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Abstract

Nicotinic acetylcholine receptors (nAChRs) containing the a9 subunit are expressed in a wide variety of non-neuronal tissues
ranging from immune cells to breast carcinomas. The a9 subunit is able to assemble into a functional homomeric nAChR
and also co-assemble with the a10 subunit into functional heteromeric nAChRs. Despite the increasing awareness of the
important roles of this subunit in vertebrates, the study of human a9-containing nAChRs has been severely limited by
difficulties in its expression in heterologous systems. In Xenopus laevis oocytes, functional expression of human a9a10
nAChRs is very low compared to that of rat a9a10 nAChRs. When oocytes were co-injected with cRNA of a9 and a10
subunits of human versus those of rat, oocytes with the rat a9 human a10 combination had an ,-fold higher level of
acetylcholine-gated currents (IACh) than those with the human a9 rat a10 combination, suggesting difficulties with human
a9 expression. When the ratio of injected human a9 cRNA to human a10 cRNA was increased from 1:1 to 5:1, IACh increased
36-fold (from 142623 nA to 51716748 nA). Functional expression of human a9-containing receptors in oocytes was
markedly improved by appending the 59-untranslated region of alfalfa mosaic virus RNA4 to the 59-leader sequence of the
a9 subunit cRNA. This increased the functional expression of homomeric human a9 receptors by 70-fold (from 761 nA to
4756158 nA) and of human a9a10 heteromeric receptors by 80-fold (from 113662 nA to 919261137 nA). These findings
indicate the importance of the composition of the 59 untranslated leader sequence for expression of a9-containing nAChRs.
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Introduction

Nicotinic acetylcholine receptors (nAChRs) are ACh-gated ion

channels implicated in many physiological as well as pathophys-

iological processes. The role of nAChRs in mediating EPSPs at

synapses in autonomic ganglia [1], [2] and at the skeletal

neuromuscular junction is well established [3], [4]. In the CNS,

nAChRs are involved in modulation of neurotransmitter release

[5] and in attention and memory [6], [7]. The pathological

conditions where involvement of nAChRs have been implicated

include Alzheimer’s and Parkinson’s diseases [8], [9], nicotine

addiction [10], [11] and schizophrenia [12], [13]. Seventeen

vertebrate nAChR subunits have been cloned to date (a1 through

a10, b1 through b4, c, d, and e) [14]. The nAChR is formed from

five subunits, either homomeric receptors (a7, a9) containing five

identical subunits or heteromeric receptors (for example, a4b2,

a3a5b4, a6a4b2b3, or a9a10).

a9-containing nAChRs are unique among neuronal nAChRs in

that they are found mainly outside of the CNS [15], [16], [17],

[18], [19]. Also, unlike other nAChRs, they are inhibited by

nicotine [15], [20], [21]. a9-containing nAChRs play roles in pain

[22], [23], [24], [25], [26], [27], inflammation, keratinocyte

adhesion [28], and in mediating synaptic transmission between the

efferent olivocochlear fibers and cochlear hair cells [29], [30].

With advances in molecular biology, it became possible to

isolate and sequence the genes encoding nAChRs. a9 and a10

subunits were among the last nicotinic receptor subunits to be

isolated and characterized. The clone encoding the a9 subunit was

originally obtained from a rat olfactory epithelium cDNA library

[15]. X. laevis oocytes injected solely with rat a9 cRNA yielded

homomeric receptors that responded to 100 mM ACh with

currents that ranged from 20 to 500 nA [15]. The clone encoding

the rat a10 subunit was isolated from an adult rat cochlea cDNA

library [31]. The coinjection of rat a9 and rat a10 cRNAs into

oocytes resulted in oocytes with ,100-fold larger ACh-gated

currents (IACh) than oocytes injected solely with a9 cRNA.

Subsequently, the sequences of human a9 and a10 subunits were

determined from keratinocytes [28] and inner-ear neuroepitheli-

um [32], respectively.

