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SUMMARY
The mechanistic tie between genome-wide association study (GWAS)-implicated risk variants and disease-
relevant cellular phenotypes remains largely unknown. Here, using human induced pluripotent stem cell
(hiPSC)-derived neurons as a neurodevelopmental model, we identify multiple schizophrenia (SZ) risk vari-
ants that display allele-specific open chromatin (ASoC) and are likely to be functional. Editing the strongest
ASoC SNP, rs2027349, near vacuolar protein sorting 45 homolog (VPS45) alters the expression of VPS45,
lncRNA AC244033.2, and a distal gene, C1orf54. Notably, the transcriptomic changes in neurons are associ-
atedwith SZ and other neuropsychiatric disorders. Neurons carrying the risk allele exhibit increased dendritic
complexity and hyperactivity. Interestingly, individual/combinatorial gene knockdown shows that these
genes alter cellular phenotypes in a non-additive synergistic manner. Our study reveals that multiple genes
at a single GWAS risk locus mediate a compound effect on neural function, providing a mechanistic link
between a non-coding risk variant and disease-related cellular phenotypes.
INTRODUCTION

Genome-wide association studies (GWASs) of schizophrenia

(SZ) and other neuropsychiatric disorders have identified hun-

dreds of common risk loci.1–5Most neuropsychiatric risk variants

reside in non-coding sequences that likely alter gene expression.

However, despite the progressmade from studying human post-

mortem brains (e.g., PsychENCODE),6–9 animal models,10 and,

more recently, human induced pluripotent stem cell (hiPSC)

models,11–14 causal disease genes and the underlying molecular

mechanisms remain elusive for most neuropsychiatric disease

risk loci.

A challenge for understanding the causal mechanisms under-

lying these associations is that each GWAS locus often encom-

passes multiple genes and many common risk variants that are
Cell
This is an open access article under the CC BY-N
equally associated with disease due to linkage disequilibrium

(LD).We have recently shown that allele-specific open chromatin

(ASoC) is an effective functional readout of regulatory single-

nucleotide polymorphisms (SNPs), displaying differential allelic

chromatin accessibility in heterozygous individuals,13 i.e., two

alleles of a SNP show read imbalance in assay for transpo-

sase-accessible chromatin using sequencing (ATAC-seq).13,15

Compared with expression quantitative trait locus (eQTL) map-

ping, e.g., PsychENCODE,16 GTEx,17 and brain eQTL,18 ASoC

mapping has the advantage of directly identifying putatively

functional variants rather than thosemerely in LD.13 Interestingly,

our integrative analysis of neuronal ASoC variants with brain

eQTL and Hi-C data suggests that many ASoC variants may

cis-regulate their adjacent and distal genes through chromatin

contacts.13 However, such postulated long-range cis-regulatory
Genomics 3, 100399, September 13, 2023 ª 2023 The Author(s). 1
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effects involving multiple genes in the same GWAS locus and

their relevance to cellular phenotypic change have not been

empirically established.

Here, by using hiPSC-derived andNEUROG2 (NGN2)-induced

excitatory neurons (NGN2-Glut)19 as a neuro developmental

model,11,20–23 we identified many putatively functional SZ

GWAS risk variants showing ASoC, and thus likely to be func-

tional, and demonstrated that a single SZ-risk SNP cis-regulates

two adjacent genes, VPS45 and a long non-coding RNA

(lncRNA, AC244033.2), as well as a distal gene that encodes

chromosome 1 open reading frame 54 (C1orf54). More impor-

tantly, we found that all three genes synergistically contribute

to the cellular and molecular alterations relevant to neuropsychi-

atric disorders.

RESULTS

ASoC mapping in NGN2-Glut identifies functional SZ-
risk SNPs
To identify functional SZ GWAS risk variants that may alter chro-

matin accessibility and gene expression in NGN2-Glut, we car-

ried out ATAC-seq15 and mapped ASoC variants in neurons of

20 hiPSC lines (Figures 1A, S1A, and S1B and STAR Methods).

We noted that the differentiated neurons were overall pure excit-

atory and comparable between lines (Figures S1C–S1E). We ob-

tained 48–66 million paired-end ATAC-seq reads per sample

(Table S1 and Figures S1F–S1I) and identified 183,692 open

chromatin peaks using MACS2.24 These NGN2-Glut and our

previously reported hiPSC-derived glutamatergic neurons (iN-

Glut) were overall similar to each other (Figure 1A) despite

some observed different patterns (Figure S1J).13

Following our recently developed approach to mapping puta-

tively functional non-coding variants that show differential allelic

chromatin accessibility (i.e., ASoC),13 we identified 8,205 ASoC

SNPs (false discovery rate [FDR] <0.05) out of 163,066 heterozy-

gous SNPs in open chromatin regions (OCRs) (Figure S2A and

Table S2). We focused on identifying putatively functional SZ

GWAS risk SNPs25 showing ASoC in NGN2-Glut over iN-Glut

(Table S3).13 For the list of SZ credible SNPs at the 108 GWAS

risk loci (multiple SNPs per locus),25 we found 31 ASoC SNPs

at 26 SZ-risk loci in NGN2-Glut, of which 14 were heterozygous,

and 7 of them also showed ASoC in iN-Glut (Figure 1B and

Table S3). Of the 17 SZ loci with genome-wide significant

(GWS) risk SNPs showing ASoC in iN-Glut,13 9 had a nominally

significant difference of ASoC (p < 0.05) in NGN2-Glut. Overall,

there was a significant overlap of SZ-risk SNPs showing ASoC

(FDR <0.05) between the two datasets (24-fold enrichment,

p < 2.5 3 10�6; two-tailed Fisher’s exact test) (Figure S2B and

Table S3). The allelic ratio of the chromatin accessibility of all

SZ credible SNPs also showed a modest correlation between
Figure 1. Allele-specific open chromatin (ASoC) mapping in NGN2-Glu

(A) The strategy of generating NGN2-glutamatergic excitatory neurons from hiPS

(B) Circus plot showing SZ-credible-risk SNPs that exhibited ASoC (FDR <0.05)

(C) Allelic ratio correlation of SZ-associated ASoC SNPs (FDR <0.05) in iN-Glut a

(D) Cell-type-specific and allele-specific ATAC-seq read pile-ups flanking ASoC

PGC3 SZ GWAS probabilities of all the SNPs in this region. Aquamarine, total read

red, reads containing alternative allele (A).
NGN2-Glut and iN-Glut (R = 0.41; Figure S2C), which was

much stronger for ASoC SNPs (R = 0.81; Figure 1C). Thus, our

ASoC mapping in NGN2-Glut reproducibly identified putative

functional SZ-risk SNPs that altered chromatin accessibility in

neurons generated by two different methods.

We then evaluated to what extent the NGN2-neuron ASoC

SNPs overlapped with GWAS risk variants (including LD proxies

with R2 > 0.8) of other neuropsychiatric disorders and with brain/

neuron eQTL. For bipolar disorder (BP) (n = 64)5 and major

depressive disorder (MDD) (n = 102),4 we found that five GWS

SNPs of five BP risk loci and six GWS SNPs of six MDD risk

loci also showed ASoC (Table S2), representing an overlap to a

smaller extent than SZ (26/108 risk loci; Table S3). Further sys-

tematic GWAS risk enrichment testing for major neuropsychi-

atric disorders and brain traits (see STAR Methods) identified

the strongest enrichment of ASoC SNPs in SZ (>16-fold) but

not in BP, MDD, or autism (Figure S2D). Moreover, we found

that about 16% of ASoC SNPs were also eQTLs in human fetal

brains,26 adult brains,1,16 or hiPSC-derived dopaminergic neu-

rons,27 representing 1.3- to 1.8-fold enrichment (vs. non-ASoC

SNPs; p = 2.3 3 10�9 to 2.5 3 10�18, two-tailed Fisher’s exact

test) of brain/neuron eQTLs (Table S2 and Figure S2E). Thus,

NGN2-Glut ASoC SNPs were most enriched for SZ-risk variants

relative to other neuropsychiatric or neurodegenerative disor-

ders and likely affected gene expression.

To nominate SZ-risk SNPs for further functional study, we

examined loci with GWS SNPs showing ASoC in both datasets.

Consistent with the iN-Glut data,13 rs2027349 at the VPS45 lo-

cus remained the most significant ASoC in NGN2-Glut (Fig-

ure 1D), followed by the ASoC SNP rs12895055 at the BCL11B

locus (Table S3 and Figure S2F). rs2027349 at the VPS45 locus

is in high LD with the SZ GWAS index SNP rs12138231 (R2 =

0.94) and was fine-mapped as the only likely causal SNP at

this locus in our recent study.13 The other two replicated ASoC

SNPs also showing GWS association with SZ were at the

PBRM1/GNL3 (rs10933) and BAG5 (rs7148456) loci (Table S3

and Figure S2F). Therefore, these four SZ-associated ASoC

SNPs were prioritized for functional testing for regulatory

potential.

Multiplex CRISPRi in NGN2-Glut confirmed the
regulatory function of the ASoC sequence flanking
rs2027349
Applying a previously validated CRISPR droplet sequencing

(CROP-seq) approach13,28 to NGN2-Glut, we examined whether

the OCR sequences that flank the four prioritized SZ-associated

ASoC SNPs at the VPS45 (rs2027349), BCL11B (rs12985055),

PBRM1/GNL3 (rs10933), and BAG5 (rs7148456) loci have regu-

latory potential, using the same set of guide RNAs (gRNAs).13

The gRNA pool targeted 20 SNP loci, each with three gRNAs.13
t identifies strong ASoC at the SZ-associated VPS45 locus

Cs for bulk ATAC-seq and RNA-seq analysis.

in NGN2-Glut, iN-Glut, or both.

nd NGN2-Glut, n = 26.

SNP rs2027349 at the SZ-associated VPS45 locus. The top track shows the

s that contain rs2027349; dark blue, reads containing reference allele (G); dark
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Lenti-gRNAs were used to transduce NGN2-Glut on day 20, and

the perturbed neurons were collected on day 29 for single-cell

RNA sequencing (scRNA-seq) (Figure 2A and STAR Methods).

NGN2-Glut appeared to be heterogeneous (Figures 2B–2E and

S3A); to maximize the study power, we included all the

MAP2+/SOX2� neurons of the Glut+ clusters (n = 8,921) in differ-

ential expression (DE) analysis, of which 4,057 neurons were in-

fected by a single gRNA (Figures S3B and S3C).

We focused on genes within ±500 kb of a targeting SNP/

gRNA to identify the regulatory SNP site and its cis target

by testing the DE of cis genes between gRNA-targeted and

non-targeted neurons (Student’s t test; see STAR Methods

and Table S4). We found that sequences flanking three

(rs2027349 near VPS45, rs10933 near PBRM1/GNL3, and

rs7148456 near BAG5) of the four prioritized ASoC SNPs had

cis-target genes with adjusted p < 0.05 (Figures 2F, 2G, and

S3D–S3F and Table S4). All cis targets (adjusted p < 0.05)

showed reduced expression by respective gRNAs, consistent

with the expected transcriptional repression by KRAB in

CRISPR interference (CRISPRi).29,30 VPS45 near rs2027349

showed the most significant reduction (Figures 2H and 2I),

which was consistent with rs2027349 exhibiting the strongest

ASoC in NGN2-Glut among all the SZ-risk SNPs (Figure 1B

and Table S3).

To assess the biological relevance of CRISPRi at the three loci

with cis targets (Table S4), we analyzed the transcriptomic ef-

fects of the CRISPRi. For rs2027349, the two gRNAs, VPS45-2

and VPS45-3, yielded 167 and 162 differentially expressed

genes (DEGs), respectively (Table S5). The gRNABAG5-2 target-

ing rs7148456 gave 69 DEGs, while gRNA PBRM1-3 targeting

rs10933 gave only 18 DEGs (Figure S3G). Our further gene

ontology (GO) term analysis for each set of DEGs showed that

DEGs from CRISPRi at the VPS45 locus, but not at the

PBRM1/GNL3 or BAG5 locus, were enriched for neural GO

terms (Figure 2J and Table S6). This suggests that CRISPRi

perturbation at rs2027349 near VPS45 elicited the most biologi-

cally relevant transcriptomic changes.

