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Abstract 

Background:  Wearable robots have been shown to improve the efficiency of walking in diverse scenarios. How-
ever, it is unclear how much practice is needed to fully adapt to robotic assistance, and which neuromotor processes 
underly this adaptation. Familiarization strategies for novice users, robotic optimization techniques (e.g. human-in-
the-loop), and meaningful comparative assessments depend on this understanding.

Methods:  To better understand the process of motor adaptation to robotic assistance, we analyzed the energy 
expenditure, gait kinematics, stride times, and muscle activities of eight naïve unimpaired participants across three 
20-min sessions of robot-assisted walking. Experimental outcomes were analyzed with linear mixed effect models and 
statistical parametric mapping techniques.

Results:  Most of the participants’ kinematic and muscular adaptation occurred within the first minute of assisted 
walking. After ten minutes, or 880 steps, the energetic benefits of assistance were realized (an average of 5.1% (SD 
2.4%) reduction in energy expenditure compared to unassisted walking). Motor adaptation was likely driven by the 
formation of an internal model for feedforward motor control as evidenced by the reduction of burst-like muscle 
activity at the cyclic end of robotic assistance and an increase in arm-swing asymmetry previously associated with 
increased cognitive load.

Conclusion:  Humans appear to adapt to walking assistance from a wearable robot over 880 steps by forming an 
internal model for feedforward control. The observed adaptation to the wearable robot is well-described by existing 
three-stage models that start from a cognitive stage, continue with an associative stage, and end in autonomous task 
execution.
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Background
Pioneering advances in wearable robotic technology 
demonstrated that carefully designed assistive devices 
can improve the efficiency of human walking. Various 
powered (e.g. [1–5]) and unpowered (e.g. [6–8]) wearable 
robots have been shown to reduce the energy expendi-
ture during level ground walking, while carrying loads 
[9, 10], or walking uphill [11, 12]. Other devices, built to 
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address the needs of individuals with a gait disorder, have 
successfully reduced the mobility impairment associated 
with stroke [13] or incomplete spinal cord injury [14].

These achievements depend on the users’ ability to 
integrate the robotic assistance into their movements, or 
in other words: learn to walk with a wearable robot.

Walking is a movement that we practice and refine 
over years, sometimes at a rate of several thousand steps 
an hour [15]. An external alteration to this long-learned 
movement—for example, the physical assistance from 
a robot—will trigger a process of gradual adaptation as 
individuals form an internal model of the new movement 
[16]. There is compelling evidence that locomotor adap-
tation is accompanied by an improvement in the econ-
omy of walking [17–19].

Studies evaluating the economy of walking with a robot 
typically allotted time for participants to adapt during a 
familiarization period. Common familiarization dura-
tions ranged from 5 [5] to 30 min [10] before the start of 
the core protocol. These familiarization periods might 
have been motivated by prior findings showing that ener-
getic benefits nearly doubled after approximately 20 min 
of training time as participants adapted to the robotic 
assistance [20]. The range of longer and shorter training 
durations was likely driven by time and feasibility con-
straints. All of these training durations were still substan-
tially shorter than previously found adaptation periods of 
45 min [21] or even 90 min [19].

In the their study, Sawicki and Ferris [19] showed that 
an initial 7% increase in energy expenditure within the 
first minutes of walking with robotic assistance improved 
to a 10% reduction after three 30 min sessions of walking. 
This change of 17% is on the same order of magnitude as 
the energetic benefits of even the latest wearable robots 
[22], highlighting the importance of user adaptation as 
major confounder to study results.

So far, studies investigating motor adaptation to walk-
ing with a wearable robot were primarily focused on 
pneumatic [19–21] and electrohydraulic [23] ankle 
devices. These devices were tethered, lab-based emu-
lators, relying on actuation principles and assistive 
strategies distinctly different from robots designed for 
real-world applications [22, 24]. Panizzolo and col-
leagues [25] recently provided first insights into the 
energy expenditure during motor adaptation to a more 
application-focused, untethered exosuit that assisted hip 
extension. Adaptation was reported to take about 40 min 
of training time divided into multiple sessions [25], but 
feasibility constraints confined the authors to investigat-
ing metabolic adaptation only. The potentially underly-
ing changes in muscle activation, gait kinematics, and 
their link to neuromotor control were not captured. 
Understanding the dynamics of these factors might be 

crucial to identify biomechanical markers that evidence 
motor adaptation. These biomechanical markers can 
help understand the relative contributions of feedback 
and feedforward strategies to motor control while walk-
ing with a robot. They might also help to understand the 
motor adaptation that is driven by objectives other than 
the reduction of energy expenditure [26]. While current 
evidence indicates that minimizing energy expenditure 
could be the primary objective of motor adaptation in 
many cases [17, 18], other objectives such as gait stability 
[26] or preserved kinematics [27] might be prioritized at 
times.

We seek to better understand how users adapt to 
assistance from a wearable robot. Such an understand-
ing would be essential to inform effective familiarization 
paradigms for novice users. Another important benefit 
of knowing the adaptation time could be that the assis-
tive efficacy of wearable devices is assessed only after 
users have fully adapted to the assistance. Alternatively, 
factoring in training time and the resulting degree of 
adaptation could allow for a more complete discussion of 
results in comparative reviews of studies involving wear-
able robots [22]. Optimization approaches in which the 
robotic controller is adapted in parallel to human motor 
adaptation, either in a “human-in-the-loop” setup [28] 
or iteratively offline [29], would also benefit from an 
improved understanding of motor adaptation to robotic 
assistance. Finally, an understanding of time needed for 
adaptation could help to manage user expectations dur-
ing the initial use of wearable robots. One can specu-
late that the uptake of wearable robots might have been 
slowed down by a mismatch between high user expecta-
tions and their poor initial performance.