To study the pharmacological properties of nAChRs, heterol-

ogous expression systems are often used. Mammalian cell lines

such as HEK293 and SH-EP1 cells are frequently used to

characterize nAChRs [33], [34]. Besides mammalian cells, oocytes

of Xenopus laevis, the African clawed frog, have been frequently
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used for heterologous expression. These oocytes provide several

advantages for the study of receptors. They are large and thus easy

to handle and to inject with RNA, have long life-times (several

days) and can be maintained under relatively simple culture

conditions. Oocytes are largely free of endogenous receptors that

could interfere with the signals of exogenously expressed channels/

receptors. Thus, oocytes have been extensively used to character-

ize the biophysical and pharmacological properties of nAChRs.

They have also been used to study the stoichiometry of receptor

subunits, the contribution of different subunits to the properties of

receptors, and the structure-function relationships with various

ligands. For most nAChRs, oocytes have worked extremely well as

an expression host [35], [36], [37]. However, in some instances

cRNA-injected oocytes have failed to yield readily detectable IACh.

For instance, human a9 cRNA-injected oocytes have only small

IACh compared to oocytes injected with its rat counterpart [38],

[39]. There is no report to date of successful functional expression

of human a9-containing receptors in mammalian cell lines and

few reports of successful transfection of rat a9-containing receptors

[40], [41].

The translational efficiency of nAChRs in oocytes is influenced

by the structure of the injected cRNA [42], [43] including the

Kozak sequence [44], the secondary structure [45], [46] and

composition of untranslated regions [47], [48]. The 59 leader

sequence preceding the coding region plays an important role in

the binding of cap-binding proteins and in facilitation of

translation initiation [49]. One approach to improve the

translation in oocytes is to flank the gene-encoding sequence with

the untranslated regions of highly translatable proteins of X. laevis,

such as b-globin [50], [51]. When 59 and 39untranslated regions

(UTRs) of human interferon-b mRNA are replaced by those of X.

laevis b-globin mRNA, the translation is increased as much as 20-

and 300- fold in reticulocyte lysates and in X. laevis oocytes,

respectively [52]. The X. laevis b-globin leader sequence exerts its

facilitatory effect presumably by increasing translation initiation,

and not by increasing the binding of limiting factors [50].

However, for human a9, the addition of the X. laevis b-globin

sequence to the 59 and 39 UTRs is not sufficient to produce high

expression levels.

In this report, we show that the human a9 subunit is the limiting

factor in the expression of human a9a10 nAChRs in X. laevis

oocytes. Furthermore, we found that this expression can be

substantially improved by the insertion of the 59 leader sequence of

alfalfa mosaic virus RNA4 (AMV) to the human a9 59 UTR.

Materials and Methods

Ethics Statement
Isolation of oocytes from X.laevis frogs was performed in

accordance with and under approval of the Institutional Animal

Care and Use Committee of the University of Utah.

cDNA constructs
cDNAs encoding a9 and a10 nAChR subunits from rat were

provided by A. B. Elgoyhen (University of Buenos Aires,

Argentina). The rat a9 cDNA was in a pGEMHE [51] vector

between SmaI and EcoRI restriction sites, and the rat a10 cDNA

was in a pSGEM vector (a modified pGEMHE vector) between

EcoRI and XhoI restriction sites. cDNAs encoding human a9 and

human a10 subunits, in the pGEM-11Zf(+) vector, were

generously provided by L. Lustig (University of California San

Francisco, San Francisco, CA). The cDNAs encoding human

subunits were subsequently inserted into the pSGEM vector

between EcoRI and XhoI restriction sites. The oligonucleotides

encoding the 59leader sequence of alfalfa mosaic virus RNA4

(AMV) were synthesized at the University of Utah core facility.

The sequence of the synthesized oligonucleotides was as follows:

sense- 59 GGGTTTTTATTTTTAATTTTCTTTCAAATAC-

TTCCACCG 39; antisense-59 AATTCGGTGGAAGTATTT-

GAAAGAAAATTAAAAATAAAAACCCGC 39. The oligonu-

cleotides were diluted in 10 mM Tris-Cl, pH 8.5 to a final

concentration of 107 mM for sense oligonucleotide and 80 mM for

antisense oligonucleotide. 20 mL of each oligonucleotide was

mixed in an annealing reaction tube. The annealing reaction was

as follows: exposure to 95uC for 10 minutes followed by cooling to

25uC over a period of 45 minutes. The annealed oligonucleotide

was ligated into MCS of pSGEM vector between the SacII and

EcoRI restriction sites.

cRNA synthesis
The NheI enzyme was used to linearize the vector encoding

human a9 and human a10 subunits. In vitro transcription was

performed using the mMessage mMachine T7 kit (Ambion,

Austin, TX). The reaction was followed by DNase treatment. The

cRNA was purified with a Qiagen RNeasy kit (Qiagen, Valencia,

CA, USA). The cRNA concentration was determined by

measuring absorbance at 260 nm on an Epoch spectrophotom-

eter.