Precise allelic editing of the ASoC SNP at the VPS45

locus reveals a complex gene regulation relevant to
neurodevelopmental disorders
We next examined the functional effects of the precise allele ed-

iting of rs2027349 (Figure 3A). Using the isogenic pairs of hiPSC

lines (two donors) of three different genotypes (AA, AG, and GG)

of rs2027349 that we have previously generated by CRISPR-

Cas9 editing,13 we derived NGN2-Glut and performed transcrip-
Figure 2. Multiplex CRISPRi combined with scRNA-seq in NGN2-Glut

(A) Modified CROP-seq approach to screen cis-targets of the 20 SNP sites in NG

(B) Uniform Manifold Approximation and Projection (UMAP) plot showing the 11

(C) UMAP plot showing the normalized expression of MAP2.

(D) UMAP plot showing the expression pattern of glutamatergic markers SLC17A

(E) Violin plots showing expression of neuron-specific markers.

(F) Gene track-expression plot showing the cis effects of CROP-seq gRNAs targ

(G) Same as (F), but for three CROP-seq gRNAs targeting rs7148456 (BAG5 site

(H) UMAP plot showing cells assigned to one of the three VPS45 gRNAs (red) or

(I) The effects of VPS45 gRNAs on the expression level of VPS45. Kruskal-Wa

adjusted p; ***p < 0.001).

(J) Top 10 enriched GO terms of genes up- or downregulated by ASoC-targeting
tomic DE analysis between different genotypes (Figure 3A). For

the DE of cis genes within a 500 kb interval of rs2027349 (Fig-

ure 3B and Table S5), we found that cis-gene expression

changes between AA vs. GG neurons were correlated (Spear-

man’s r = 0.602) with those between AG vs. GG (Figures 3B

and S4A), confirming the consistency of the allelic effect in sam-

ples with different genotypes. Allele A of rs2027349 was associ-

ated with an increased expression of a VPS45 transcript isoform

(ENST00000369130.3) but not with total mRNAs of VPS45 in

NGN2-Glut (Figures 3B, 3C, and S4B). Interestingly, we found

that allele A also significantly increased the expression of an

lncRNA (AC244033.2) (FDR <0.005) proximal to VPS45 but tran-

scribed in the opposite direction, as well as a distal gene

(C1orf54) that is �200 kb downstream of the edited SNP (FDR

<0.023) (Figure 3B and Table S7). The increased expression of

these cis-target genes of rs2027349 in AA neurons was indepen-

dently verified by quantitative polymerase chain reaction (qPCR)

and was consistently significant in both donor lines

(Figures S4C–S4G). The allelic effects of rs2027349 on the three

cis-target genes were consistent across different maturation

stages (20–50 days) of NGN2-Glut neurons (Figures S4H–S4J).

These results suggest a complex cis-regulation ofmultiple genes

(VPS45, AC244033.2, and C1orf54) by a single SZ-risk SNP

(rs2027349) at the VPS45 locus.

VPS45 has been suggested to play a role in vesicle-mediated

protein trafficking and neurotransmitter release.32 While

AC244033.2 and C1orf54 have no known function, cis- and

trans-acting lncRNAs are known to be pervasive and may have

profound roles in neurodevelopment.33,34 We thus reasoned

that the transcriptomic changes associated with the SZ-risk

allele A of rs2027349 might be relevant to neurodevelopment

and synaptic function. Our DE analysis identified 687 upregu-

lated genes and 731 downregulated genes (FDR <0.05) in AA

neurons (vs. GG) (Figure 3D). Gene set enrichment analysis

(GSEA) using WebGestalt35 showed that the upregulated genes

were strongly enriched for GO terms related to neuron differen-

tiation, neurogenesis, and nervous system development. In

contrast, the downregulated genes were strongly enriched for

GO terms such as synaptic signaling and synaptic membrane

(Table S8 and Figures S5A and S5B). Since synaptic abnormal-

ities have been implicated by SZ GWAS,36 we further analyzed

the DEGs by synaptic GO (SynGO)31 to confirm the relevance

of transcriptomic changes to synaptic function. Consistent with

the result from WebGestalt analysis, the downregulated genes

in AA neurons were significantly enriched for synaptic genes

(pre- and post-synapse; Figure 3E and Table S9). While the
identifies regulatory sequences flanking SZ-associated ASoC SNPs

N2-Glut. Two iPSC lines (CD0000009, CD0000011) were used.

clusters of the 10,247 cells used in the scRNA-seq analysis.

7 (vGlut1) and SLC17A6 (vGlut2).

eting rs2027349 (VPS45 site). *FDR <0.05.

).

control gRNAs (targeting GFP; blue).

llis test (non-parametric) was used (shown are Dunn’s multiple comparisons

gRNA-2 at the rs2027349 locus (VPS45). Red line, FDR 0.05.
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upregulated genes were not (Figure S5C and Table S10), some

noteworthy upregulated genes were found in SynGO terms

such as synaptic vesicle (SLC17A7 and SYN3) and post-synap-

tic ribosome (Figure S5D). These results show that the SZ-risk

allele of rs2027349 affects global gene expression related to

neurodevelopment and synaptic function.

Subsequently, we assessed whether the transcriptional

changes associated with the A allele of rs2027349 are relevant

to neuropsychiatric disorders. We first examined the enrichment

of DEGs for those associatedwith SZ. Of the 55 PGC3-prioritized

single SZ-risk genes36 that were also expressed in NGN2-Glut,

10 were downregulated and 4 were upregulated in AA neurons

(Figure 3D and Table S7), representing a 4.6-fold enrichment of

SZ-risk genes among downregulated genes (Fisher’s exact

test, p = 0.0002, two-tailed) and a 1.9-fold non-significant enrich-

ment in upregulated genes (Figure S5E). Analysis of all the dys-

regulated genes within SZ loci in AA neurons showed significant

enrichment of different SZ GWAS gene sets and human post-

synaptic density (PSD) gene sets often associated with SZ risk

(Figure S5F).25,36–38 We also performed MAGMA analysis using

GWAS summary statistics39,40 and found that the downregu-

lated genes in AA neurons, but not the upregulated ones,

showed strong enrichment of GWAS risk of SZ and, to a less

extent, of neuroticism, BP, and MDD (Figure 3F).

We further examined whether the transcriptional changes in

AA neurons (vs. GG) are enriched for or resemble the transcrip-

tional differences in post-mortem brain tissues of major psychi-

atric disorders. For overlapping DEGs (FDR <0.05) between

datasets (Figure 3G), we found significant positive correlations

between their expression changes in AA neurons and individuals

with SZ (r = 0.34, p = 2 3 10�11), BP (r = 0.37, p = 5.7 3 10�5),

and ASD (r = 0.30, p = 1.93 10�5) using the PsychENCODE da-

tasets (Figures 3G, 3H, and S5G).16 The transcriptome-wide

expression changes in AA neurons and individuals with SZ,

BP, and ASD also exhibited significant correlations (r = 0.1–

0.15, p = 2.0 3 10�37 to 6.9 3 10�68; n = 13,816 genes) (Fig-

ure S5H). The expression changes in AA neurons did not corre-

late significantly with transcriptional changes associated with

MDD or AAD (Figures S5G and S5H). These results suggest

that the ASoC SNP rs2027349 mediates a complex cis-gene

regulation involving multiple genes (VPS45, AC244033.2, and

C1orf54) at the VPS45 locus in NGN2-Glut that may lead to tran-

scriptional changes relevant to neurodevelopment, synaptic

function, and major neuropsychiatric disorders.
Figure 3. CRISPR-Cas9 editing of rs2027349 in NGN2-Glut cis-regul

changes

(A) CRISPR-Cas9 editing of rs2027349, neuron differentiation, and experiment d

(B) cis effects of rs2027349 genotypes on local gene expression within a 500 kb w

clones per genotype of two iPSC lines were used.

(C) Changing G to A (rs2027349) significantly increases the expression of V

***p < 0.001.

(D) Volcano plot showing differential expression of genes (n = 14,999) in NGN2-Glu

genes. The p values were derived from a combinational analysis of all three geno

(E) Sunburst plot showing strong enrichment of synapse-related ontology terms

(F) MAGMA gene-set GWAS enrichment analysis of DEGs for neuropsychiatric d

(G) Upset plot showing the overlap of the DEGs from rs2027349 editing (AA vs. GG

in post-mortem brains. Red connections emphasize genes related to SZ.

(H) An xy scatterplot showing the correlation of the log2FC of DEG sets in (G). Sh
Editing rs2027349 at the VPS45 locus alters
neurodevelopmental phenotypes in NGN2-Glut neurons
We first examined day 32 NGN2-Glut of rs2027349-edited

isogenic lines for their neuronal morphology and did a Sholl anal-

ysis for dendritic complexity (Figures 3A and 4A). Two-way

ANOVA (genotype 3 distance) analysis showed that genotype

had a significant effect on the number of intersections (dendritic

branching) (p < 0.0001) (Figure 4B). The number of intersections

significantly differed at 80–160 mm from the soma, with GG

showing a reduced dendritic branching (Figures 4A and 4B).

AA and GG neurons differed most at 100 mm from the soma

(p < 0.0001, �Sı́dák post hoc test).

We next assessed the effect of rs2027349 editing on dendritic

protrusions (Figures S6A and S6B). Although we did not observe

a significant difference in protrusion density between genotypes

(Figure S6B), we found that the density and area of both pre-syn-

aptic (Synapsin 1; SYN1) and post-synaptic (PSD-95, DLG4)

puncta in AA neurons were significantly higher than in GG neu-

rons (Figures 4C–4E, S6C, and S6D). The differences were

most robust for the colocalized SYN1+/PSD-95+ punctum den-

sity, labeling bone fide synapses. AG neurons displayed an inter-

mediate phenotype significantly different from AA and GG

(Figures 4F and S6E). We also evaluated the neuronal morpho-

metric alterations in the isogenic SNP-edited lines (AA and GG)

from an independent donor, which replicated the reduced den-

dritic branching and synaptic punctum density (SYN1) in GG

neurons (Figures S6F and S6G). Thus, consistent with its tran-

scriptional effects, rs2027349 influences dendritic complexity

and synapse development in NGN2-Glut.

Editing rs2027349 at the VPS45 locus affects synaptic
function in NGN2 neurons
We then used multielectrode arrays (MEAs) to evaluate

neuronal population dynamics in NGN2-Glut of rs2027349-edi-

ted isogenic lines (Figures 3A, 5A, and 5B). We found that

isogenic neurons exhibited differences in mean firing rate and

the number of bursts between days 41 and 74 (post-neural in-

duction), when neurons showed the most active firing

(Figures 5C, 5D, and S6H). On days 50, 53, and 56, the mean

firing rates were about 50% higher (p = 0.004–0.006, Student’s

t test, two-tailed), and the average number of bursts per 10 min

was about 65% more (p = 7.8 3 10�5 to 4.0 3 10�6, Student’s

t test, two-tailed) in AA compared with GG neurons, with AG

neurons displaying an intermediate phenotype (Figures 5C
ates multiple genes and leads to disease-relevant transcriptomic

etails.

indow of rs2027349. The genotype (GG) was used as the baseline. Two or three

PS45 transcript ENST00000369130.3. Kruskal-Wallis (non-parametric) test;

t after rs2027349 editing. Some DEGs (FDR <0.05) highlighted are also SZ-risk

types (AA, AG, and GG). �log2FC was between AA and GG neurons.

among the downregulated DEGs in AA neurons (SynGO31).

isorders/traits shows high SZ and neuroticism enrichment.

neurons) against a list of DEGs associated with five neuropsychiatric disorders

own are corresponding r and p values.
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Figure 4. CRISPR-Cas9 editing of rs2027349 at VPS45 locus alters neuron development in NGN2-Glut

(A) Representative traces of dendrites from rs2027349 AA, AG, and GG neurons. Scale bar: 100 mm.

(B) Sholl analysis of rs2027349 AA (n = 97), AG (n = 47), and GG (n = 101) neurons. Marked data points indicate significant distance differences between the AA

and the GG genotypes (two-way repeated-measures ANOVA with �Sı́dák multiple test correction). Data were from three independent experiments.

(C) Representative images of GFP-labeled dendrites of NGN2-Glut neurons and synaptic puncta labeled with post-synaptic density 95 (PSD-95, DLG4) and

Synapsin I (SYN1); scale bar: 5 mm.

(D–F) Punctum density of PSD-95, SYN1, and PSD-95+/SYN1+, respectively. Each dot represents synaptic density from one neuron (AA, n = 77; GG, n = 75; AG,

n = 39). Data were from two independent experiments (Kruskal-Wallis test, non-parametric); *p < 0.05; **p < 0.01; ****p < 0.0001. Data were from two clones per

genotype of donor line CD0000011. Consistent results for the second donor (CD0000012) are shown in Figure S6.
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and 5D). Network burst frequency was found to be different

only at day 50, suggesting the impact may be restricted to spe-

cific developmental stages.