With this study, we aimed to investigate how naïve 
individuals adapt to walking assistance from a wearable 
robot, using the Myosuit as model device. The Myosuit 
assists walking in essential functions [30] by support-
ing the user’s bodyweight and progression from weight 
acceptance into late stance (see Fig. 1). On each leg, one 
cable is routed across the hip and knee joints—exploiting 
natural extension synergies [31]—and works in parallel 
with the muscles which have the largest contribution to 
bodyweight support during walking [32].

Eight male participants (age 27 (22–41) yrs) completed 
a three-session protocol with 20 min of Myosuit-assisted 
walking in each session and two 5 min periods of walk-
ing with zero forces applied by the Myosuit (zero-force 
mode) at the beginning and end of each session. They 
were blinded to the goal of the study. The outcome meas-
ures were chosen to connect the processes underlying 
metabolic adaptation to measures previously associated 
with neuromotor control. Specifically, we aimed to relate 
changes in muscular activity and joint kinematics to 
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changes in spatiotemporal stride characteristics [33–35] 
and arm swing asymmetry (ASA) [36]. The latter two 
measurements provide an initial estimate of the per-
ceived and actual stability and cortical load while learn-
ing to walk with a wearable robot.

Methods
Participants
Eight healthy males, age 27 (22–41) yrs, height 180.1 
(172.5–186.5) cm, mass 76.2 (72–82.3) kg, mean (range), 
were recruited as a local convenience sample and partici-
pated in the study after they gave their informed consent. 

We aimed to recruit a homogeneous participant popula-
tion with respect to gender, height, and mass to reduce 
the overall experimental variability and circumvent the 
need to individually adapt the assistance from the Myo-
suit for each participant. The study design and protocol 
were approved by the institutional review board of ETH 
Zurich (EK 2019-N-119). The participants had no previ-
ous experience in walking with a wearable robot.

Wearable prototype
The wearable prototype used in this study (Myosuit Beta, 
MyoSwiss AG, Switzerland, see Fig.  1) was designed to 
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Fig. 1  A Participants walked on a split-belt treadmill with integrated force plates at a fixed speed of 0.9 m/s and inclination of 10 degrees. A camera 
system tracked the position of passive reflective markers (light blue). EMG activity (green) was measured on the right leg and a respirometer 
collected breath-by-breath gas exchange. Tendon forces were measured with a load cell (red) attached to the distal anchor point of the cable on 
the knee orthosis. B The Myosuit assisted hip and knee extension between approx. 10 to 40% of the gait cycle. During the remaining part of the gait 
cycle, zero forces are applied. C Exemplary picture of a study participant in the study setting. Treadmill handrails have been removed for visual clarity 
but were in place for the experiments
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assist weight-bearing and forward / upward progression 
during the stance phase of walking.

Assistance to the legs was provided from a backpack-
style motor driver unit that housed two electric motors 
with reduction gears, a battery, and the control electron-
ics. On each leg, a cable was routed from the driver unit 
posteriorly across the hip joint, laterally across the thighs, 
and anteriorly crossed the knee joint supported by a cam. 
The cables were anchored to a 3D-printed polymer knee 
orthosis attached to the thigh and shank. Cables were 
made from ultra-high molecular weight polyethylene.

Inertial Measurement Units (IMUs) were placed on 
both shank and thigh segments and in the motor driver 
unit to measure linear accelerations and rates of rotation. 
Based on the IMU sensor data, inter-limb angles and 
trunk posture were estimated using a five-segment body 
model. Heelstrike and toe-off events were detected using 
an algorithm described in [37] and used in conjunction 
with joint angle estimates to time the cyclic onset and 
duration of assistive forces.

A textile upper body vest with a waist belt was used 
to interface the motor driver unit and the knee orthoses 
to the participants. Two passive elastomer springs that 
anteriorly crossed the hip joint were only marginally 
tensioned to counteract downward slipping of the knee 
orthoses.

Robotic assistance
Two different control modes were used during the exper-
iments. In assistive mode, a peak cable force of 212  N 
(measured at the motor winch) was applied between 
10 and 40% of the gait cycle, or approximately weight-
acceptance and mid-stance, resulting in a distal cable 
anchor force of 50 to 105 N. During force application, the 
cable force was further adapted relative to the momen-
tary knee angle (see Fig. 1, and [38] for a more detailed 
description), where more knee flexion resulted in higher 
forces. These assistive parameters, constant across all 
participants of this study, were chosen based on previ-
ous human-in-the-loop optimization experiments with a 
pilot participant representative of this study’s population 
[39]. In zero-force mode, the cables were driven to avoid 
slack and minimize interaction forces.

Experimental protocol
Participants completed a total of three identical ses-
sions separated by at least 48  h, to allow for motor 
memory consolidation and regeneration [40].The dura-
tion between the first and the third visit did not exceed 
20 days for any participant in line with previous studies 
[25]. Each experimental session started with a four-min-
ute period of quiet standing to approximate base metab-
olism and baseline electromyography (EMG) activity. 