Oocyte isolation and injection
The isolation of the oocytes was performed as previously

described [53]. Briefly, stage IV–V oocytes were isolated from

anesthetized adult frog. The oocytes were kept at 17uC in ND96

(96 mM NaCl, 1.8 mM CaCl2, 2.0 mM KCl, 1.0 mM MgCl2,

5 mM HEPES, pH 7.1–7.5) supplemented with antibiotics (50 U/

mL penicillin, 50 mg/mL streptomycin, 50 mg/mL gentamicin).

The oocytes were injected with 50.6 nL of cRNA and incubated

for 1–3 days before recording. The amount of cRNA injected into

each oocyte varied in different experiments. To compare levels of

expression of human and rat a9a10 receptors, 3.3 ng cRNA of

each nAChR subunit was injected into individual oocytes. To

compare the level of expression of human receptors formed from

subunits injected at different ratios, 4.4 ng cRNA of each nAChR

subunit was injected into individual oocytes when a ratio of (1) is

indicated and 22 ng cRNA was injected when a ratio of (5) is

indicated. For all other experiments, 14.4–32 ng cRNA of each

subunit was injected.

Two-electrode voltage clamp recording
ACh-gated currents were recorded from oocytes as previously

described [53]. Briefly, an oocyte was placed in ,30 mL chamber

(4 mm diameter 62 mm deep) fabricated from Sylgard and

gravity-perfused with ND96 at a constant flow rate (,2 mL/min).

The oocyte’s membrane potential was held at 270 mV using an

OC-725B two-electrode voltage clamp amplifier (Warner Instru-

ment Corp., Hamden, CT). To evoke IACh, the perfusion of ND96

was replaced for one-second with ND96 containing100 mM ACh;

such a pulse of ACh was applied once per minute. The peak of the

ACh-gated current (IACh) was measured and the average of six

consecutive IACh responses served as the control current response.

To minimize potential batch-to-batch variability, oocytes from

the same isolation were used to compare the expression of

receptors formed from unmodified and modified nAChR subunits.

Furthermore, all recordings for a given comparison were

performed on the same day.

Human a9* nAChR Expression Is Dependent on 59 UTR
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Data analysis
Data are expressed as mean 6 SEM. Statistical comparisons

between two groups were done using Student’s t-tests, and those

between multiple groups were done using ANOVA test with

Tukey’s post-hoc comparison.

Results

Human a9a10 nAChRs express poorly in X. laevis oocytes
Previous investigations of human and rat a9-containing

receptors reported difficulties in the expression of human a9-

containing receptors [38], [39]. Consistent with these reports,

when cRNAs encoding human a9 and human a10 subunits of

nAChRs were co-injected into oocytes at a 1:1 molar ratio,

100 mM ACh produced small currents (Fig. 1A top), which on

average were 3063 nA (Fig. 1B). Currents of this low magnitude

are difficult to utilize for medium throughput pharmacological

testing. In contrast, co-injection of rat a9 and rat a10 subunits

yielded large currents (Fig. 1A bottom) with an average amplitude

of 806761638 nA (Fig. 1B). The difference in functional

expression between rat a9a10 and human a9a10 nAChRs might

be due to the inefficient translation of the human a9 or human

a10 subunit or both, and this was explored in experiments

described below.