We next assessed the effects of SNP editing by Ca2+ imaging

(see STAR Methods) in AA and GG neurons at day 35 after

neuron induction (Figures 3A and 5E–5G). We found that the

neuronal Ca2+ transient (firing) frequency in AA neurons was

significantly higher than in GG neurons (p < 0.001, Student’s t

test, two-tailed) with shorter interevent intervals in AA neurons

(p < 0.001, two-sample KS test) (Figures 5H and 5I). There was

also a significant (p = 0.042) reduction in the amplitude of Ca2+

transients in AA neurons (Figure 5J). We found that Ca2+ tran-

sients were strongly correlated (synchronization index range

from 0.7 to 0.9) between different neuronal cultures of each ge-
8 Cell Genomics 3, 100399, September 13, 2023
notype; however, no significant difference in synchrony index

was found between AA and GG neurons (Figures 5F, 5G,

S6L, and S6M). Furthermore, with an independent donor line,

we confirmed the observed higher frequency of Ca2+ transients

(p < 0.001, Student’s t test, two-tailed), shorter interevent inter-

vals (p < 0.001, two-sample KS test), and a non-significant

trend toward a reduction in the amplitude of Ca2+ transients

in AA neurons (Figures S6I–S6K). The increased frequency of

Ca2+ transients in AA neurons was consistent with the results

from the MEA experiments (Figures 5A–5D). Together, these

results suggest that the SZ-risk allele of rs2027349 is associ-

ated with hyperactivity of NGN2 neurons, consistent with previ-

ously reported neuronal hyperactivity associated with SZ-risk

alleles.12,14,41,42



A C

D

B

E F G

JIH

Figure 5. CRISPR-Cas9 editing of rs2027349 alters neural network and electrophysiological activity in NGN2-Glut

(A and B) Example raster plots of neuronal firing events in MEA.

(C and D)Mean firing rate and burst numbers in day 50, 53, and 56NGN2-Glut with different rs2027349 genotypes from two independent experiments. Each point

represents one replicate. Kruskal-Wallis (non-parametric) test; ***p < 0.001.

(E) Representative two-photon pseudo-color Ca2+ imaging time-series images showing a neuron and its firing activities in a 275 s span; scale bar: 20 mm.

(F and G) Representative neuron firing signals from five cells of genotype AA (F) or GG (G).

(legend continued on next page)
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All three genes,VPS45,AC244033.2, andC1orf54, at the
VPS45 locus altered neural phenotypes in a non-additive
and synergistic style
Given that the ASoC SNP rs2027349 can cis-regulate multiple

genes (VPS45, AC244033.2, and C1orf54) (Figures 3B and 3C)

and alter neuronal phenotypes (Figures 4 and 5), we attempted

to determine which gene(s) at this locus likely contributed to

the SZ-risk allele-associated neuronal phenotypes. Therefore,

we made CRISPR-edited AA NGN2-Glut with individual short

hairpin RNA (shRNA)-mediated gene knockdown (KD) of

VPS45, AC244033.2, or C1orf54 (EGFP as a control, see STAR

Methods) and attempted to reverse risk-allele-associated

cellular phenotypes. We first confirmed the expected reduction

of expression in NGN2-Glut for each KD gene (Figures 6A–6C

and S7A and Table S11). We then assessed the effect of KD in

AA neurons to mimic the phenotypes observed in GG neurons.

We found that shRNA of C1orf54 (shRNA_C1orf54) and, to a

lesser extent, shRNA of AC244033.2 (shRNA_lncRNA) reversed

dendritic complexity in AA neurons (Figures 6D and S7B). While

we found that VPS45 KD did not alter dendritic complexity

(Figures 6D and S7B), our Ca2+ imaging showed that KD

of VPS45, as well as lncRNA and C1orf54, all partially reversed

the higher Ca2+ transient frequency of AA neurons (Figure 6E).

Together, these results suggest that VPS45, AC244033.2,

and C1orf54 all contribute to the phenotypic changes in

rs2027349-edited AA neurons.

To further understand how each gene (VPS45,AC244033.2, or

C1orf54) contributes to the neural phenotypic effects, we exam-

ined their impacts at the molecular level using RNA-seq

(Figures S7C and S7D and STAR Methods) and compared the

list of DEGs of each KD condition with DEGs in rs2027349-edited

GG (vs. AA) neurons (Tables S11 and S12). Since the number of

the DEGs (FDR <0.05) for each KD condition was large, with

28%, 49%, and 44% of the expressed genes for KD in VPS45,

AC244033.2, and C1orf54, respectively (Figures S7F–S7H), we

focused our analyses on a subset of DEGs most relevant to

our observed neuronal phenotypic changes by rs2027349 edit-

ing. These selected genes belong to the enriched GO terms

(from rs2027349 editing) related to neuron development/differ-

entiation (downregulated in GG) or those related to synaptic

signaling (upregulated in GG; Figures 6F–6I and Tables S8 and

S12). We then asked whether each subset of those DEGs was

enriched for any shRNA KD-associated DEGs with a directional

expression change consistent with the rs2027349-editing effect

(Figures 6F–6I). We found that neuronal differentiation genes

with reduced expression in SNP-edited GG neurons were signif-

icantly enriched for genes downregulated by shRNA KD of

C1orf54 (OR = 2.1, p = 0.009; Fisher’s exact test) but not

AC244033.2 or VPS45 (Figures 6F and 6G and Table S12). For

synaptic signaling genes with increased expression in SNP-edi-

ted GG neurons, we observed an excess of genes upregulated
(H–J) Ca2+ transient frequency and amplitudes in AA (n = 124) and GG (n = 166)

Ca2+ transient interevent intervals (IEIs) in AA and GG neurons, two-sample KS te

transient frequency in AA and GG neurons. Yellow point indicates the mean. Stu

(J) Violin and boxplot showing the amplitude (dF/F0) distribution in AA and GG ne

tailed); *p < 0.05. Data were obtained from two clones per genotype of donor line C

Figure S6.
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by shRNA KD of VPS45 (OR = 2.6, p = 0.004; Fisher’s exact

test) and AC244033.2 (OR = 2.6, p = 0.001; Fisher’s exact

test), but not C1orf54 (Figures 6H and 6I and Table S12). These

results support that all three genes contribute to the phenotypic

changes in rs2027349-edited neurons, likely by influencing the

expression of different sets of biologically relevant genes.

We next tested if the transcriptional effects of rs2027349 edit-

ing could be explained by the effects of individual KD (VPS45,

AC244033.2, orC1orf54) inNGN2-Glut.Wefirst fit a linear regres-

sion model where we regressed expression fold changes from

the SNP editing, as a response variable, against expression

changes from KD of three individual genes. For all the DEGs

from theSNPediting (GGvs. AA) (Table S12), ourmodel fitting ex-

plained 3% of the SNP editing effects across genes (adjusted

R2 = 0.03, p < 4.33 10�9), with an unexpected negative correla-

tion (Figures 6J and S7E). However, when we introduced the

interaction terms between the expression effects of individual

KDs,weobservedamarked improvement inmodel performance,

explaining 7%of the variation of theSNPediting effects (adjusted

R2 = 0.07, p < 2.2 3 10�16). The gene 3 gene interaction terms

were highly significant, with VPS45_KD 3 C1orf54_KD (b =

0.26, p = 1.4 3 10�5) and VPS45_KD 3 lncRNA_KD (b = 0.16,

p = 6.7 3 10�5) positively correlated with the SNP editing

effect (Figure 6J). The highly significant interaction terms of

different shRNA KDs were consistent with our further GO-term

enrichment analysis of DEGs from each shRNA KD, where we

found that overlapping genes between different KD conditions

showed stronger enrichment for biologically relevant GO terms,

i.e., relating to neurodevelopment and synaptic signaling

(Figures S7F–S7H and Table S13). These results suggest that

VPS45, AC244033.2, and C1orf54 contribute to the phenotypic

changes in rs2027349-edited neurons in a non-additive fashion.

To further explore whether VPS45, AC244033.2, and C1orf54

at the same SZ-risk locus have any synergistic effect, as recently

demonstrated for SZ-risk genes of different loci,12,43 we per-

formed a combinatorial triple KD of all three genes in AA neurons

(Figures 6A–6C and S8A and Table S11) as described above for

single-gene KD (also see STARMethods). The triple KD achieved

similar magnitudes of gene expression changes in individual

genes (Figure 6A). Using the same linear model above, we found

an improvement inmodel fitting using the empirical data from the

triple KD, which explained 9% (vs. 7% with individual gene KD

plus interaction terms) of the variation of the SNP editing effects

(adjusted R2 = 0.09, p < 3.7 3 10�15) (Figure 6J). We then fol-

lowed an established method for testing gene synergistic effect

at the transcriptomic level12,43 using RNA-seq data from individ-

ual gene KDs and the triple KD from the same donor line

(Figure S8A). We found that about 15% of genes were either

more upregulated (more.up; n = 1,227) or more downregulated

(more.down; N = 1,506) than expected under the additive model

(synergy FDR <0.1) (Figures 6K and S8B–S8G). Further
neurons from two independent experiments. (H) Cumulative probability plot of

st, two-tailed; p < 0.001. (I) Violin and boxplot showing the distribution of Ca2+

dent’s t test (non-parametric, two-tailed); ***p < 0.001.

urons. Yellow point indicates the mean. Student’s t test (non-parametric, two-

D0000011. Consistent results for the second donor (CD0000012) are shown in
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GSEA using the gene sets curated as part of the synergistic

analytic pipeline12,43,44 showed that booth more.up and

more.down genes were strongly enriched for genes associated

with SZ and BP, while to a lesser extent with autism and antipsy-

chotic usage (Figures 6L–6N). In contrast, the DEGs with addi-

tive effects or those in the combinatorial KD did not show enrich-

ment for genes associated with neuropsychiatric disorders

(Figures S8H–S8I). Consistent with the non-additive transcrip-

tional effects of the three cis-target genes, the combinatorial

KD exhibited a stronger reduction of neural dendritic complexity

and calcium signaling than individual gene KDs in AA neurons

(Figures 6D, 6E, and S7B). These results suggest that VPS45,

AC244033.2, and C1orf54 contribute to the neural phenotypic

changes by synergistically enhancing transcriptional effects

relevant to neuropsychiatric disorders.

rs2027349 affects distal gene expression through local
chromatin looping and accessibility
Finally, to mechanistically understand the cis-SNP editing effect

on all three genes, we examined chromatin looping in a publicly

available brain capture Hi-C dataset45 and in our ownNGN2-Glut

Micro-C (i.e., a promoter Capture Hi-C) dataset (Figure 7A and

Table S14). We found that the rs2027349 site had long-range

chromatin contacts with promoter regions of many genes,

including VPS45/AC244033.2 and C1orf54 in both hippocampal

neurons45,46 and in our NGN2-Glut neurons (Figure 7A), which

supports the cis-regulatory effect of rs2027349-editing on the

distal C1orf54 in NGN2-Glut.

To further test whether the differential allelic transcriptional

effect of rs2027349 may be mediated by differential allelic chro-

matin looping or chromatin accessibility, we directly compared

the Micro-C sequencing reads of the two different alleles (A

and G) of rs2027349 in heterozygous NGN2-Glut between two

donor lines. We found an allelic imbalance of chromatin looping,

with allele A having more Micro-C reads (Figure 7A, inset), sug-

gesting enhanced chromatin looping associated with allele A of

rs2027349. We then examined the differences in local chromatin

between the isogenic CRISPR-edited neurons around the edited

rs2027349 site (AA vs. GG) in NGN2-Glut, and we found that
Figure 6. VPS45, AC244033.2 (lncRNA), and C1orf54 interactively altere

(A–C) Box-whisker plots showing that shRNA-mediated single and triple KD in AA n

endogenous control for normalization in qPCR assay. AA_EGFP_KD was used a

parametric). For individual KD, two clones per donor line (CD0000011) and three

licates from one clone were used.

(D) Sholl analysis of individual KDs; refer to Figure S7B for statistics. Two clones

(E) Calcium imaging analysis of neuron firing frequency for gene KD. Kruskal-W

values. n = 181, 245, 229, 276, and 152 neurons. One or two clones per genotyp

(F) Hierarchical clustering of log2FC for neurodevelopmental genes downregulated

KD in AA neurons.

(G) Enrichment of the up-/downregulated genes in each shRNA KD in AA neuro

downregulated in rs2027349-edited GG neurons.