Afterwards, participants walked for five minutes with 
zero-forces applied, followed by 20 min in assistive mode 
and another five minutes in the zero-force mode. We did 
not warn participants before changing the control mode 
(assistance/zero-force) of the Myosuit, but only informed 
them to expect “different levels of assistance over the 
course of the experiment”. The walking speed was fixed at 
0.9 m/s throughout the experiment and the walking sur-
face was inclined at 10°. This setup was chosen since dur-
ing uphill walking the total positive power of the hip is 
larger than during level walking [41] and thus the effects 
of the Myosuit’s assistance were expected to be more 
prominent. The fixed gait velocity was chosen to mini-
mize overall variability and chosen to allow for continu-
ous uphill walking for 30 min without excessive fatigue. 
During walking trials, participants were asked to only 
touch the treadmill’s handrails in an emergency. Before 
sessions, participants were instructed to withhold any 
food and liquids except for water for at least eight hours 
prior to the experiment and to refrain from strenuous 
exercise for at least 24 h prior to the experiment.

Data collection
Participants walked on a split-belt treadmill (V-Gait Dual 
Belt, Motekforce Link, The Netherlands) while wearing 
the Myosuit (see Fig.  1). Ground reaction forces were 
recorded with two embedded force plates at 1000  Hz 
and used for stride segmentation. An array of ten cam-
eras (Bonita B10, VICON, UK) was used to track the 
spatial movement of 28 passive reflective markers placed 
on the Myosuit and anatomic landmarks at 100 Hz (see 
Supporting Material for detailed description of marker 
placement).

The myoelectric activities of m. gluteus maximus 
(GMAX), m. biceps femoris (BF), m. rectus femoris (RF), 
m. vastus lateralis (VAS), m. gastrocnemius (GAS), m. 
soleus (SOL) and m. tibialis anterior (TA) were unilater-
ally recorded throughout the experiment on the right leg 
at 2000 Hz. Surface electrodes (Hydrogel/Ag/AgCl, Ken-
dall Arbo H124SG, Covidien, Ireland) were placed in a 
bipolar configuration with an inter-electrode distance of 
two centimeters following standard procedures [42]. An 
additional ground reference signal was measured at the 
base of the wireless EMG transmitters (Ultium-EMG, 
Noraxon, USA). Breath-by-breath respiratory data were 
collected with a portable gas analyzer (K5, COSMED, 
Italy). The participants’ heart rate was measured with 
a chest strap (HRM Dual, GARMIN, USA). The linear 
forces of the right Myosuit cable were measured with a 
load cell (Miniature S-Beam FSH04416, Futek Advanced 
Sensor Technology, USA) attached to the distal anchor 
point of the cable (see Fig. 1) at 100 Hz to allow for the 
stride-by-stride identification of the Myosuit assistance 
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phase. All measurements were synchronized with analog 
trigger signals.

Data analysis
Ground reaction force measurements were filtered 
(Parks-McClellan, 22  Hz lowpass) and used to identify 
heelstrike and toe-off events assuming a threshold of 
40  N. The gait events were further used to divide other 
measurement data into individual gait cycles, defined as 
heelstrike to ipsilateral heelstrike, and stance and swing 
phase. The time difference between two consecutive ipsi-
lateral heelstrikes was used to calculate stride time over 
the experimental time of the three sessions. Stride time 
variability was calculated as the coefficient of variation of 
the stride time.

Joint angles were calculated based on marker kinemat-
ics using biomechanics simulation software (OpenSim 
4.0) and an individually scaled version of the Gait 2354 
lower extremity model [43] in an inverse kinematics 
approach. The average joint angle curves for the zero-
force mode were obtained by averaging across all steps 
in both the first and second zero-force conditions, to 
account for potential order effects.

Raw EMG data were filtered (Parks-McClellan, 
20–400  Hz bandpass), the baseline activity was sub-
tracted, and a moving root-mean-square across a time 
window of 50 ms was calculated. The resulting data were 
then normalized by the mean of the uppermost 5% of 
EMG activity for the respective muscle and session fol-
lowing previous literature [44]. The average EMG acti-
vation curves for the zero-force mode were obtained by 
averaging across all steps in both the first and second 
zero-force conditions.

ASA was calculated as the stride-by-stride ratio of the 
absolute trajectory lengths of the two reflective markers 
placed on the left and right wrist following [36], where 
0% represents perfect symmetry and positive values 
left-hand dominant arm swing. For visual clarity, data 
were then filtered with a combined median (window 
size n = 3) and Savitzky-Golay filter (polynomial order 
p = 3, n = 101) over piece-wise continuous experimental 
segments (first period of zero-force mode (min − 5…0), 
assistance (min 0–20) and second period of zero-force 
mode (min 20–25)).

Total energy expenditure was approximated from res-
piratory data via indirect calorimetry using the formula 
of Péronnet and Massicotte [45]. We used the respiratory 
exchange ratio as a proxy for the respiratory quotient 
(RQ) and verified that participants were in an aerobic 
exercise regimen (RQ < 1) during the experiments. The 
resting energy expenditure during quiet standing was 
subtracted from the total energy expenditure to obtain 
the physical activity energy expenditure that was 

reported in this paper. The average total energy expendi-
ture for the zero-force mode was obtained by averaging 
across both zero-force conditions, to account for poten-
tial order effects, such as fatigue.

Fitting and statistical analysis
Minute-by-minute mean relative change in energy 
expenditure ∂EE was averaged over all participants and 
then fitted with a two-term exponential model with four 
fit parameters 

{
a, b, τ2, c

}
 for each session:

With the first exponential term accounting for the 
physiological respiratory delay with a time constant 
τ1 = 42s [46] and the second term capturing the motor 
adaptation process with τ2 as a fit parameter.