Functional expression of a9 versus a10 subunitsIn order
to assess the influence of a9 vs
a10 subunits on the functional expression of a9a10 nAChRs,

we injected cRNA encoding subunits from different species (i.e.,

rat versus human) at a 1:1 ratio. When human a9 was co-expressed

with rat a10, the current amplitude was invariably low in all three

batches of oocytes tested, averaging from 561 nA to 50615 nA

(Fig. 2 and Table 1). When rat a9 was co-expressed with human

a10, the current was readily detectable (Fig. 2 and Table 1) and at

a level similar to that seen after co-injection of rat a9 with rat a10

subunits (Fig. 1A bottom and Fig. 1B); the average current

amplitude ranged between 7326155 nA and 97556596 nA,

depending which of three batches of oocytes was used. There

are at least two possible reasons for the low functional expression:

A) rat a10 co-expressed with human a9 produced functionally

impaired receptors or B) human a9 subunits are not translated

efficiently in oocytes.

Inefficient translation of the human a9 subunit appears
to limit assembly of functional human a9/human a10
receptors

When cRNAs encoding human a9 and human a10 subunits

were co-injected at a 1:1 ratio, the IACh rarely reached 1 mA with

the average response equal to 142623 nA. Oocytes injected with a

5:1 ratio had currents averaging 51716748 nA. Injections at a 1:5

ratio produced oocytes with low average IACh amplitude equal to

6.563.9 nA (Fig. 3 and Table 2). Thus, more abundant cRNA for

the a9 subunit leads to substantially enhanced functional

expression of a9a10 nAChRs. This increased functional expres-

sion suggests that translation of the human a9 subunit is likely a

limiting factor in the assembly of a9a10 receptors.

AMV insertion and expression of human a9-containing
nAChRs

Previous investigators have shown that incorporation of 59UTR

of the Xenopus laevis b-globin gene facilitates the in vitro translation

of different proteins in oocytes and other expression systems [50],

[51], [54]. In pGEMHE and pSGEM vectors the 59 leader

sequence of the receptor subunit includes the 59UTR of X. laevis b-

globin, restriction sites of the vector’s multiple cloning site, and the

native 59UTR of the subunit.

Plant viruses use host translational machinery for replication.

RNAs of many plant viruses possess efficient translation enhancers

[55] that can be used in order to improve the translation of

recombinant proteins or expression of receptors in heterologous

systems. Among such enhancers are untranslated regions from

different viral RNAs. The 59UTR from alfalfa mosaic virus

RNA4, the 39UTR of brome mosaic virus and the 59leader of

tobacco mosaic virus were shown to be able to enhance the

mRNA translation of foreign proteins [56], [57], [58], [59], [60].

In an attempt to improve the translation of human a9/a10 we

modified the 59leader sequence of human a9 and human a10

subunits by introducing the 59UTR of RNA4 of alfalfa mosaic

virus (AMV) into the multiple cloning site of the pSGEM vector

(Fig. 4B) between SacII and EcoRI sites, after the 59UTR of b-

globin and in front of the nAChR subunit.

The AMV incorporation improved the functional expression of

human a9 homomeric receptors by 37- to 101-fold, and the

human a9a10 heteromeric receptors by 41- to 250-fold, depend-

ing on the batch of oocytes used (Fig. 5 and Tables 3 and 4).

Figure 1. Comparison between the levels of exogenous
expression of rat and human a9-containing nAChRs in X. laevis
oocytes. ACh-gated currents were measured in voltage-clamped
oocytes as described in Methods. (A) Representative traces from an
oocyte injected with human a9 and human a10 cRNA (top) and rat a9
and rat a10 cRNA (bottom). Robust currents were observed with rat
cRNA; but only small currents were observed with human cRNA. (B)
Comparison of the averaged current responses evoked by 100 mM ACh
applications from oocytes expressing human a9a10 and rat a9a10
receptors. The mean current amplitude was 3063 nA (n = 7 oocytes) for
human a9a10 and 806761638 nA (n = 7) for rat a9a10, p,0.005. Error
bars indicate SEM.
doi:10.1371/journal.pone.0064655.g001

Human a9* nAChR Expression Is Dependent on 59 UTR
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Despite the variability in the expression levels of human a9 and

a9a10 receptors, which is also commonly observed for other

nAChRs, the large improvement in expression was highly

reproducible.

Discussion

In this study, we determined that the functional expression of

human a9 subunits of nAChRs in X. laevis oocytes depended on

the composition of its 59untranslated region. By introducing the 59

leader sequence of alfalfa mosaic virus RNA4 into the multiple

cloning site of the pSGEM vector just preceding the coding region

of human a9 or a10 subunits, we created a vector that gave ,70-

fold higher expression levels of a9 homomeric receptors and ,80-

fold higher expression levels of a9a10 heteromeric receptors

compared to those achieved with unmodified vectors.