(H) Same as (F), using synaptic genes upregulated in GG neurons.

(I) Same as (G), examining the enrichment among synaptic genes upregulated in G

the enrichment; OR, odds ratio, ***p < 0.001.

(J) Summary of the correlations from linear regression model fitting. Whiskers, ±

(K) Pie chart showing the number and proportions of genes in each synergistic c

(L) Competitive GSEA of DEGs in ‘‘more upregulated’’ (more.up) and ‘‘more down

stratified by eight neural categories.

(M and N) Bar plots of overrepresentation analysis in (L) using a hypergeometric te
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rs2027349 editing altered the enhancer/promoter OCR peaks

of both VPS45/AC244033.2 and C1orf54 loci, with AA neurons

showing higher regional OCR peaks than in GG neurons (Fig-

ure 7B). The higher regional OCR peaks at the VPS45/

AC244033.2 andC1orf54 loci were consistent with the increased

expression of all three genes by SNP editing in AA neurons

(Figures 3B and 3C). Both Micro-C and ATAC-seq data in

NGN2-Glut thus supported a distal regulatory effect of

rs2027349, likely by affecting chromatin looping and local chro-

matin accessibility.

DISCUSSION

Functional interpretation of non-coding GWAS risk variants is a

major challenge in genetics. Combining analyses of allelic chro-

matin accessibility, CRISPRi screening, and precise SNP editing

in NGN2-Glut, we prioritized regulatory SZ-risk variants affecting

neural chromatin accessibility and gene expression. We tied the

SNP function to neural phenotypic changes for a functional SZ-

risk variant at the VPS45 locus. More importantly, we demon-

strated a complex gene regulation paradigm where a single

SZ-risk locus mediates the expression of both proximal and

distal genes, which synergistically confer non-additive effects

on disease-relevant cellular phenotypes.

Long-range gene regulation for neuropsychiatric genetic risk

variants has been supported by brain promoter Capture Hi-C

study.45 However, such postulated long-range cis-regulatory

effects involvingmultiple genesand their relevance tocellular phe-

notypes have not been well established. Here, we showed that a

single GWAS risk SNP (rs2027349) at the VPS45 locus exhibited

the strongest ASoC and affected the expression of both its

adjacent genes (VPS45 and AC244033.2) and a distal gene

C1orf54 (�200 kb away) (Figures 3B and 3C). Interestingly,

the transcriptional effect of rs2027349 editing can be better ex-

plained by gene 3 gene interactions (VPS45_KD 3 C1orf54_KD

and VPS45_KD 3 lncRNA_KD) than by individual genes (Fig-

ure 6J), i.e., non-additivity. The observed non-additive effect

of multiple genes at a single GWAS risk locus was further corrob-

orated by the demonstrated synergistic effects of all three
d neural phenotypes in NGN2-Glut at the rs2027349 locus

eurons reversed the gene expression patterns to GG neurons.GAPDHwas the

s the control for all. Saltire mark indicates the mean. Kruskal-Wallis test (non-

biological replicates per clone were used. For triple KD, three biological rep-

per genotype from two independent experiments were used.

allis (non-parametric) test with Dunn’s multiple comparisons and adjusted p

e from two independent experiments were used. ****p < 0.0001.

in rs2027349-editedGG neurons and their expression changes in each shRNA

ns among the neurodevelopmental (i.e., neuron differentiation related) genes

G neurons. In (G) and (I), Fisher’s exact test (two-tailed) was used to estimate

95% CI; fill, �log10p.

ategory in the combinatorial vs. the additive model.

regulated’’ (more.down) categories based on 698 curated neural gene sets and

st of the gene sets at FDR <0.05 and ranked by FDR value. Red lines, FDR 0.05.
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cis-target genes (VPS45, C1orf54, and the lncRNA AC244033.2)

(Figures 6K–6N), which is analogous to the recently reported syn-

ergistic transcriptomic effect of SZ-risk SNPs fromdifferent loci.12

Although polygenic risk variants/genes for complex disorders

have been commonly considered to be additive for liability, the

additivity of liability of disease risk variants/genes and the biolog-

ical non-additivity or synergistic effects ofmultiple risk genes illus-

trated here and by others12 in the hiPSC model are not mutually

exclusive; it is well recognized that good fit to an additive model

doesnot imply that theunderlyinggenesdonot interact at amech-

anistic level, i.e., epistasis.47Our results provide empirical support

for complex gene regulation with compound effects frommultiple

genes at a single SZ GWAS risk locus.

Evaluating the pathophysiological relevance of these neural

phenotypic outcomes for SZ is challenging largely due to the

need for defined disease-relevant cellular phenotypes. For SZ,

studies of post-mortem brains mostly point to reduced dendritic

spine density and dendritic arborization,48 while at the level of

neuronal function, both pharmacology and genetic animalmodels

of SZ converge on hypofunction of glutamatergic synapses

despite the reasonable skepticism as to how accurately animal

models can be reflective of SZ.49 However, in general, these

cellular phenotypes of SZ postulated from studies of human

post-mortembrain and animalmodelswere not fully recapitulated

by the hiPSC modeling of common or rare risk factors.50 Our

observed increase in neuronal function by the risk allele of

rs2027349, althoughseemingly inconsistentwith the documented

reduction in dendritic complexities and synaptic function for

SZ,48,49,51,52 is similar to the effect of an SZ GWAS risk variant at

theMIR137 locus,14 as well as the effects of rare SZ-risk variants

with high penetrance (e.g., 16p11 duplication, loss-of-function of

SHANK3).41,42 Such seemingly inconsistent cellular phenotypes

may be the result of genetic pleiotropy across major psychiatric

disorders.53 Alternatively, given that both neural hyperfunc-

tion12–14,41,42 and hypofunction51,52 were reported for SZ, our re-

sults provide further support for a neuronal homeostatic model

of neuropsychiatric disorders where either excess or inadequate

synaptic signaling output may contribute to pathophysiology.54,55

The relevance of our observed neurobiological phenotypes to SZ

was further corroborated at themolecular level by the fact that the

transcriptional changes associated with the SZ risk allele,

rs2027349, were strongly enriched for SZ GWAS (Figure 3F) and

correlated with transcriptomic changes in SZ post-mortem brains

(Figures3G,3H,S5G,andS5H).Nonetheless, futurestudiesof an-

imal models carrying the knockout allele of the implicated risk

genes (VPS45, AC244033.2, andC1orf54) at the rs2027349 locus

may help establish the causal link between the observed neurobi-

ological phenotypes and SZ pathophysiology.

The exact molecular mechanisms by which the SZ-risk

variant rs2027349 functions remain to be determined. Our
Figure 7. Long-range chromatin interactions and changes in local c

multiple genes

(A) ATAC-seq and Capture Hi-C data from human brain tissue46 and Micro-C d

teractions between the rs2027349 locus and several high-accessibility sites (ATAC

NGN2-Glut neurons) indicate the site-specific interaction between rs2027349 an

(B) CRISPR-Cas9 editing of rs2027349 altered both local and remote chromatin a

on the rs2027349 locus and regions proximal to the C1orf54 gene in AA neurons
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results suggest that these genes were not regulated by each

other (Figure 6A). Furthermore, the rs2027349-flanking

sequence has direct chromatin contact with the promoter

sequence of distal C1orf54 in brain tissues and in our assayed

NGN2-Glut neurons, and allele A of rs2027349 seemed to be

associated with stronger chromatin looping (Figure 7A).

Furthermore, local chromatin accessibility at the promoter/

enhancer regions of VPS45, AC244033.2, and C1orf54 was

more robust in rs2027349 AA lines (Figure 7B). These results

suggest a possible cis-coregulation between these genes

that may be mediated through promoter/enhancer-promoter

chromatin interactions,45,56 as observed for HLA-DQB1 and

HLADRB1.57

Limitations of the study
Although our observed effect of rs2027349 editing on neuronal

phenotypes was supported by the transcriptomic (i.e., DE) ana-

lyses, these results still need to be interpreted cautiously, since

DE analysis, even for isogenic hiPSC lines, can be confounded

by clonal variations,58 a general challenge for the field. However,

such limitations have been mitigated using multiple lines/clones

of all three rs2027349 genotypes (AA, AG, and GG). Moreover,

despite the broadly consistent effects of the ASoC loci on cis-

target gene expression in the two different donor lines used in

CRISPRi and in rs2027349 editing, we did observe differences

in the effect size between the donor lines, which may be partially

attributed to different genetic backgrounds and highlights the

future need for scaling up functional assays with more donor

lines. Finally, it is noteworthy that, although the reduced sys-

tems’ ‘‘buffering’’ to genetic or environmental perturbations in

a simple cellular model like hiPSC-derived neurons may enable

the detection of the biological function of a single genetic risk

variant/gene,50,59,60 our observed solid biological effect of the

SZ-risk variant rs2027349 does not imply disease causality. At

the individual level, polygenic disease occurs only when pertur-

bations from many genetic risks (or protective) loci and environ-

mental factors break down the systems’ robustness or buffering

capacity.61 Therefore, studying individual disease-risk variants/

genes in hiPSC models does not represent a paradigm that

can recapitulate the in vivo effects of polygenic risk factors,

rather enabling us to gain a mechanistic understanding of dis-

ease-risk variants/genes. Collectively, our study uncovers a

complex gene regulation at a single SZ GWAS risk locus where

an ASoC SNP alters chromatin accessibility of multiple putative

risk genes that have non-additive cellular transcriptional and

phenotypic effects in excitatory neurons, providing a novel

mechanistic link between a non-coding SZ GWAS risk variant

and disease-related phenotypes.

Some figures in the article were created with BioRender.com

under an institute subscription plan with publishing rights for
hromatin accessibility contribute to the cis effect of rs2027349 on

ata from NGN2-Glut neurons. Orange arcs show the multiple long-range in-

-seq peaks) in proximity. Bold arcs (red in hippocampal DG neurons and blue in

d the promoter region of C1orf54.

ccessibility. Note the higher regional OCR peaks (normalized pile-up intensity)

. ATAC-seq data were from two clones per genotype of line CD0000011.

http://BioRender.com
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Antibodies

Anti-MAP2 Synaptic Systems Cat. #: HS-188 011, RRID: AB_2661868

Anti-vGlut1 Synaptic Systems Cat. #: 135 011BT, RRID: AB_2884913

Anti-GFP Abcam Cat. #: ab13970, RRID: AB_300798

anti-Synapsin I D12G5 XP Cell Signaling Cat. #: 5297, RRID: AB_2616578

Anti- PSD-95 MAGUK scaffolding protein antibody UC Davis/NIH NeuroMab Facility Cat. #: K28/43, RRID: AB_2877189

Donkey anti-Mouse IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 488

Thermo Fisher Scientific Cat. #: A-21202, RRID: AB_141607

Donkey anti-Mouse IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,
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Thermo Fisher Scientific Cat. #: A-21203, RRID: AB_141633

Donkey anti-Rabbit IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody

Thermo Fisher Scientific Cat. #: A-21206, RRID: AB_2535792

Donkey anti-Rabbit IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 594

Thermo Fisher Scientific Cat. #: A-21207, RRID: AB_141637

Chemicals, peptides, and recombinant proteins

mTeSR1 Plus STEMCELL Technologies Cat. #: 100-0276

ReLeSR STEMCELL Technologies Cat. #: 05872

Matrigel matrix Corning Cat. #: 354234

Accutase STEMCELL Technologies Cat. #: 07920

Neuralbasal Medium Thermo Fisher Scientific Cat. #: 21103049

50x B27 Supplement Thermo Fisher Scientific Cat. #: 17504044

100x Glutamax Thermo Fisher Scientific Cat. #: 35050061

Doxycycline Sigma-Aldrich Cat. #: D3072-1ML

Puromycin Thermo Fisher Scientific Cat. #: J67236.8EQ

Hygromycin Millipore Cat. #: 400053

BDNF PeproTech Cat. #: 450-02

GDNF PeproTech Cat. #: 450-03

NT-3 PeproTech Cat. #: 450-10

Digitonin Promega Cat. #: G9441

Blasticidin Thermo Fisher Scientific Cat. #: A1113903

Fluor-4 AM Thermo Fisher Scientific Cat. #: F14217

ProLong Diamond Antifade Mountant Thermo Fisher Scientific Cat. #: P36961

Fugene HD Promega Cat. #: E2311

Lipofectamine 3000 Thermo Fisher Scientific Cat. #: L3000001

Critical commercial assays

TaqMan Universal PCR Master Mix Thermo Fisher Scientific Cat. #: 4324018

High-Capacity cDNA Reverse

Transcription Kit with RNase Inhibitor

Thermo Fisher Scientific Cat. #: 4374967

RNeasy Plus Mini Kit Qiagen Cat. #: 74134

Chromium Next Gem Cell 3’ Kit 3.1 10x Genomics Cat. #: 100269

24-well MEA plate Axion BioSystems Cat. #: M384-tMEA-24W
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Deposited data