For subsequent statistical analysis, a linear mixed 
effects model was fitted to the energy expenditure data 
using least squares regression (Matlab, USA). The model 
included “session” (possible values: {1,2,3}) and “condi-
tion” ({“zero-force”, “assistance”}) as dummy-encoded, 
categorical fixed effect explanatory variables, “time of 
assisted walking” (0,1200) as continuous regression varia-
ble, and a term “participant” ({P1,…,P8}) as random effect 
variable. In addition, an interaction between “condition” 
and “time of assisted walking” was considered.

For the analysis of EMG data, the same linear mixed 
effects model was fitted to the mean EMG activity in the 
period from 10 to 40% GC (all muscles), or between 30 
and 40% for the detailed analysis of burst activity (RF and 
VAS). In the EMG models, no interaction terms were 
considered since an a priori likelihood ratio test indicated 
that these terms did not increase the variance explained 
by the model.

ASA and stride time were analyzed with a linear mixed 
effects model with two dummy-encoded categorical fixed 
effect variables “session” ({1,2,3}) and “condition”, where 
the latter encoded minute-by-minute categories through-
out the assisted section of the experiment ({MIN1, MIN2, 
MIN3,…,MIN20}) and additional categories in the first 
and second period of walking in zero-force mode {ZF1, 
ZF2}. This modelling approach was chosen to simplisti-
cally reflect the anticipated, less continuous changes in 
ASA and stride time and capitalized on the very accurate 
measurements of these outcomes.

Joint angle kinematics were compared in a priori 
defined contrast using a 1-D extension of conventional 

∂EE(t) = a exp
(
−

t
42

)

︸ ︷︷ ︸

respiratory delay

+ b exp
(

−
t
τ2

)

︸ ︷︷ ︸

motor adaptation

+ c
︸︷︷︸

steady−state EE reduction
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paired t-tests (statistical parametric mapping, based on 
random field theory [47]).

Results
Metabolic energy expenditure
When walking with assistance from the Myosuit the 
participant’s energy expenditure decreased with time 
( F(1, 509) = 11, p < 0.01 , see Fig.  2 “Within-Session 
Adaptation”). This within-session adaptation is well-
described with a two-term exponential function—one 
term for the physiological respiratory delay with τ1 = 42s 
[46] and one for motor adaptation with τ2 as a fit param-
eter. The adaptation was faster in later sessions com-
pared to earlier sessions (see Fig.  2 “Motor Learning”). 
Across sessions, the fitted energy expenditure gradually 
approached the limit we expect when motor learning is 
complete and energetic benefits are realized only after 
the physiological delay.

Myosuit assistance reduced the participants’ energy 
expenditure compared to walking with the Myosuit in 
zero-force mode ( F(1, 509) = 20, p < 0.001 ). The largest 
average reduction of 6.5% (standard deviation, SD: 3.8%) 
was observed in minute 10 of assisted walking (Session 2, 
see Fig.  2). Participants’ individual reductions of energy 
expenditure ranged from 2 to 12% at this point of the 
protocol.

Walking kinematics
Myosuit assistance—applied between 10 and 40% of the 
gait cycle—led to more extension of the participants’ 
stance leg. We observed more hip extension, more knee 
extension, and a trend towards more ankle plantarflex-
ion (see Fig.  3, horizontal lines indicate phases of sta-
tistically significant differences compared to zero-force 
kinematics) when compared to walking with the Myo-
suit in zero-force mode. The knee was more extended 

0 176 352 528 704 880 1584 1760
Steps (-)

Fig. 2  Change in mean (n = 8) energy expenditure during assisted walking compared to walking in zero-force mode. Zero percent corresponds 
to the average energy expenditure during the two periods of walking with zero forces at the beginning and the end of the respective session. 
Over the period of assisted walking, energy expenditure is reduced (“Within-Session Adaptation”). This reduction is well described by a two-term 
exponential fit (solid lines, Session 1,2,3), and occurs faster in later sessions compared to earlier sessions (“Motor Learning”). For visual guidance, 
an estimate for the change in energy expenditure after extensive training (dashed line) is included. Colored blocks represent the color-coding of 
individual minutes as used in Fig. 3 and 5
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even before the application of Myosuit assistance dur-
ing the initial weight-acceptance phase (0% to 10% of 
the gait cycle). Swing phase kinematics were similar 
when walking with and without assistance from the 
Myosuit. Toe-off occurred around 62% of the gait cycle 
throughout all sessions, both in zero-force mode and 
with assistance from the Myosuit.

These effects of Myosuit assistance on leg kinemat-
ics did not change within or across sessions. This was 
evidenced by the absence of differences between the 
first minute (Session 1, min 1) and the last minute of 
assisted walking (Session 3, min 20, all p = 1 for hip, 

knee and ankle). Based on visual inspection, the con-
vergence to the steady-state joint kinematics (min 20) 
appears to have occurred faster in Sessions 2 and 3 
compared to Session 1.