Since the early demonstration that mRNA encoding nicotinic

receptors from Torpedo californicus electric organ could produce

functional receptors when it is injected into oocytes of X. laevis

[61], [62], oocytes have frequently been used as an exogenous

expression system to study the pharmacology of nAChRs. In most

cases, the receptor subunits assemble into functional receptors

[36], [63], [64]. However, sometimes the cRNA injected into

oocytes fails to yield functional receptors. For example, when

cRNA encoding the a6 subunit is co-injected with cRNA encoding

the b2 or b4 subunit, there is little or no detectable ACh-gated

current [65]. In our laboratory, the unmodified cRNA of human

a9 nAChRs failed to produce functional receptors. Other authors

also reported difficulties in expressing human a9-containing

nAChRs [38], [39]. The ability of cRNAs of rat a9 and human

a10 subunits, but not those of human a9 and rat a10, to form

receptors with high levels of functional expression suggests that

human a9 is a limiting factor in the assembly of functional

receptors.

There are several possible factors that can influence the level of

functional expression of nAChRs in the X. laevis oocyte system.

First, the cRNA composition might prevent or interfere with

efficient translation. For example, formation of secondary struc-

tures may take place that prevent efficient binding of cap-binding

proteins and initiation of translation [44]. The nucleotide

sequence just preceding the start codon is important for translation

initiation. In eukaryotes, the optimal sequence surrounding the

start codon is GCCA/GCCaugG [66]. If the purine at the 23

position is changed to a pyrimidine, the efficiency of translation

initiation might be reduced. Second, a high G+C content of

Figure 2. Comparison between the level of expression of
human a9/rat a10 (ha9ra10) and rat a9/human a10 (ra9ha10)
receptors. Receptors assembled from injection of cRNAs encoding
subunits from different species have different levels of functional
expression. ha9ra10 nAChRs were expressed with low efficiency
compared to ra9ha10. Results from three batches of oocytes are
shown. All oocytes of a given batch were injected on the same day and
recordings performed 2 days later. Values of mean current amplitudes
are given in Table 1. **p,0.01. Error bars indicate SEM.
doi:10.1371/journal.pone.0064655.g002

Table 1. Comparison of the functional expression of
receptors following co-injection of cRNA for subunits of
different species.a

Oocyte Batch
# Receptor

Mean current
amplitude
(nA) SEM n

1 ha9ra10 5 1 4

1 ra9ha10 732 155 5

2 ha9ra10 21 7 7

2 ra9ha10 8200 774 6

3 ha9ra10 50 15 6

3 ra9ha10 9755 596 6

aGraphical representations of these results are provided in Fig. 2.
doi:10.1371/journal.pone.0064655.t001

Figure 3. Comparison of functional receptor expression
following injection of different ratios of receptor subunit
cRNA. Differing subunit ratios of cRNA were injected into oocytes and
the resulting levels of expression of functional receptors were
compared. Recordings were performed 2 days after injection. The data
from oocytes of four different batches were combined to determine the
mean current amplitudes. Values are given in Table 2. A one-way
ANOVA test with Tukey’s post-hoc comparison indicated a significant
difference between ha9(1):ha10(1) vs. ha9(5):ha10(1), p,0.001, and
between ha9(5):ha10(1) vs. ha9(1):ha10(5), p,0.001. There was no
significant difference between ha9(1):ha10(1) and ha9(1):ha10(5),
p.0.05.
doi:10.1371/journal.pone.0064655.g003

Human a9* nAChR Expression Is Dependent on 59 UTR
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mRNA can halt efficient transcription and translation by

formation of secondary structures. For example, the gene encoding

human acetylcholinesterase (AChE) is highly G+C rich (65%)

which results in the formation of a secondary structure in the

59region [67] that serves as an attenuator of transcription. In

addition, two highly homologous and highly G+C-rich genes

encoding Bungarus and rat acetylcholinesterases have strikingly

different rates of transcription with approximately equal transla-

tion in oocyte functional tests [68]. The difference in the

transcription rate is believed to be determined by the differences

in the coding sequences.