Code used in the manuscript This manuscript DOI: 10.5281/zenodo.8180188

ATAC-seq and RNA-seq data GSE188491 https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE188491

scRNA-seq data SRR16919429 https://dataview.ncbi.nlm.nih.gov/

object/SRR16919429

Experimental models: Cell lines

Human HEK293T cells ATCC Cat. #: CRL-3216

RRID: CVCL_0063

Human: iPS cell from sample NG-47827 (F) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 01C08162

Human: iPS cell from sample 92712 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 04C27190

Human: iPS cell from sample 79588 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 04C28905

Human: iPS cell from sample 69153 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 04C37433

Human: iPS cell from sample 18526 (F) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 05C38571

Human: iPS cell from sample 29934 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 05C39664

Human: iPS cell from sample NG-73088 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 05C43356

Human: iPS cell from sample 44414 (F) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 05C43758

Human: iPS cell from sample NG-81739 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 05C45915

Human: iPS cell from sample 81566 (F) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 05C46807

Human: iPS cell from sample 75610 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 05C46837

Human: iPS cell from sample 48181 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 05C48054

Human: iPS cell from sample NG-55047 (F) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 05C49221

Human: iPS cell from sample NG-11293 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 06C52191

Human: iPS cell from sample NG-40965 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 06C52565

Human: iPS cell from sample 16125 (F) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 06C52573

Human: iPS cell from sample NG-77642 (F) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 06C53368

Human: iPS cell from sampleNG-23159 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 06C54426

Human: iPS cell from sample NG-42857 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 07C71166

Human: iPS cell from sample NG-80080 (M) Rutgers University Cell

and DNA Repository (RUCDR)

Cell ID: 07C65853

Oligonucleotides

See Table S15
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Recombinant DNA

Lenti-dCas9-KRAB-blast Xie et al.29 RRID: Addgene_89567

pMD2.G https://www.addgene.org/12259/ RRID: Addgene_12259

psPAX2 https://www.addgene.org/12260/ RRID: Addgene_12260

FUW-M2rtTA Hockemeyer et al.62 RRID: Addgene_20342

pTet-O-Ngn2-puro Zhang et al.19 RRID: Addgene_52047

CROPseq-Guide-Puro Datlinger et al.28 RRID: Addgene_86708

pMDLg/pRRE Dull et al.63 RRID: Addgene_12251

pRSV-Rev Dull et al.63 RRID: Addgene_12253

Software and algorithms

MAGMA software and population data de Leeuw et al.39 https://ctg.cncr.nl/software/magma

H-MAGMA codes and annotation files Sey et al.39 https://github.com/thewonlab/H-MAGMA

Miniconda Anaconda Inc. https://docs.conda.io/en/latest/

miniconda.html

Pluritest N/A https://www.pluritest.com

Trimmomatic v 0.32 Bloger et al.64 https://github.com/timflutre/trimmomatic

Bowtie2 2.4.0 Langmead et al.65 https://github.com/BenLangmead/

bowtie2

Samtools 1.11.0 Li et al.66 https://htslib.org

GATK 4.1.8.1 McKenna et al.67 https://gatk.broadinstitute.org/

MACS2 2.2.7.1 Zhang et al.24 https://github.com/macs3-project/MACS

R 4.1.1 R Core Team https://cran.r-project.org/

SNPsplit Kruger et al.68 https://www.bioinformatics.babraham.

ac.uk/projects/SNPsplit/

deepTools 3.5.1 Ramirez et al.69 https://deeptools.readthedocs.

io/en/develop/

STAR 2.7.0 Dobin et al.70 https://github.com/alexdobin/STAR

Cell Ranger 4.0 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/

software/overview/welcome

Seurat 3.2 Stuart et al.71 https://satijalab.org/seurat/index.html

WebGestalt 2019 Wang et al.35 http://www.webgestalt.org/

Synaptic Gene Ontologies (SynGO) Koopmans et al.31 https://syngoportal.org/

ImageJ 2 Schneider et al.72 https://imagej.nih.gov/ij/download.html

NIS-Elements Advanced Nikon Inc. N/A

GraphPad Prism 9 GraphPad Inc. https://www.graphpad.com/

Neural Metrics Analysis Tool Axion Biosystems N/A
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Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Dr. Jubao Duan (jduan@

uchicago.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The ATAC-seq, and RNA-seq data have been deposited to GEO under GSE188491. scRNACROP-seq data is accessible under SRA

SRR16919429. All codes used in the analysis are accessible at https://zenodo.org/record/8180188 (https://doi.org/10.5281/zenodo.

8180188).
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The 20 hiPSC lines used for generating NGN2-Glut neurons for ATAC-seq were the same lines as used in our previously study13.

Briefly, hiPSCs were derived from cryopreserved lymphocytes (CPLs) using the genome-integration-free Sendai virus method (Cy-

totune Sendai Virus 2.0; Invitrogen). The purity of hiPSC culture was confirmed by immunofluorescence (IF) staining of pluripotency

markers (OCT4, SSEA4, NANOG, and TRA-1-60). The pluripotency of the hiPSCs was further confirmed by Pluritest with RNA-seq

data, as described in our previous study13. Lines CD0000011 and CD0000012, which are heterozygous (A/G) at SNP site rs2027349,

were used for CRISPR/Cas9 editing into all three genotypes, 2-3 clones per genotype13. The isogenic CRISPR-edited clones were all

confirmed to be free of major off-target editing by Sanger sequencing of the top 5 predicted off-target sites13. Lines CD000009 and

CD000011 that stably express dCas9-KRAB-BSD13 were used for CRISPRi (CROP-seq). None of the three lines used for CRISPR/

Cas9 editing or CRISPRi have an extreme SZ polygenic risk score73. The NorthShore University HealthSystem Institutional Review

Board (IRB) approved the study.

METHOD DETAILS

hiPSC culture
The hiPSCs were maintained in mTeSR Plus media (STEMCELL) on a matrigel (Corning) coated 6-well plate with media refreshment

every other day. Cells were passaged at 1:10-1:20 every 4-6 days using ReLeSR (STEMCELL) following the vendor’s protocol.

Generation of NGN2-Glut neurons
NGN2-Glut neurons were prepared as described19 with modifications. Briefly, on Day 0, 5 3 105 hiPSCs were dissociated using

Accutase (STEMCELL) and replated in 1.2 ml mTeSR Plus media containing 5 mM ROCK inhibitor, rtTA virus and Ngn2-puro or

Ngn2-Hygro virus on 6-well plates. On Day 1, media was refreshed with mTeSRPlus containing 2 mg/ml doxycycline. From days 2

to 4, media was refreshed daily with Neurobasal Medium supplemented with 13 Glutamax/B27, 2 mg/ml doxycycline, and 2 mg/

ml puromycin or 200 mg/ml hygromycin. On day 5, cells were dissociated with Accutase and resuspended in Neurobasal Medium

supplemented with 13 Glutamax/B27, 2 mg/ml doxycycline, and 10 ng/ml BDNF/GDNF/NT-3. Cells were replated at 2 3 105/cm2

on 0.1% PEI/Matrigel coated 12-well plates. For morphological immunostaining, 5 3 104 iNs were replated onto 12 mm coverslips

(with 53 104 rat astrocytes pre-cultured) in Neurobasal Medium supplemented with 13 Glutamax/B27, 2 mg/ml doxycycline, 10 ng/

ml BDNF/GDNF/NT-3, and 1% FBS. From Day 6, media was refreshed every three days with a half volume change. Doxycycline was

withdrawn from Day 14 onwards. ATAC-seq samples were harvested at Day 20; RNA-seq/qPCR samples were harvested at Day 30.

For cells cultured on coverslips, GFP transfection was performed at Day 30 using Lipofectamine 3000 (Thermofisher) at 1:2 DNA:re-

agent ratio with 1 mg plasmid per coverslip. On Day 32, coverslips were fixed and stained for morphological analysis.

Immunocytochemistry
Characterization of hiPSCs and neuronswere performed as described13 withminormodifications. Briefly, fresh cells were fixed in 4%

PFA for 15min at room temperature. After three PBSwashes, cells were permeabilized by 1% Triton X-100 in PBS for 15min at room

temperature. Subsequently, samples were blocked with 3% BSA in 0.1% PBST (0.1% Triton X-100 in PBS) for one hour at room

temperature. After blocking, samples were incubated with primary antibodies diluted in blocking buffer at 4�C overnight. After three

PBS washes, samples were incubated with secondary antibodies diluted in blocking buffer for one hour at room temperature. After

another three PBSwashes, samples were incubated with 1 mg/ml DAPI for 10 min at room temperature. Samples were thenmounted

on glass slides using ProLongTM Diamond Antifade Mountant (Thermofisher) overnight before taking images. Primary antibodies

used were anti-MAP2 (Synaptic System, 1:700), anti-vGlut1 (Synaptic Systems, 1:100), anti-GFP (chicken, Abcam ab13970,

1:10,000), anti-Synapsin I (rabbit, Cell Signaling #5297, 1:200), and anti-PSD-95 (mouse, NeuroMab clone K28/43 1:1000). Second-

ary antibodies used were Alexa 488 donkey anti-mouse (1:1000), Alexa 594 donkey anti-mouse (1:1000), Alexa 488 donkey anti-rab-

bit (1:1000), and Alexa 594 donkey anti-rabbit (1:1000). Images were taken using a Nikon C2 confocal microscope with 203 or 403

lenses as needed.

Sholl analysis
GFP-transfected neurons were imaged on a Nikon C2+ confocal microscope with a 103 objective lens and NIS-Elements software.

Neurons were only imaged if a visible axon and at least one defined primary dendrite could be identified. Following the acquisition,

dendrites were traced and images binarized in ImageJ (National Institutes of Health, Bethesda, MD). For each image, the axon was

identified and eliminated from quantification. Sholl analysis was performed using the ‘Sholl analysis’ plugin for ImageJ. The center of

the soma was manually defined, and concentric circles spaced 10 mm apart were used to quantify dendritic complexity in all cells.

For Sholl analysis, a two-way repeated measures ANOVA was performed to detect an effect of genotype-distance interaction. A

post hoc correction was then applied to the analysis to correct formultiple testing and determine the significance of each data point at

each distance interval. For synaptic puncta and protrusion analyses, data sets were tested for normality using D’Agostino and Pear-

son omnibus normality test. A one-way ANOVA (for parametric data) or a Kruskal Wallis test (for non-parametric data) with post hoc
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correction was used to determine significance between groups. All data were analyzed in GraphPad Prism version 9. Results were

considered as significant if p < 0.05. All data are reported as mean ± SEM. None of the data was removed as outliers.

Puncta and protrusion density analysis
GFP-transfected and immunostained neurons were imaged using a 633 oil immersion objective lens on a Nikon C2+ confocal mi-

croscope with NIS-Elements software. Each channel was acquired sequentially to prevent fluorescence bleed-through with 23 line

averaging for each channel and 1.53 digital zoom. Image parameters were optimized for each batch (i.e., all neurons from the same

differentiation) to limit the over- or undersaturation of signal. All images within a batch were acquired using identical settings for each

channel to allow comparison between groups. Dendritic branches were imaged on multiple z-planes to capture full dendritic

branches and maximum intensity projections of z-stacks created in Image J were used for downstream puncta analysis. Regions

of interest (ROI) on the dendrite (�100 mm) were selected using the GFP-filled cell as an outline. To identify puncta, a set threshold

method was used for each experiment and applied identically to all conditions. The area and intensity of each punctum above the set

threshold were recorded, and mean values were calculated for each cell. For puncta density analysis, the number of puncta was re-

corded and divided by the total area of the ROI calculated in ImageJ. For protrusion density analysis, a region of the dendrite

(�100 mm) was selected, and all protrusion <15 mm were manually counted and recorded.

