deposi-
tion, suggesting a potential role of C3/C3a in the develop-
ment of PEC activation.

It has been reported that mice or rats that constitutively 
lack T cells are still capable of developing cGN (Kusuyama 
et al. 1981; Sato et al. 1991), and crescent formation can 
be modulated by intrinsic glomerular cells (i.e. podocytes) 
through the common gamma chain, interleukin-2 receptor 
β subunit, and IL-15, independent of immune responses 
(Luque et al. 2017).

Interestingly, Ryu et al. (2012) showed that glomeru-
lar vascular injury and GBM breaks in experimental, and 
human Alport nephropathy causes plasma leakages that can 
trigger crescent formation. In addition, Chang et al. (2012) 
reported that increased albumin uptake by PECs can lead to 
apoptosis through changes in extracellular signal-regulated 
kinase 1 and 2.

Importantly, Sicking et al. (2012) performed an elegant 
study using a mouse model that expressed a diphtheria toxin 
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receptor in PECs. Administration of diphtheria toxin led to 
selective PEC ablation and overt crescent formation, in the 
absence of an identifiable immune trigger.

Together, these studies suggest that immune responses are 
not a requirement for crescent formation, which reinforces 
the key role of PEC activation in cGN.

Impaired PEC function

Taugner et al. (1976) showed using electron microscopy that 
PECs form intercellular tight junctions, which typically form 
impermeable barriers between adjacent cells, preventing 
the passage of molecules. Interestingly, Ohse et al. (2009b) 
provided evidence that these tight junctions were no longer 
visible during the course of cGN, which correlated with 
functional studies showing that PECs together with their 
corresponding basement membrane serve as a second barrier 
to protein that is dysregulated upon activation.

In addition, PECs sit on a multi-layered basement mem-
brane, which is thickened during PEC activation (Smeets 
et al. 2011; Holderied et al. 2015). Interestingly, a landmark 
study by Chen et al. (2018) characterized the Bowman’s 
capsule (BC) as a protective niche for podocytes from cyto-
toxic CD8 + T cells. Thus, it is likely that the integrity of 
BC could determine immune cell infiltration to the crescents 
and subsequent podocyte injury and depletion. Importantly, 
podocyte loss in experimental cGN has been identified using 
lineage tracing and optical clearing (Puelles et al. 2019c) 
as well as in human biopsies of ANCA-GN patients (as an 

example of cGN) using deep learning (Zimmermann et al. 
2021), which could be explained by basement membrane 
ruptures leading to direct contact between PECs, podocytes 
and immune cells, and perhaps a failure of PECs to success-
fully replenish lost podocytes during cGN.

Together, these findings summarize how membrane 
integrity can directly affect PEC function and contribute to 
facilitate triggers of PEC activation and additional features 
of cGN (i.e. immune infiltration in crescentic lesions and 
podocyte loss) (Fig. 3).

Conclusion

The evidence presented in this review suggests that we 
should consider a broader definition for PEC activation, 
that not only considers classical activation steps such as 
increased proliferation, migration and production of extra-
cellular matrix, but also integrates novel signalling pathways 
directly involved in PEC activation and active dysregulation 
of physiological roles (i.e. second barrier, protective niche 
and potential podocyte reserve). As we unravel new fea-
tures of PEC activation, especially those related to impaired 
function, the use of the term PEC dysfunction will become 
more appropriate to describe this set of complex biological 
processes.
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Fig. 3   Membrane integrity and 
PEC activation. PEC activa-
tion may also play a role in 
basement membrane integrity, 
as increased permeability facili-
tates the passage of circulating 
or interstitial signals that can 
reach PECs (a). Membrane 
ruptures will not only facilitate 
signals but also translocation of 
immune cells to reach out and 
have direct interactions with 
PECs and other glomerular cells 
(i.e. podocytes) (b). GBM, glo-
merular basement membrane; 
BC, Bowman’s capsule
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