The G+C content of human a9 mRNA is 49 % for the gene-

coding sequence compared to 51% for rat mRNA. a10 subunits

are richer in G+C content with a 65% in the human and 59% in

the rat subunit. Thus, the G+C content of human a9 is only

slightly lower than its rat counterpart. Based on the relatively equal

G+C composition of human and rat a9 mRNAs and high

homology in nucleotide sequences of gene-coding regions it is

unlikely that G+C content contributes to the low level of functional

expression observed from unmodified human a9 subunit in our

study.

The UTR is another factor influencing translational efficiency.

It was shown to be important for the translation of different

proteins in different expression systems. Mutations in the UTR

affect the translation of aspartyl protease BACE1 protein and

HT3A receptor [69], [70], [71]. When the 59UTR of BACE1 is

present, the protein, but not mRNA, level in transfected HEK293,

COS7 and H4 cells is reduced as much as 90%. The inhibitory

effect of the 59UTR is due to the upstream open reading frame

Table 2. Comparison of the functional expression of
receptors upon co-injection of different ratios of cRNA for
specific subunit.a

Receptor
Mean current
amplitude (nA) SEM n

ha9(1):ha10(1) 142 23 23

ha9(5):ha10(1) 5171 748 21

ha9(1):ha10(5) 6.5 3.9 19

aGraphical representations of these results are provided in Fig. 3.
doi:10.1371/journal.pone.0064655.t002

Figure 4. Comparison of the 59 untranslated regions in human a9, human a10, rat a9, and rat a10 subunits. (A) Native 59UTRs of
subunits are between the restriction site and the start codon. (B) The modifications made to the 59 untranslated region of human a9 and a10
subunits are shown. The 59UTR of RNA4 of the alfalfa mosaic virus coat protein was inserted into the multiple cloning site of the pSGEM vector
between SacII and EcoRI sites. The subunit-encoding sequence is between the EcoRI and XhoI sites.
doi:10.1371/journal.pone.0064655.g004

Human a9* nAChR Expression Is Dependent on 59 UTR
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(uORF) [69], [71]. Due to their importance, the UTR regions are

frequently modified to improve translation. For example, it

became a common practice to include 59- and 39- UTRs of

Xenopus b-globin into expression vectors to flank the gene-coding

region [51]. UTRs of viruses have also been used to replace native

UTRs, which results in improved yields of translated proteins or

improved functional expression of receptors. For example, the

59UTR of tobacco mosaic virus enhances the translation of

chloramphenicol acetyltransferase and b-glucuronidase in tobacco

mesophyll protoplasts, E. coli, and Xenopus oocytes [56], [58], [59],

Figure 5. AMV improves the level of functional expression of a9-containing nAChRs. (A) Representative traces and (B) comparisons of the
levels of functional expression of homomeric human a9 receptors encoded by cRNA without (A, top) and with (A, bottom) AMV. The results are from
three different batches of oocytes, each isolated from a different frog and recorded on 3rd day after injection, are presented. (C and D) Comparison of
the level of expression of heteromeric receptors. Recordings were conducted on the second day after injection. Values for mean current amplitude
are shown in Tables 3 and 4. *p,0.05; **p,0.01. Error bars indicate SEM.
doi:10.1371/journal.pone.0064655.g005

Human a9* nAChR Expression Is Dependent on 59 UTR
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[72]. The facilitatory effect of the 59leader is due to recruitment of

eukaryotic initiation factor 4G indirectly via heat shock protein

101 [73].

The alfalfa mosaic virus is an RNA virus consisting of three

genomic RNAs and one subgenomic RNA (RNA4). RNA1 and

RNA2 encode the replicase proteins P1 and P2, whereas RNA3

encodes viral movement protein (MP). RNA4 is 881-nucleotides

long, with a 661-nucleotide long coding sequence that encodes a

coat protein required for infectivity and replication of the virus

[74]. The 59UTR of RNA4 is 39-nucleotides long, uracil rich and

was shown to be able to improve the translation of foreign

proteins. Computer-based structure prediction as well as nuclease-

sensitivity analysis indicate the unstructured character of the

59leader sequence, which can facilitate cap-independent transla-

tion initiation [75]. This fact might be relevant if cap-dependent

translation initiation of unmodified human a9 subunit is disrupted.