MEA analysis
NGN2-Glut were prepared as described in a previous section. On Day 28, neurons were dissociated using Accutase and replated at

13 105 cells/well with 1.53 104 cells/well rat astrocytes onto a 0.1%PEI coated 24-well MEA plate (Axion BioSystems#M384-tMEA-

24W). Media was refreshed every three days using Neurobasal Medium supplemented with 13 Glutamax/B27, 10 ng/ml BDNF/

GDNF/NT-3, and 1% FBS. MEA data was recorded 24 hrs post media refreshment at 37�C with 5% CO2. On the day of recording,

the plate was loaded into AxionMaestroMEA reader (Axion Biosystems) and allowed to rest for 3 min, then recorded for 10min. Data

files were batch-processed using Neural Metrics Tool (Axion Biosystems) with four biological replicates for each condition. For anal-

ysis, bursts were identified using an inter-spike interval (ISI) threshold requiring a minimum number of 5 spikes with a maximum ISI of

100 msec. Network bursts were analyzed using the envelope mode with threshold factor 1.25, minimum inter-burst interval (IBI)

100 msec, minimum of 25% active electrodes, and 75% burst inclusion. The synchrony index was calculated using a cross-correlo-

gram synchrony window of 20 msec.

Calcium imaging
NGN2-Glut were replated on rat astrocyte-coated coverslips on D5 DIV. On D35 DIV, neurons were labeled with 5 mM Fluo-4-AM at

37�C for 20 min. Coverslips were then transferred to CO2 saturated 13 ACSF (126 mM NaCl, 2.5mM KCl, 1 mM NaH2PO4, 26.2 mM

NaHCO3, 2.5 mM CaCl2, 1.3 mM MgSO4, 11 mM D-Glucose) perfusion system for imaging. After 10-15 min perfusion to wash out

extra dyes, time-lapse images were acquired at 1.8 Hz for 10 min using a Nikon A1R multiphoton microscope at 820 nm. Quantified

regional intensity values were tabulated as one-dimensional numerical vectors indexed by time, and a Savitzky-Golay filter (locally

estimated scatterplot smoothing) was applied for data smoothing. Baseline intensity level (for both peak detection and dF/F0 calcu-

lation) was performed using the R baseline package74. The maximum peak intensities were subsequently captured by detecting the

maximum values on the rolling margins of each peak window (see the Extended Data code), and frequencies (the inversion of firing

rate) were calculated using their corresponding peak positions. Amplitude (dF/F0) was calculated using the standard method by

dividing the calibrated peak value at any specific position over the baseline intensity value at the same position as determined by

the baseline package, and for each cell, one dF/F0 was calculated by taking the means of the dF/F0 values from all peaks from

the same cell. The Synchrony index was calculated using the original spike train distance model75 by spike distance and temporal

distance normalized as mean resultant length for inter-sample measuring and visualization. Images analysis and quantification were

performed in ImageJ and R.

ATAC-seq samples preparation
ATAC-seq samples were prepared as previously described13,76. Briefly, 75,000 viable cells were lysed in ATAC-Resuspension Buffer

(RSB) containing 0.1% NP-40, 0.1% Tween-20, and 0.01% Digitonin for 3 min on ice. Nuclei were washed and resuspended in a

transposition mixture. Reactions were incubated at 37�C for 30 min on a thermomixer at 1,000 rpm. Transposed DNA was purified

by DNA Clean and Concentrator-5 Kit (Zymo). Eluted DNA was shipped to the University of Minnesota Genomic Center for library

preparation and ATAC-seq.

Lentivirus preparation
Lentivirus particles were packaged in fresh HEK 293T culture (passaged% 15 times) as previously described13. Briefly, 23 106 cells

were replated in T25 flasks one day before transfection. At the day of transfection, media was refreshed without antibiotics. pLenti-

dCas9-KRAB-BSD (Addgene # 89567) was co-transfectedwith pMD2.G (Addgene #12259) and psPAX2 (Addgene #12260) at a 4:2:3

molar ratio; other viral vectors including FUW-M2rtTA (Addgene # 20342), pTet-O-Ngn2-puro (Addgene # 52047), CROPseq-Guide-

Puro gRNA (Addgene # 86708), and pTet-O-Ngn2-hygro were co-transfected with pMDLg/pRRE (Addgene #12251), pMD2.G (Addg-

ene #12259), and pRSV-Rev (Addgene #12253) at 1:1:1:1 molar ratio. Transfection was performed using FuGENE HD (Promega)
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following the vendor’s instructions. 24 hrs post transfection, media was refreshed with Neurobasal Medium supplemented with 13

Glutamax/B27. 48 hrs post transfection, the supernatant was collected and centrifuged at 500 3 g for 5 min to remove debris. The

virus-containingmedia was aliquoted into 1.5ml low protein binding tubes and stored at -80�C until use. Viral RNAwas extracted and

the titer (MOI) was measured using the Lenti-X qRT-PCR titration kit from Takara (Cat. #: 631235) following vendor’s instructions.

CROP-seq in NGN2-Glut neurons
hiPSC lines (Line CD000009 and CD0000011) that stably express dCas9-KRAB-BSD were established as previously described13.

Briefly, on day 0, hiPSCs were replated as small clumps using ReLeSR (STEMCELL) at 10-20% confluence. On Day 1, refresh media

with mTeSR Plus containing dCas9-KRAB-BSD virus. 24 hrs post transduction, media was refreshed with mTeSR Plus containing

5 mg/ml Blasticidin. Antibiotics selection was refreshed daily and maintained for 10 days.

NGN2-Glut were prepared from hiPSCs stably expressing dCas9-KRAB-BSD using NGN2-hygro virus as described in a previous

section (Generation of NGN2-Glut neurons). From Days 2-4, cells were selected using 150 mg/ml hygromycin (Sigma). On Day 20,

5x106 NGN2-Glut were dissociated using Accutase and replated in Neurobasal Medium supplemented with 13 Glutamax/B27,

10 ng/ml BDNF/GDNF/NT-3, 5 mM ROCK inhibitor, and CROPseq-Guide-Puro virus (vector carrying gRNA targeting genes of inter-

est, MOI=0.2) as described in the original CROP-seq article28. 48 hrs post-transduction, cells were selected using 2 mg/ml puromycin.

7 days after selection, cells were harvested using Accutase for single cell RNA-seq preparation using Chromium Next GEM Single

Cell 3’ Reagent Kits v3.1 (103 Genomics).

Gene knockdown (KD) in NGN2-Glut neurons
Short hairpin RNA (shRNA) sequences were designed using Thermofisher online designer (rnaidesigner.thermofisher.com/

rnaiexpress/insert.do) following antisense-loop-sense pattern. Refer to Table S15 for shRNA sequences. Single-strand shRNA oligos

were cloned into BsmBI digested CROPseq-Guide-Puro (Addgene# 86708) vector using NEBuilder�HiFi DNA Assembly Master Mix

(New England Biolabs) following vendor’s protocols. Oligo sequence targeting GFP was served as control. Lentivirus particles were

prepared as described in previous sections (Lentivirus preparation). Two independently generated, SNP-edited AA (rs2027349)

hiPSC lines (A11, H12) derived from donor CD11 were used for shRNA KD. Stable knockdown (KD) hiPSC lines were established

as follows. On Day 0, hiPSCs were replated as small clumps using ReLeSR (STEMCELL) at 10-20% confluency. On Day 1, media

was refreshed with mTeSRPlus containing CROPseq-KDgRNA-Puro lenti-shRNA virus at MOI of 10. After 48 hrs of lenti-shRNA

transduction, media was refreshed with mTeSRPlus containing 0.8 mg/ml puromycin to select for hiPSC stably expressing a targeting

shRNA. Puromycin selection was maintained for 10 days with a daily change of new media. For the triple shRNA KD (VPS45,

AC244033.2, and C1orf54), stable triple KD hiPSCs were generated by pooling three lenti-shRNA viruses at MOI=10 of each, and

positive cells were subsequently selected under 0.8 mg/ml puromycin for 7 d. NGN2-Glut neurons were further generated from

the hiPSC lines stable expressing shRNA by using Ngn2-hygro lentivirus transduction as described in a previous section (Generation

of NGN2-Glut). Total RNA was isolated from DIV30 cultures using RNeasy Plus kit (QIAGEN) for qPCR quantification and RNA-seq.

ATAC-seq read aligning
All raw sequence reads generated by Illumina HiSeq 2000 had been demultiplexed at the University of Minnesota Genomics Center

and provided as 2375 bp paired-end FASTQ files (targeting 60 M reads per sample). Adapter remnants, low-quality reads, and low

QSEQ short sequences near either end of readswere processed by Trimmomatic (ILLUMINACLIP:NexteraPE-PE.fa:2:30:7,

SLIDINGWINDOW:3:18, MINLENGTH:26). The processed sequences were separated into paired-end and single-end FASTQ files

per sample and only paired-end reads were retained for subsequent mapping. The FASTQ files were individually mapped against the

human genome reference file including decoy sequences (GRCh38p7.13/hg38, 1000 Genome Project) using bowtie2 (-x 2000, -mm

--qc-filter –met1 –sensitive–no-mixed -t) and subsequentlymerged and sorted as BAM-formatted files using samtools, with

only uniquelymapped reads (MAPQ> 30) retained. Picard tools MarkDuplicatewas then used to remove all PCR and optical dupli-

cated reads from the BAM file.

To further eliminate allelic bias towards reference alleles during the aligning step, we performedWASP calibration on the generated

rawBAMfiles77. Briefly, we first called the VCF file profiles on all SNP sites that were not reference alleles of all 20 samples individually

using GATK HaplotypeCaller, and subsequently collapsed the individual VCF files into one summary VCF file containing all non-

reference sites of all 20 individuals. Subsequently, this SNP list was used as the basis of WASP calibration and re-alignment, and a

new WASP-calibrated new BAM file set was collected as the final output for the following peak calling and ASoC SNP call77.

The insert size distribution histograms of each sample were individually generated using Picard CollectInsertSizeMetrics.

All analyzed ATAC-seq samples passed standard QC based on the characteristic nucleosomal periodicity of the insert fragment size

distribution and high signal-to-noise ratio around transcription start sites (TSS).

ATAC-seq peak calling and ASoC SNP calling
To increase sample size and sensitivity for peak detection, the BAM files of the processed reads of each sample were first sub-

sampled to 30M pair-end reads per sample (the smallest sample size) and the 20 sub-sampled BAM files weremerged as the source

file for peak calling. MACS224 was used to generate peak files (narrowPeak format) with recommended settings at FDR = 0.05 (-f
e6 Cell Genomics 3, 100399, September 13, 2023

https://rnaidesigner.thermofisher.com/rnaiexpress/insert.do
https://rnaidesigner.thermofisher.com/rnaiexpress/insert.do


Article
ll

OPEN ACCESS
BAMPE, --nomodel, --call-summits --keep-dup-all -B). Peaks that fell within the ENCODE blacklisted regions were removed.

Also, we removed peaks falling within chromosomes X and Y, and the mitochondrial genome regions.

GATK (version 4.1.8.1) was used for ASoC SNP calling, as recommended by the GATK Best Practices (https://software.

broadinstitute.org/gatk/best-practices/)67. As noted above, WASP-calibrated BAM files (without sub-sampling) generated from

ATAC-seq pipeline were used as input. Variants were called using the discovery mode of HaplotypeCaller with human

GRCh38 (hg38) genome and the corresponding dbSNP version 153, and only reads with MAPQ score R30 were used (-stand_

call_conf 30). Subsequently, recalibration of SNPs and Indels were performed in tandem using the VariantRecalibrator

function (-an DP -an QD-an FS -an SOR -an MQ -an ReadPosRankSum -mode SNP -tranche 100.0 -tranche 99.9 -tranche

99.5 -tranche 90.0 -mG 4) and applied using ApplyRecalibration. Databases used for VariantRecalibrator including

the hg38 versions of HapMap v3.3 (priority = 15), 1000G_omni v2.5 (priority = 12), Broad Institute 1000G high confidence SNP list

phase 1 (priority = 10), Mills 1000G golden standard INDEL list (priority = 12), and dbSNP v153 (priority = 2). Each sample within

the cell typewas processed individually, and heterozygous SNP sites with tranche level >99.5%were extracted. To reduce bias intro-

duced by any acquired (or ‘‘de novo’’) mutations during cell growth, only SNPs with corresponding rs# records found in dbSNP v153

were retained. All heterozygous sites that passed the filter above (20 samples) were merged by CombineVariants to produce the

master VCF file of the cell type.

To maximize the power to detect ASoC, we pooled SNPs for all the called heterozygous SNPs locations from the 20 samples as

justified by the high concordance of allele-specific effects across individuals13. Finally, the VCF files were filtered and only biallelic

SNP sites (GT: 0/1) with minimum read depth count (DP) R 20 and minimum reference or alternative allele count R 2 were

retained. The binomial p-values (non-hyperbolic) were calculated using the binom.test(x, n, P = 0.5, alternative =

‘‘two.sided’’, conf.level = 0.95) from the R package, and Benjamini & Hochberg correction was applied to all qualified

SNPs as the correcting factor of R function p.adjust(x, method = "FDR"). We set the threshold of ASoC SNP at FDR

value = 0.05.