Stride time was shorter than the experimental 
mean in the first minute of assisted walking with the 
Myosuit ( t(540) = −3.5, p < 0.001 , see Fig.  4A) and 
in Session 1 compared to the across-session mean 
( t(540) = −9, p < 0.001 ). After approximately 10  min 
of assisted walking in Session 1, we observed a grad-
ual increase in the mean stride time to a level similar 
to Sessions 2 and 3. In the second period of walking in 

zero-force min 1 min 2 min 3  min 4 min 5 min 20 

Assist. 
Phase

Toe-Off

± std. dev. [of assisted walking]

phase w/ signif. 
diff. to zero-force

Fig. 3  Mean (n = 8) joint angle curves for the hip, knee and ankle joints while walking in zero-force mode (mean in black, +—1 standard deviation, 
in gray) and minutes 1 to 5 and 20 of assisted walking across Sessions 1 to 3 (colored). Each minute of walking corresponded, on average, to 88 
steps. Color-coded horizontal lines mark the period in which a 1-D statistical analysis indicated significant differences between the respective 
minute of assisted walking and zero-force mode kinematics. The phase between 10 and 40% of the gait cycle in which the Myosuit applies assistive 
forces is marked in light grey. Most of the kinematic changes occur already within the first minute of assisted walking in Session 1. In later sessions, 
the convergence to steady state kinematics appears to be faster
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zero-force mode, stride time was longer than the experi-
mental mean ( t(540) = 6, p < 0.001 ). The stride time 
variability was constant throughout and across sessions 
(p > 0.05, Fig.  4B). There was no significant difference 
in stride time, across sessions, in either one of the zero-
force conditions.

Participants reduced the amplitude of their right-arm 
swing when initially exposed to Myosuit assistance in 

minute 1 of Session 1 (increase in arm swing asymmetry 
to 25%; t(516) = 4.3, p < 0.001 , see Fig.  4C). Another 
increase in ASA was found in the first 30  s after the 
assistance was removed ( t(516) = 2.2, p < 0.05 ). During 
all other parts of the experiment, ASA was not different 
from the experimental mean.

Muscle activity
During the part of the stance phase in which the Myo-
suit provided assistance, we found a reduction of the 
EMG activities of GMAX ( t(417) = −10, p < 0.001 ), 
RF ( t(516) = −12, p < 0.001 ), and VAS 
( t(489) = −18, p < 0.001 , see Fig.  5). This gen-
eral decrease in EMG activity was further associ-
ated with a decreasing trend (i.e. more pronounced 
EMG reduction) over the time of assisted walk-
ing for GMAX(t(417) = −2.2, p < 0.05 ), 
RF ( t(516) = −8, p < 0.001 ) and VAS 
( t(489) = −4, p < 0.001).

RF, and to a lesser degree VAS, showed burst-like 
activity towards the end of the Myosuit assistance phase 
(approx. 30% to 40% of the gait cycle, see dashed boxes 
in Fig.  5). This activity pattern was reduced over the 
time of assisted walking (RF: t(516) = −10, p < 0.001 , 
VAS: t(489) = −6, p < 0.001 ). For RF this was more 
pronounced in Session 1 than the across-session mean 
( t(516) = −7, p < 0.001).

GAS and TA showed an increased EMG activ-
ity during the Myosuit assistance phase (GAS: 
t(561) = 5.3, p < 0.001 , TA: t(444) = 2.1, p < 0.05 , see 
Additional files 1 and 2). As for GMAX, RF and VAS, 
the activity of these muscles was also reduced over the 
time of assisted walking (GAS: t(561) = −8.8, p < 0.001 , 
TA: t(444) = −3.3, p < 0.001 ). The EMG activities of 
BF and SOL were not different during assisted walk-
ing compared to walking in zero-force mode (BF: 
t(455) = −1.3, p = 0.18 , SOL: t(561) = 0.74, p = 0.46).

Discussion
Motor adaptation plateaus after 880 steps (10 min 
of assisted walking)
The energetic benefits of Myosuit assistance appear to 
be fully realized within the first ten minutes of continu-
ous walking with assistance, or after around 880 steps. 
We interpret the gradual decrease in the participants’ 
energy expenditure up until this point as evidence of 
ongoing within-session motor adaptation (see Fig.  2). 
After ten minutes of assisted walking (Session 1), the 
energy expenditure was at the same level as in all fol-
lowing sessions after 10 min or 20 min of assisted walk-
ing (see Fig. 2).

20
Fig. 4  A Stride time over the experimental time of the three sessions, 
normalized relative to the mean stride time of the first zero-force 
period in Session 1. A longer stride time has been associated with a 
higher perceived gait stability. B Stride time variability represented as 
the coefficient of variation. Increased stride time variability has been 
associated with a reduced gait stability. C Arm swing asymmetry 
over the experimental time of the three sessions. An increase in arm 
swing asymmetry has been associated with increased cognitive load. 
In both panels, data were calculated as mean over all participants 
(n = 8). Symbols mark minutes in which outcomes were significantly 
higher (*) or lower (†) than the experimental mean
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Assist. 
Phase

Toe-Off

zero-force min 1 min 2 min 3  min 4 min 5 min 20 
± std. dev. [of assisted walking]

GMAX

RF

VAS

Assist. 
Phase

Toe-Off

zero-force min 1 min 2 min 3  min 4 min 5 min 20 
± std. dev. [of assisted walking]

GMAX

RF

VAS

Fig. 5  Mean (n = 8) EMG activities over one gait cycle for GMAX, RF and VAS while walking in zero-force mode (mean in black, +—1 standard 
deviation, in gray) and minutes 1 to 5 and 20 of assisted walking across Sessions 1 to 3 (colored). Each minute of walking corresponded, on average, 
to 88 steps. The phase between 10 and 40% of the gait cycle in which the Myosuit applies assistive forces is marked in light grey. Dashed boxes 
mark burst-like RF activity at the end of the Myosuit assistance phase. EMG activities are reduced over the time of assisted walking. The burst-like 
activity of RF and to a lesser degree VAS is reduced over the time of assisted walking and over sessions

Table 1  Studies that have investigated human adaptation processes while walking with assistance from a wearable robot

PF Plantarflexion, E Extension
a Inclined 10°; bLoaded walking (20.4 kg)