The substitution of the native 59UTR with a 37-base-pair AMV

RNA4 leader was shown to improve the translation of several

proteins [58], [72]. For example, in vitro translation of human

interleukin 1b and barley a-amylase improved as much as 35-fold

[59]. Also, the introduction of AMV into the 59leader of GABAA

receptors improved the expression of those receptors in X. laevis

oocytes [72].

The 59UTRs of human nicotinic receptors may be an important

factor for receptor function, considering evidence from other

systems suggesting that this region could have the regulatory

elements important for translation initiation [69], [76], [77]. Many

human nAChR subunits have upstream uATG repeats (uATGs)

and upstream open reading frames (uORFs). For example, human

a9 has an uORF with a length of 36 codons. uORFs are involved

in translational regulation of oncogenes by suppressing the level of

translation [78], [79]. It is believed that the uORF causes the small

ribosomal subunit to stall and therefore halt translation initiation

[80]. How the uORF affects the translation of the a9 subunit is an

open question. When cRNAs encoding nicotinic receptor subunits

are injected into oocytes at a 1:1 molar ratio, it is assumed that the

two subunits will be translated with equal efficiencies so the

amount of protein of the two subunits will also be produced in a

1:1 ratio. However, different receptor subunits might be translated

with different efficiencies.

mRNA stability might be a contributing factor to the observed

different levels of expression between unmodified human a9-

containing receptors and rat a9-containing receptors. One of the

factors that determines the stability of mRNA is located within 39-

end of mRNA. In particular, the poly(A) tail is required to ensure

high functional stability of the mRNA as was shown for rabbit

globin protein [81], [82]. The 39UTR of the human a9 subunit

had a short (6 nucleotides) native 39UTR, followed by the 39 UTR

of Xenopus b-globin, followed by a poly(A) tail. In contrast, the

modified construct incorporated the 59 UTR of the alfalfa mosaic

virus RNA4. This addition may slow degradation of the mRNA.

Another factor that may contributes to the fast turnover of

mRNA is an AU-rich region at 39-untranslated region. Many

RNA-binding proteins such as ELAV-like proteins (HuD, Hel-N1,

HuC, HuR) bind to AU-rich regions at the 39-untranslated region

of RNA and prevent degradation of mRNA [83]. Human a9 as

well as rat a9 subunit 39UTRs have six non-overlapping AUUUA

motifs separated by non-AU nucleotides in a U-poor region. In

addition, they have one AAAAUUUAAAA motif.

A second possibility for low expression level of receptors in

oocytes is the lack of postrtranslational modifications in the oocyte

expression system. The possible posttranslational modifications of

nAChRs include proteolytic cleavage, disulfide bond formation,

glycosylation, palmitoylation, fatty acid acylation, phosphoryla-

tion, amidation, hydroxyprolination, proline isomerization, etc.

[84], [85], [86], [87]. The lack of functional expression of a6-

containing receptors is likely due to posttranslational mechanisms,

insofar as functionality is achieved when the C-terminus of the a6

subunit is replaced with the C-terminus of an a3 subunit implying

that important regulatory elements for efficient receptor function

are located outside of ligand-binding domain [65].

A third possibility is the lack of appropriate chaperones in

oocytes. There are several chaperones described for nicotinic

receptors such as BiP, calnexin, Erp57, and RIC3 [88], [89],

which facilitate proper folding and improve functional expression

of receptors. Nicotine exposure causes an upregulation of nicotinic

AChRs in brain as well as in vitro, and a possible explanation of this

effect is through the chaperoning by nicotine [90], [91], [92]. The

RIC-3 is a chaperone that upregulates the expression of a7

nAChRs in oocytes [93], [94], [95], [96]. Interestingly, RIC-3 has

no effect on the expression of a9 receptors [40], [97].

There are few reports of successful expression of a9 receptors in

mammalian cells [98]. GH4C1 cell line derived from pituitary

gland was successfully transfected with rat a9a10 receptors [41].