The read pileup statistics proximal to SNP sites were generated using samtools mpileup function, and differential of allele-spe-

cific reads was performed using the SNPsplit Perl package (www.bioinformatics.babraham.ac.uk/projects/SNPsplit/)68. The final

readouts from both read pileup and SNP-specific reads were visualized using the R package Gviz. In addition, when comparing

the changes of chromatin accessibility caused by genotypes across samples, read counts were scaled and normalized using the

deepTools package bamCoverage function and re-scaled to reads per genomic content (RPGC) as the base unit69. We confirmed

no obvious mapping bias to reference alleles by visualizing the volcano plots that graph the allelic read-depth ratios against -log2p--

values in scatter plots (Figure S2A).

Principal component analysis (PCA) for ATAC-seq data
To compare the cellular property between our NGN2-Glut neurons and different hiPSC-derived neuronal cell lines generated in our

lab, as well as with previously assayed fetal brain cells, we used chromatin accessibility data from our previously published studies13

as well as DNase I hypersensitive assay from the fetal brain (NIH Roadmap)78. Subsequently, we applied our above described cross-

cell-type non-overlapping OCR peak interval (n = 666,614) (GTF file, genome lift-over was performed when necessary) to the 20 lines

of NGN2-Glut data using featureCounts79 to get per-interval read count.

Disease GWAS risk enrichment test for NGN2-derived ASoC SNPs by TORUS
TheBayesian hierarchical model (TORUS)was applied to perform anSNP-based enrichment analysis to explorewhether ASoCSNPs

are enriched in any of the interested diseases in our investigation80. Briefly, TORUS assumes that every variant is a risk variant or not,

represented by a binary indicator variable (1 or 0). The prior probability of the indicator of a SNP being 1 depends on its annotations.

Subsequently, TORUS links GWAS effect sizes of SNPs and their annotations using the following formula:

bj = ð1 � pjÞd0 +pjgð$Þ

log
pj

1 � pj

= a0 +
Xm

k = 1

akdjk

whereGWASeffect size bj follows a spike-and-slab distribution a priori, andpj is the prior probability for the j-th SNP in a certain locus,

modelled by a logistic link with annotation djk (for the k-th annotation) for SNP j. Usually a normal prior distribution is used for g(.). For

binary annotations (1 if a SNP has that annotation, 0 otherwise), the parameter ak, is the log odds ratio of k-th annotation, and mea-

sures enrichment of risk variants in the k-th annotation, relative to all SNPs in the genome that do not have that annotation. TORUS

uses the summary statistics of the entire genome to estimate the enrichment parameters.

For GWAS enrichment test (Figure S2D), we used ASoC SNPs derived from NGN2-Glut. All the annotations are encoded as binary

(1 if a SNP has an annotation, and 0 otherwise). The GWAS datasets used for enrichment/TORUS analysis were from multiple sour-

ces, including both neuropsychiatric disorders and control disorders/traits, as listed below. Univariate analysis was performed to

assess the enrichment of ASoC SNPs in each of the GWAS datasets. The GWAS summary datasets used in the analysis are:

MDD, ukb-b-12064 https://gwas.mrcieu.ac.uk/datasets/ukb-b-12064/ https://gwas.mrcieu.ac.uk/files/ukb-b-12064/ukb-b-12064.

vcf.gz
Cell Genomics 3, 100399, September 13, 2023 e7

https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
http://www.bioinformatics.babraham.ac.uk/projects/SNPsplit/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-12064/
https://gwas.mrcieu.ac.uk/files/ukb-b-12064/ukb-b-12064.vcf.gz
https://gwas.mrcieu.ac.uk/files/ukb-b-12064/ukb-b-12064.vcf.gz


Article
ll

OPEN ACCESS
ADHD, ieu-a-1183, https://gwas.mrcieu.ac.uk/datasets/ieu-a-1183/, https://gwas.mrcieu.ac.uk/files/ieu-a-1183/ieu-a-1183.

vcf.gz

ASD, ieu-a-1185, https://gwas.mrcieu.ac.uk/datasets/ieu-a-1185/, https://gwas.mrcieu.ac.uk/files/ieu-a-1185/ieu-a-1185.vcf.gz

BMI, ukb-b-19953, https://gwas.mrcieu.ac.uk/datasets/ukb-b-19953/, https://gwas.mrcieu.ac.uk/files/ukb-b-19953/ukb-b-19953.

vcf.gz

Insomnia, ukb-b-3957, https://gwas.mrcieu.ac.uk/datasets/ukb-b-3957/, https://gwas.mrcieu.ac.uk/files/ukb-b-3957/ukb-b-3957.

vcf.gz

T2D, ukb-b-13806, https://gwas.mrcieu.ac.uk/datasets/ukb-b-13806/, https://gwas.mrcieu.ac.uk/files/ukb-b-13806/ukb-b-13806.

vcf.gz

Intelligence, ebi-a-GCST006250, https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST006250/, https://gwas.mrcieu.ac.uk/files/ebi-a

-GCST006250/ebi-a-GCST006250.vcf.gz

Bipolar (BP), ukb-b-6906, https://gwas.mrcieu.ac.uk/datasets/ukb-b-6906/, https://gwas.mrcieu.ac.uk/files/ukb-b-6906/ukb-b-

6906.vcf.gz

Schizophrenia (SZ), ieu-b-42, https://gwas.mrcieu.ac.uk/datasets/ieu-b-42/, https://gwas.mrcieu.ac.uk/files/ieu-b-42/ieu-b-42.

vcf.gz

Alzheimer’s (AD), ieu-b-5067, https://gwas.mrcieu.ac.uk/datasets/ieu-b-5067/, https://gwas.mrcieu.ac.uk/files/ieu-b-5067/ieu-b-

5067.vcf.gz

Neuroticism, ukb-b-4630, https://gwas.mrcieu.ac.uk/datasets/ukb-b-4630/, https://gwas.mrcieu.ac.uk/files/ukb-b-4630/ukb-b-

4630.vcf.gz

Bulk RNA-seq and differential expression (DE) analysis
Total RNAwas isolated using RNeasy plus kit (QIAGEN) following the vendor’s instructions and quantified by aNanoDrop-8000 spec-

trometer. The isolated RNA was subsequently sent to the sequencing provider (GENEWIZ) for further processing and sequencing

analysis. RNA-seq files were provided in the format of 23150 bp paired-end FASTQ files. Briefly, libraries were prepared using

the NEB Nextera kit with customized adapters. Since the sequencing facility had performed pre-cleaning on raw reads, no Trimmo-

matic adapter-trimming was performed. 20�30M reads were recovered from each sample. Raw files were subsequently mapped to

human hg38 genome (GRCh38p7.13) using STAR v2.7.070 with the following parameters:

(–outSAMtype BAM SortedByCoordinate –quantMode GeneCounts –outSAMattrIHstart 0 –outSAMstrandField intronMotif –out-

SAMmultNmax 1 –outFilterIntronMotifs RemoveNoncanonical –outBAMcompression 10 –outBAMsortingThreadN 20 –outBAMsor-

tingBinsN 20 –outFilterMultimapNmax 1 –outFilterMismatchNmax 1 –outSJfilterReads Unique –limitBAMsortRAM 10000000000

–alignSoftClipAtReferenceEnds No –quantTranscriptomeBAMcompression 10 10).

PCR and optical duplicates were further removed using Picard MarkDuplicates, and unique mappers (MAPQ = 255) were

retained for downstream analysis. GENCODE v35-based gene annotations, transcript length, and GC percentage were used81.

For gene-based quantifications, the number of fragments at the meta-feature (gene) level was directly collected from the output

of STAR, and only genes expressed in at least one cell type with counts per million (CPM) >1 in at least half of the sample within

the group were retained for subsequent analysis. CPM numbers were used to plot the correlation heatmap and PCA analysis. For

transcript-based quantifications (such as in the case of quantifying the expression level of different VPS45 isoforms), the pseudo-

alignment probabilistic model of Kallistowas applied82. The PCA map was generated using R packages, gplots and ggplot2,

respectively. DE gene analysis was performed using EdgeR83 by fitting the dataset into a gene-wise negative binomial generalized

linear model with quasi-likelihood as glmQLFit() and evaluated by glmQLFTest(). Cell line and batch numbers were introduced

when establishing the design matrix and served as blocking factors, whenever applicable.

CPM values generated by EdgeR was used as the basis for making the PCA plot to visualize the clustering effect of different gene

knockdown groups. Essentially, only the top 15,000 DE genes were used for calculating the PCs using R prcomp() function and the

plot was subsequently generated using the fviz_pca() function from R package factoextra (Figure S8B).

Total RNA extraction and qPCR analysis
For bulk RNA-seq and qPCR, RNA was isolated using RNeasy plus kit (QIAGEN) following the vendor’s instructions and quantified

using NanoDrop-8000 spectrometer. For qPCR, RT was performed using High-Capacity cDNA Reverse Transcription Kit (Thermo-

fisher). RT conditions were as follows: 25�C for 10 min, 37�C for 120 min, 85�C for 5 min. qPCR was performed on a Roche 480 II

Lightcycler, using gene-specific FAM-labelled TaqMan probes, GAPDH, ABL1 and CASC3 as internal controls. qPCR conditions

were as follows: 95�C for 10 min, 45 cycles of (95�C for 20 s, 60�C for 1 min). Biological replicates (3 to 6) were included for all con-

ditions and three technical replicates were used during qPCR.

Gene expression correlation between DE genes from SNP editing and for various disorders
The correlation of expression profiles of DE genes between VPS45 CRISPR/Cas9-edited lines (AA vs.GG) and post-mortem brain

tissues of various psychiatric disorders (MDD, BP, ASD, AAD, SZ) were compared by integrating GTEx/PsychENCODE and several

other data sources16,84,85. For each DE gene set, genes with FDR < 0.05 were used in the overlapped gene counts and correlation
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https://gwas.mrcieu.ac.uk/files/ukb-b-19953/ukb-b-19953.vcf.gz
https://gwas.mrcieu.ac.uk/datasets/ukb-b-3957/
https://gwas.mrcieu.ac.uk/files/ukb-b-3957/ukb-b-3957.vcf.gz
https://gwas.mrcieu.ac.uk/files/ukb-b-3957/ukb-b-3957.vcf.gz
https://gwas.mrcieu.ac.uk/datasets/ukb-b-13806/
https://gwas.mrcieu.ac.uk/files/ukb-b-13806/ukb-b-13806.vcf.gz
https://gwas.mrcieu.ac.uk/files/ukb-b-13806/ukb-b-13806.vcf.gz
https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST006250/
https://gwas.mrcieu.ac.uk/files/ebi-a-GCST006250/ebi-a-GCST006250.vcf.gz
https://gwas.mrcieu.ac.uk/files/ebi-a-GCST006250/ebi-a-GCST006250.vcf.gz
https://gwas.mrcieu.ac.uk/datasets/ukb-b-6906/
https://gwas.mrcieu.ac.uk/files/ukb-b-6906/ukb-b-6906.vcf.gz
https://gwas.mrcieu.ac.uk/files/ukb-b-6906/ukb-b-6906.vcf.gz
https://gwas.mrcieu.ac.uk/datasets/ieu-b-42/
https://gwas.mrcieu.ac.uk/files/ieu-b-42/ieu-b-42.vcf.gz
https://gwas.mrcieu.ac.uk/files/ieu-b-42/ieu-b-42.vcf.gz
https://gwas.mrcieu.ac.uk/datasets/ieu-b-5067/
https://gwas.mrcieu.ac.uk/files/ieu-b-5067/ieu-b-5067.vcf.gz
https://gwas.mrcieu.ac.uk/files/ieu-b-5067/ieu-b-5067.vcf.gz
https://gwas.mrcieu.ac.uk/datasets/ukb-b-4630/
https://gwas.mrcieu.ac.uk/files/ukb-b-4630/ukb-b-4630.vcf.gz
https://gwas.mrcieu.ac.uk/files/ukb-b-4630/ukb-b-4630.vcf.gz
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analysis. The R package upsetR was used to make the Upset plot. For correlation analysis, Spearman’s r was calculated using

R function cor.test(method = ‘‘spearman’’, alternative = ‘‘t’’).