Study Walking speed 
(m/s)

Supported DoF Controller Peak support Metabolic 
effect size

Adaptation time (min)

Sawicki [19] 1.25 Ankle PF Myoelectric 100 W − 10%  ~ 90

Galle [20] 1.36 Ankle PF Kinematic 245 W − 16.6% 18.5

Koller [48] 1.2 Ankle PF Myoelectric 144 W − 17.8%  ~ 30

Panizzolo [25] 1.5b Hip E Kinematic 300 N − 10.5%  ~ 10

Here 0.9a Hip E, Knee E Kinematic 100 N − 5.1% 10 (~ 880 steps)
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Adaptation period is consistent with previous work
Table  1 lists studies that specifically report metabolic 
and/or muscular effects of learning to walk with a wear-
able robot, with emphasis on walking conditions, assisted 
joint, mode of assistance, metabolic effect size and adap-
tation time. A rigorous comparison of our work with 
existing literature is not yet possible because of differ-
ences in experimental procedures (walking conditions, 
walking speeds) and characteristics of the wearable 
robots (assisted joints, controller, and peak support) used 
to conduct the investigations. A further obstacle is given 
by most studies using time as a unit measure of adapta-
tion: developmental studies suggest that the number of 
steps, rather than time, are a more appropriate explana-
tory variable for walking ability in infants [15]; further 
studies would be needed to investigate if this still applies 
to adults when learning to walk with a wearable robot. 
Despite these differences, a qualitative meta-analysis of 
existing results would help to put our results into context.

The metabolic adaptation time of 10 min or 880 steps, 
found here, is comparable to that found in the work of 
Galle et  al., in which full assistive benefits were found 
after 18.5 min (ankle exoskeleton [20]) and to the results 
in Panizzolo and colleagues, where learning to walk with 
a soft hip exosuit required approximately 10  min [25], 
albeit at a higher walking speed. The authors of the sec-
ond study concluded that adaptation was only complete 
after 40 min of walking. However, their results showed no 
across-session difference for minimum energy expendi-
ture (p = 0.15), raising the question if adaptation was not 
in fact already complete after the first 10 min of walking.

Another study [19] that reported a much longer adap-
tation period of 90 min also observed a larger energetic 
adaptation magnitude, of 10%. Interestingly, this study 
also found a reduction of energy expenditure across ses-
sions for walking in the zero-force condition, in contrast 
to [25] and our present study, where energy expenditure 
in the zero-force condition was constant across sessions. 
We interpret a change in energy expenditure without 
robotic assistance as sign of a concurrent adaptation that 
was unrelated to the assistance of the wearable robot, e.g. 
adaptation to treadmill walking or walking with body-
worn measurement systems. Thus, the very long adap-
tation period of 90 min might include these concurrent 
adaptation processes, and overestimate the time required 
to adapt to walking with a wearable robot. Given that 
there are no between-session changes in the energy 
expenditure in zero-force mode we conclude that our 
study is not affected by the sensorimotor familiarization 
to treadmill walking to the same degree.

Finally, replicating the protocol in [19] but including an 
adaptation feature in the controller of the robotic device, 
Koller et al. [48] found adaptation times one third smaller 

than those in [19], while reaching an average metabolic 
effect size of − 17.8%. This result seems to suggest that 
control strategies (especially kinematic versus myoelec-
tric controllers) play a fundamental role in determining 
the timescale of the human learning process.

Participants form a feedforward‑model of walking 
with robotic assistance
In an extension of previous work, we measured the par-
ticipants’ gait kinematics (see Fig.  3) and muscle activi-
ties (see Fig.  5) during the motor adaptation process. 
Kinematics show the most pronounced adaptation within 
the first minute, around 88 steps, of assisted walking. 
This fast adaptation is in line with previous work where 
kinematic and muscular adaptation was found even on a 
step-by-step level after mechanical forces were applied 
[49]. After the first minute of assisted walking, kinematic 
adaptation was largely complete and gait kinematics were 
consistent throughout the experiment (see Fig.  3). The 
rate of adaptation with respect to muscle activation was 
also most pronounced in the first minutes of assisted 
walking, but a further reduction in activity was observed 
for GMAX, RF and VAS afterwards until approximately 
minute 5 (440 steps) of assisted walking (see Fig. 5).

Concurrent with the high initial rate of muscular and 
kinematic adaptation, we observed a sharp increase in 
ASA (see Fig. 4C). An increase in ASA has been linked 
to an increased cortical load under motor-cognitive dual 
tasking conditions [36]. Previous work further detailed 
that the initial motor adaptation to walking with a robot 
is driven by sensory feedback that allows users to form 
an internal task model for feedforward motor control [16, 
49]. The increased ASA observed over the first minute of 
assisted walking in this study hence suggests a high level 
of cortical involvement in feedback-driven motor control 
and in the simultaneous formation of a feedforward task 
model [16]. Consistent with this notion, a similar albeit 
smaller increase in ASA was found in the period imme-
diately after assistance was removed, akin to a wash-out 
period, in which participants reverted to regular walking 
in zero-force mode.