Here, the average ACh-evoked currents ranged between 16 pA to

300 pA. Also, an a9/HT3a chimera, where the N-terminus of rat

a9 was fused to the C-terminus of mouse HT3a receptor,

produced functional receptors [99]. Mouse a9a10 receptors were

successfully transfected into HEK293 cells [98]. The problem of

the lack of expression of human a9 receptor in mammalian cell

lines was addressed in several reports [40], [98], [99], [100]. It was

shown that co-transfection of human a9 and a10 subunit with

AChR-associated proteins rapsyn and chaperone RIC-3 in CL4

Table 3. Insertion of AMV improves the expression of human
a9 homomeric receptors.a

Oocyte Batch
# Receptor

Mean current
amplitude
(nA) SEM n

1 a9 7 4 3

1 a9AMV 268 83 5

2 a9 5 1 5

2 a9AMV 372 52 6

3 a9 8 2 5

3 a9AMV 785 167 10

aGraphical representations of these results are provided in Fig. 5.
doi:10.1371/journal.pone.0064655.t003

Table 4. AMV improves the expression of human a9a10
heteromeric receptors.a

Oocyte
Batch # Receptor

Mean current
amplitude
(nA) SEM n

1 ha9a10 43 6 5

1 ha9AMVa10AMV 10813 1739 10

2 ha9a10 60 11 5

2 ha9AMVa10AMV 6999 1627 5

3 ha9a10 237 41 8

3 ha9AMVa10AMV 9763 1379 8

aGraphical representations of these results are provided in Fig. 5.
doi:10.1371/journal.pone.0064655.t004
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cells increased the cytosolic calcium level after application of

100 mACh but no measurements of ionic current from a9-

containing receptors were reported [100]. It is still an open

question as to whether the lack of functionality in mammalian cells

is due to inefficient transcription, translation, improper folding,

and lack of chaperoning or posttranslational modifications or a

combination of these.

In our current study, we observed the effect of the 59UTR of the

human a9 subunit on the expression of functional receptor. We

conclude that the inefficient expression of human a9-containing

receptors can be improved by modifying 59UTR of the cRNA

encoding the subunit. It is possible that the initiation codon of the

original unmodified subunit is in unfavorable form such that the

small ribosomal subunit fails to associate with the RNA. By

including the 59UTR of RNA4 of alfalfa mosaic virus, we were

able to construct an RNA, which when expressed in X. laevis

oocytes, can be used to screen new ligands which bind to the a9*

receptor (* denotes possibility of other subunits). The reasons for

the poor ability of a9 receptors (both rat and human) to be

expressed in the mammalian cells still remain to be explored.

Transcriptional and translational mechanisms are likely in-

volved in regulation of human and rat a9 subunit expression in

native tissues. In the rat adrenal medulla expression levels of a9,

a3, and a7 subunits were determined by quantitative PCR [19]

and the level was lowest for the a9 subunit. However, the same

study showed that transcription of a9, but not a3 and a7 subunits,

is upregulated in response to stress. Regulation of transcription

and translation of nAChRs may also be relevant in the context of

smoking. The concentration of nicotine in active smoker plasma

can be 100 nM to 1 mM. Chronic exposure to nicotine leads to

activation and desensitization of nAChR subtypes including a4b2

and a7. As a result, the level of expression of a4b2 nAChRs is

increased in the brain [101]. Smoking is also associated with

carcinogenesis, and nicotine-derived metabolites NNK and NNN

are considered carcinogenic in lung, breast, and bladder cancers.

a9 receptors mediate cell proliferation of breast cancer cells, and

increased a9 nAChR subunit mRNA levels were observed in

breast tumor tissues [102]. Moreover, a9-nAChR mRNA

expression was higher in advanced-stage tumors. It was also

shown that nicotine upregulates the mRNA as well as protein level

for a9 receptors in breast tumor tissue [102]. The mechanism by

which nicotine treatment leads to this upregulation remains

elusive. a9 subunit expression seems to be important for cell

proliferation, therefore, the mechanisms, whether transcriptional

or translational, that control subunit expression might open

exciting new avenues for control of tumorigenesis.

Our findings suggest the involvement of 59-untranslated region

in the efficient expression of human a9-containing receptors in

oocytes. It remains to be investigated whether 59untransated

region contributes to the regulation of translation of a9 subunit in

vivo.
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