Single-cell RNA-seq data processing and analysis
103 Genomics Cell Ranger v4 was used to process raw sequencing data. Briefly, sequencing data were aligned to the human

GRCh38/hg38 genome with spike-in gRNA sequences as artificial chromosomes (20 bp gRNA sequence and 250 bp downstream

plasmid backbone per each gRNA, together with one additional full sequence of CROP-Seq-Guide-Puro construct also included as a

decoy to capture vector-borne sequences). The alignment was performed using STAR 2.7.0 included in Cell Ranger v4 and a custom-

ized spiked-in version of GENCODE v28 GTF file containing the aforementioned gRNA sequences and vector backbone as annota-

tions. The filtered gene count matrix output from Cell Ranger was used in subsequent R analysis. In all, we achieved a total mapping

rate of 88.7%, with 58.1% mapping rate to the human transcriptome.

The R package Seurat v 3.2 was used to extract information and assemble data tables from the output files to generate the digital

gene expression matrix, which was constructed based on per-gene UMI count. Since the Cell Ranger package had already per-

formed preliminary QC filtering and removed low-counting barcodes (i.e., cells) from its filtered output data set (filtered_bc_

matrix), we directly imported the output of these processed barcode matrices as raw data. Outputs from one capture (using a

mix of CD000009 + CD000011) were imported, which resulted in a total of 10,247 cells used in the initial analysis. Cell line identity

de-multiplexing was performed with demuxlet on the 10,247 barcodes using previously published array-derived genotyping informa-

tion identified 2,280 singletons from CD000009 and 6,979 singletons from CD000011. The Seurat matrix was re-normalized using

SCTransform() and analyzed on the generated SCT object. Cells with > 20% mitochondria content were removed from analysis

after SCTransform. A cell assigned with a unique RNA was defined as the UMI count of its dominant gRNA in the cell being at least

three times more than the sum of UMI counts from all other gRNAs. Only MAP2+ cells that express glutamatergic neuron marker

genes (SLC17A6 or SLC17A7) falling within clusters 2, 3, 4, 5, 6, and 7 were used (Figure 2B). Eventually, 4,057 cells survived the

filter and were designated as cells with uniquely assigned gRNA for subsequent study. Dimension reduction, UMAP, clustering,

and pseudo-bulk DE analysis were performed using the package Seurat and EdgeR. Graphs were made in Seurat and ggplot2.

MAGMA analysis
We performed MAGMA analysis using MAGMA version 1.08b39 to evaluate the enrichment for the GWAS risk of several psychiatric

disorders (SZ, Neuroticism, ASD, BD, AAD, MDD)3,4,36,86–88, as well as the GWAS setting of Crohn’s disease that served as a control

set89. Specifically, we started by compiling the MAGMA-required gene annotation data files using a GRCh37/hg19 vcf file. With the

gene-SNP annotation file, we then performed gene-level analysis on SNP p-values using the reference SNP data of 1,000 Genomes

European panel (g1000_eur, --bfile) and the pre-computed SNP p-values from each disorder’s GWAS data set. The sample size

(ncol=) was also directly taken from the column of sample sizes per SNP column of the datasets or extracted from the affiliated

README data. Subsequently, the result files (--gene-results) from the gene-level analysis were read in for competitive gene-

set analysis (--set-annot), where we used default setting (‘correct=all’) to control for gene sizes in the number of SNPs and

the gene density (a measure of within-gene LD). The gene-set analysis produced the output files (.gsa.out) with competitive

gene-set analysis results that contained the effect size (BETA) and the statistical significance of the enrichment of each gene set

(All DE genes/upregulated/downregulated) for each disorder’s GWAS data set. The heatmap graph was plotted using R package

gplots.

Gene set over-representation analysis (ORA) with WebGestalt
We performed ORA using WebGestalt35. Briefly, lists of DE genes from RNA-seq analysis were input into the web-based interface of

WebGestalt to output the enriched (or over-represented) GO-terms. All the expressed genes in NGN2-Glut were used as a reference

gene list for the enrichment analysis. The GO-terms included three different categories: biological processes, cellular components,

andmolecular function. The fold of enrichment and the -log10 p-value for the enrichedGO-termswere plotted as volcano plots, which

were outputted directly from the browser and then polished and re-arranged for clarity purposes in Adobe Illustrator.

SynGO GE and ontology analysis
SynGoGE and ontology analysis were performed as documented31 using the ‘‘location’’ domain and colorized by either ‘‘enrichment

analysis’’ or ‘‘gene count’’, as indicated on the generated Sunburst plots. Briefly, the list of DE genes was used as the SynGO input

list, and all the expressed genes in NGN2-Glut neurons were used as the background gene list. The exact gene list per term was

further extracted using the select term function and exported for annotation.

Gene set enrichment analysis
Lists of DE genes were divided into three subsets: all dysregulated genes, upregulated and downregulated (all at FDR < 0.05). DE

genes were overlapped with gene sets relevant to SZ, including genes implicated by GWAS and the postsynaptic density prote-

ome25,90,91. The GWAS list included two subsets: ‘‘Single genes’’ subset included all GWS loci implicating single genes, and a
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second, larger subset combining all genes within single-gene or multigenic GWAS loci. A hypergeometric test was used to calculate

the extent of over- or under-enrichment of disorder-relevant genes compared to a chance finding. All genes expressed in NGN2-Glut

neurons were used as a background set.

Comparison of shRNA KD results between the two cell lines
In order to compare the concordance of shRNA KD behavior between the two independently generated, SNP-edited AA (rs2027349)

cell lines (A11, H12), we performed RNA-seq using shRNA targeting EGFP, VPS45, AC244033.2, and C1orf54 on the two cell lines.

Three biological replicates were used for each line, and the DE gene list generated within each line was paired with the corresponding

DE gene list from the other line to form a union set. The union set of genes of each KD condition was used as the index for the cor-

responding log2FC values in either line for regression analysis. Pearson’s R was used to show the correlation between the log2FC

values from different lines.

Linear regression analysis of gene x gene interaction
To evaluate which individual gene KD and/or their interaction terms could better explain the transcriptional effects of rs2027349

(VPS45) editing in NGN2-Glut, we employed a general linear regression model to correlate the log2FC of DE genes in GG neurons

(vs AA) and their log2FC under different shRNA KD conditions in AA neurons. Because AA neurons showed higher expression of

the three local genes of interest (VPS45, AC244033.2, and C1orf54) at the rs2027349 locus as a result of rs2027349 editing, if a

gene or gene3 gene interaction could explain or mediate the transcriptional effect of the SNP editing, we would expect a significant

correlation between log2FC of DE genes in GG neurons (vs AA) and their log2FC in a gene KD, or a combination of KD of two genes in

AA neurons. Because of the noisy nature of the gene KD experiment that showed an excessive number of DE genes, we only analyzed

the list of 1,267 significant DE genes in GGneurons (vs AA).We included individual gene KD and their interaction terms in the following

model:

weighted_fit_df <-

lm(logFC.groupGG �
logFC_VPS45_KD + logFC_lncRNA_KD + logFC_C1orf54_KD +

(logFC_lncRNA_KD * logFC_C1orf54_KD) +

(logFC_VPS45_KD * logFC_lncRNA_KD) +

(logFC_VPS45_KD * logFC_C1orf54_KD),

data = raw_df)

in which raw_df is the data frame that contained all DE expression data. The derived beta coefficient and p-value were used to infer

the association of SNP editing effects and individual gene KD and their interaction terms.

Analysis of gene synergistic effects
The experimental design and evaluation of synergy-driving gene expression were generally modelled following the established pro-

tocols12,43. Briefly, raw reads from the bulk RNA-seq data (refer to the section [Bulk RNA-seq and differential expression analysis]

above) of individual KD from lineH12 and the triple KD (i.e., combined KD) in the same line H12were used and further batch-corrected

with the ComBat_seq() function from the Rsva package92. ACPMcut-off of 0.4was applied based on the counts-over-CPMplot to

remove lowly-expressed genes, leaving approximately 18,000 genes for subsequent linear model building. The expression data in

CPMwere log-transformed using the voom() function from the limma package, and weights were computed for heteroscedasticity

adjustments. The lmFit() function from limma package was applied to build the linear model. Comparison groups for individual

experiments, as well as the additive and synergistic models, were defined using the makeContrasts() function as described

below:

contrast_matrix <-

makeContrasts(additive = (C1orf54_KD + lncRNA_KD + VPS45_KD - 3 * single_KD_ctrl),

combinatorial = (combined_KD – combined_KD_control),

synergistic = (combined_KD -

C1orf54_KD - lncRNA_KD - VPS45_KD -

combined_KD_control +

3 * single_KD_ctrl),

levels = voom_design_matrix)

The DEG results were determined by empirical Bayes moderation with eBayes() and decideTests() function from the limma

package.

An FDR value of 0.1 was used to calculate the synergy coefficient and percentage of synergistic DEGs43. When performing enrich-

ment analyses (competitive GSEA and gene ontology over-representation analysis), we employed the same curated gene sets that

have been successfully applied for analysing the synergistic effects of common SZ risk variants in hiPSC-derived cortical neurons

due to the extensive similarity of the experimental model used12. An FDR value of 0.05 was applied to the synergistic effect in

gene ontology over-representation analysis.
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Micro-C and 3D genome analysis
To assay the 3D chromatin looping in NGN2-Glut at the VPS45 locus, we performed aMicro-C using Dovetail� Targeted Enrichment

Pan Promoter Panel (i.e., a promoter Capture Hi-C). About 500 K NGN2-Glut of two iPSC lines (CD0000011 and CD0000012; see

sample description) heterozygous for rs2027349 were generated as described previously. DIV/30 NGN2-Glut cells were dissociated

with accutase at 37ºC for 45min. After counting, 500K-1M cells were collected as pellet at 3,000 3 g for 5 min and snap-frozen in

liquid nitrogen. The samples were sent to Dovetail Genomics (Now Cantata Bio; Scotts Valley, CA) for library preparation and

sequencing for data analyses. The Micro-C library was prepared using the Dovetail� Micro-C Kit according to the manufacturer’s

protocol. Briefly, the chromatin was fixed with disuccinimidyl glutarate (DSG) and formaldehyde in the nucleus. The cross-linked

chromatin was then digested in situwith micrococcal nuclease (MNase). Following digestion, the cells were lysed with SDS to extract

the chromatin fragments and the chromatin fragments were bound to Chromatin Capture Beads. Next, the chromatin ends were re-

paired and ligated to a biotinylated bridge adapter followed by proximity ligation of adapter-containing ends. After proximity ligation,

the crosslinks were reversed, the associated proteins were degraded, and the DNA was purified and then converted into a

sequencing library using Illumina-compatible adaptors. The target enrichment of the Micro-C library was performed using a Dove-

tail� Target Enrichment Kit (human pan promoter panel) following the user guide. Briefly, a hybridization of biotin-labelled promoter

probe panel withMicro-C library pool was performed, followed by binding the hybridized targets to streptavidin beads to capture and

enrich the library. The post-capture PCR was performed to ascertain the library quality (both quantity and size distribution between

150 bp to 1 kb with an average fragment length of 375 – 425 bp. Each enriched library was then sequenced to 150 million reads (23

75 bp pair-end) on the Illumina NovaSeq Platform.

For Micro-C data analyses, the sequencing reads in fastq files was mapped to a refence genome using bwa to use the BWA-MEM

algorithm at Cantata Bio (Scotts Valley, CA). Themapping pipeline identified ligation junctions and recorded valid pairs of reads in the

final bam files after removing PCR duplicates. Overall, we had 48-49% uniquely mapped non-dup reads for both libraries

(CD0000011 and CD0000012). CHiCAGO (Capture Hi-C Analysis of Genomic Organisation) was then used to detect chromatin loop-

ing interactions. All probes of the same promoter were pooled together as bait and the interactions were called at the bait level. Local

chromatin loops were extracted in the form of a contact matrix and visualized using WashU EpiGenome Browser (https://www.

epigenomegateway.wustl.edu). For testing the allelic difference of chromatin looping at the rs2027349 site, we compared the number

of Micro-C sequence reads of each allele for both lines and a binomial test was used to calculate the statistical significance of the

differential allelic distribution.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise specified, Student’s t-test (between two groups) or the Kruskal Wallis test with Dunn’s multiple comparisons and

p-value adjustment (more than two groups) was used to determining significance between groups. Samples were assumed to be

unpaired and have non-parametric distribution unless otherwise specified. Data were analyzed using R 4.1.1 and GraphPad Prism

9. Results were considered as significant if p < 0.05 (*: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001). All data are reported as

mean ± SEM.
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