Further evidence for the formation of a feedforward 
model for motor control is found in the reduction of 
burst-like muscle activity at the end of the Myosuit assis-
tance phase. Initially, RF and VAS showed an increase in 
activity towards the end of Myosuit-assistance phase (see 
Fig. 5, dashed boxes). This increase temporally coincides 
with the cyclic end of the assistance phase of the Myosuit. 
During this phase, GMAX and VAS are the main bio-
logical contributors to bodyweight support and forward 
progression in walking, and RF acts in parallel to these 
muscles to extend the hip (sic) and knee [50]. Burst-like 
activity of VAS and RF hence suggests that these muscles 
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were recruited to provide additional weight-bearing sup-
port and stabilization in the sagittal plane in response 
to the (initially unexpected) end of Myosuit assistance. 
We follow that as participants internalized the timing of 
assistive forces into their model of walking with Myosuit 
assistance, this feedback-driven burst in muscle activity 
was gradually reduced through appropriate feedforward 
control contributions (see Fig. 5). In addition to portions 
driven by an internal model, feedforward control contri-
butions might also comprise a portion that aims to con-
tinuously reduce muscle activation, or “slack” the human 
motor system [51].

Upon removal of assistance, however, muscular activa-
tion patterns quickly (2–3 steps) went back to baseline 
characteristics, suggesting that participants returned to 
their primary internal model of musculoskeletal mechan-
ics. These results corroborate the findings from Gordon 
and Ferris [21], where a similar effect was observed for 
the soleus muscle, in participants walking with an ankle 
exoskeleton. Unlike the results reported in Farrens et al. 
[52] or Emken and Reinkensmeyer [16], however, we did 
not observe lasting post-adaptation training effects.

Perceived gait stability might partially recover 
with adaptation
A shift towards shorter stride times was observed in the 
first minute of assisted walking (see Fig. 4A), which—on 
a treadmill running at fixed speed—equals shorter stride 
lengths. Based on previous literature [33, 35], we inter-
pret these changes in stride length as potential changes 
in the perceived gait stability of participants. Myosuit 
assistance appeared to initially decrease perceived gait 
stability, an effect that was partially reversed as partici-
pants formed a model of walking with assistance over the 
first 10  min of assisted walking (see Fig.  4). In the final 
period with zero forces, stride time increased again, fur-
ther supporting a causal relation of stride time changes to 
Myosuit assistance. The absence of changes in the stride 
time and hence length variability (see Fig. 4B), a metric 
previously associated with the (objective) gait stability 
[33], indicates that Myosuit assistance did not affect the 
participants’ gait stability.

Mechanisms other than perceived stability might con-
found changes in stride length. Humans have been shown 
to adapt stride length to reduce their energy expenditure 
during walking in the presence of external forces [18]. 
Hence, it might be that walking with Myosuit assistance 
energetically favors shorter stride lengths compared to 
walking in zero-force mode. Yet, this mechanism would 
fail to explain why participants consistently reduced their 
stride length in the first minute of assisted walking, and 
only slowly reverted to a steady state across the min-
utes thereafter. Stride length adaptation, as a (potentially 

exploratory) response to a shift in the energetic optimum, 
would be expected to occur on a much shorter time scale, 
i.e. over tens of seconds [18].

Alternatively, shorter stride length has also been 
associated with increased cognitive load in dual task-
ing scenarios [53]. This alternate interpretation would 
be consistent with the observed increase in ASA and 
additionally support an increase in cognitive load in the 
first minute (88 steps) of assisted walking.

Adapted motor skills partially retained between sessions
Evidence for an increased cognitive load and reduced 
perceived gait stability was observed at the begin-
ning of Session 1, but not in subsequent sessions (see 
Fig. 4). In addition, the convergence of joint kinemat-
ics and muscle activities towards a within-session 
steady state appeared slower in Session 1 than in 
subsequent sessions (see Figs.  3 and 5). We interpret 
these effects as motor learning; that is, as a sign that 
participants partially retained their task model and 
adapted motor skills from Session 1 across subsequent 
sessions.

This partial retention that required a period of re-
adaptation at the beginning of later sessions is con-
sistent with the findings of Panizzolo et al. [25]. Other 
work reported a much higher skill retention that 
allowed for near-continuous learning across sessions 
[19]. As mentioned before, though, this study’s results 
might have been confounded by adaptation to factors 
other than robotic assistance, given that the energy 
expenditure in the zero-force mode also decreased 
over time. The intervals between sessions in [19, 
25]—3 to 5 days—were comparable to the ones in our 
study and hence do not explain the difference in skill 
retention. In light of this, we conclude that an ener-
getic minimum might generally only be reached after 
re-adaptation, even if the respective participant had 
practiced the same task in previous training sessions 
before. It remains an open question for research if this 
need for re-adaptation would eventually be diminished 
after extensive practice and associated motor memory 
consolidation.

Motor adaptation matches a three‑stage model
While our study was not designed to validate any spe-
cific motor adaptation model, our findings are con-
sistent with models from literature (e.g. [54]) that 
suggested to distinguish three stages of skill acquisi-
tion. These models describe the motor learning process 
from a largely cognitively driven stage over an associa-
tive stage to autonomous task execution:
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Cognitive stage
Major kinematic and muscular adaptation at high rates. 
Accompanied by increase in cortical load, likely due to 
initial formation of an internal model of the task.

Duration approx. 100 steps or just over 1 min.

Associative stage
Continuing formation of an internal model for feedfor-
ward movement control. Reduction of feedback-driven 
muscle activation at end of assistance. Full energetic ben-
efits of robotic assistance are realized at the end of this 
period.

Duration approx. 880 steps or 10 min.

Autonomous stage
Only minor adaptation of joint kinematics and muscle 
activities. Participants now at ease with the robotic assis-
tance, perceived gait stability increased compared to the 
previous stages. No further changes in energy expendi-
ture on the investigated time scale.

We propose to routinely include outcome metrics such 
as ASA or changes in stride length in future studies of 
wearable robots to contribute towards an estimate of skill 
acquisition progress across these stages. Even outside of 
laboratories, changes in ASA and stride length could be 
approximated though inertial measurement units placed 
on the participants’ wrists and shanks. Such informa-
tion would add important context to study findings and 
increase the comparability of results.

It remains an open question how this three-stage 
model transfers to user populations with a neuromotor 
impairment, a key target group for lower-limb wearable 
robots. Previous findings [55] revealed that the ability of 
stroke survivors to form models for feedforward motor 
control is impaired. Hence, one might speculate that 
some individuals with a neuromotor impairment might 
not be able to progress from the associative stage to fully 
autonomous task execution, but this remains to be veri-
fied in future work.

Study limitations and recommendations
It appears that mean EMG activity and gait kinematics 
considered separately do not explain the entire variation 
in energy expenditure. The continuing reduction of burst-
like activity of GMAX, RF and VAS after the first ten 
minutes of walking did not translate to any (measurable) 
changes in energy expenditure. This is in parts expected, 
e.g. due to the fact that muscle efficiency depends on 
muscle length changes during activity [56]. Moreover, 
one can assume that EMG measurements can resolve 
small changes in local muscle activity that do not result 
in changes in the global energy expenditure measured 

via respirometry. To this end, dynamic simulations that 
combine the analysis of EMG activity and gait kinemat-
ics could allow for a more integral analysis of kinematic, 
muscular, and energetic adaptation.

Further, our current study did not include “catch-trials”, 
i.e., unexpected steps without assistance in the 20-min 
period of assisted walking. An observation of the leg 
kinematics and muscle activities during such catch-tri-
als might provide further evidence for the formation of 
an internal model for feedforward motor control [57]. 
Transfer tasks (e.g., changing the walking speed, pitch, or 
surface properties) could further illuminate the robust-
ness of such an internal model. Finally, dual-tasking sce-
narios (e.g. a Stroop task [36] during walking) comprised 
within future learning studies could strengthen the evi-
dence for an association of cognitive load and increased 
ASA.

Finally, this study focused on a homogeneous sample 
and controlled conditions: we recruited healthy males in 
a narrow range of mass and height; the Myosuit specifi-
cally supported hip and knee extension with peaks forces 
of 212 N during mid-stance; participants walked uphill at 
a fixed speed. Most of these choices were driven by prac-
tical considerations and are a first necessary step before 
investigating motor learning processes on a more hetero-
geneous sample and less controlled conditions; they do, 
however, limit the generalizability of our findings.

Conclusions
Our results highlight the importance of considering 
motor adaptation during scientific investigation of wear-
able robots. In comparative analyses of different devices 
(e.g. [22]), adaptation time and repetition count (e.g. 
steps) will likely be a major performance confounder and 
should be clearly reported, ideally with respect to a com-
mon skill acquisition model. Optimization approaches 
such as human-in-the-loop techniques need to allow for 
sufficiently long intervals between control changes to 
estimate the energy expenditure not only after account-
ing for the respiratory delay, but also after energetic 
adaptation is (mostly) complete. Our findings inform 
the ongoing trade-off between achieving rapid energy 
expenditure estimation and allowing for a meaningful 
degree of adaptation to the tested control condition.

This warrants for caution when evaluating the effect of 
similar powered orthoses on impaired individuals: one 
should allow for adaptation times at least in order of the 
ones found here before drawing conclusions on the effi-
cacy of the device. We believe that such knowledge could 
help to manage the expectations of medical professionals 
and patients, thus preventing premature abandonment of 
technology that could ultimately benefit the user. Future 
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studies on people with mobility disorders will help to 
clarify these hypotheses.

We demonstrated that relatively easily accessible bio-
mechanical markers such as ASA and stride length might 
help to inform investigators about the progress of skill 
acquisition and motor adaptation. In our study, these 
markers, in conjunction with muscle activity measure-
ments, suggest that the initial formation of a task model 
for feedforward motor control took approx. 10  min or 
880 steps of assisted walking in young, unimpaired par-
ticipants. A period of this length should be included in 
future study protocols that investigate similar modes 
of assistance, before energetic assessments are made 
and repeated on every subsequent testing day given the 
observed partial skill retention. Humans might adapt 
faster to smaller external alterations such as gradual 
changes in force magnitude or timing during optimiza-
tion experiments. Adaptation periods might differ for 
wearable robots that more prominently assist the pro-
pulsion phase of walking instead of the weight-bearing 
phase.

The fast and marked departure from the kinematics 
of walking in zero-force mode suggested that preserv-
ing kinematics was not an objective of motor adapta-
tion. Instead, our findings were consistent with energy 
expenditure being a key objective of adaptation, perhaps 
with gait stability as a secondary one.

Future research needs to clarify how to improve skill 
retention between sessions, and what minimum train-
ing frequency is needed to retain learned skills. Another 
open research question is how training intensity affects 
motor adaptation, e.g., if walking at a higher cadence 
would result in faster adaptation, timewise or even with a 
lower number of steps.

Finally, motor adaptation might also occur on a much 
longer time scale, over years of continuous practice. To 
fully understand the lasting relevance and long-term 
progression of motor adaptation to wearable robots, a 
considerably longer observation period than realized in 
this study or previous studies would be of interest. One 
can speculate that with the advent of more habitual at-
home use of wearable robots, such studies will eventu-
ally become more feasible. Until then, it remains unclear 
if anyone has yet learned to fully utilize the potential of 
wearable robots—in this instance, indeed only time, or 
more steps, will tell.
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