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Compounds with a phosphonate group, i.e., –P(O)(OH)2 group attached directly to the
molecule via a P-C bond serve as suitable non-hydrolyzable phosphate mimics in various
biomedical applications. In principle, they often inhibit enzymes utilizing various
phosphates as substrates. In this review we focus mainly on biologically active
phosphonates that originated from our institute (Institute of Organic Chemistry and
Biochemistry in Prague); i.e., acyclic nucleoside phosphonates (ANPs, e.g., adefovir,
tenofovir, and cidofovir) and derivatives of non-nucleoside phosphonates such as 2-
(phosphonomethyl) pentanedioic acid (2-PMPA). Principal strategies of their syntheses
and modifications to prodrugs is reported. Besides clinically used ANP antivirals, a special
attention is paid to new biologically active molecules with respect to emerging infections
and arising resistance of many pathogens against standard treatments. These new
structures include 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidines or so-
called “open-ring” derivatives, acyclic nucleoside phosphonates with 5-azacytosine as
a base moiety, side-chain fluorinated ANPs, aza/deazapurine ANPs. When transformed
into an appropriate prodrug by derivatizing their charged functionalities, all these
compounds show promising potential to become drug candidates for the treatment of
viral infections. ANP prodrugs with suitable pharmacokinetics include amino acid
phosphoramidates, pivaloyloxymethyl (POM) and isopropoxycarbonyloxymethyl (POC)
esters, alkyl and alkoxyalkyl esters, salicylic esters, (methyl-2-oxo-1,3-dioxol-4-yl)
methyl (ODOL) esters and peptidomimetic prodrugs. We also focus on the story of
cytostatics related to 9-[2-(phosphonomethoxy)ethyl]guanine and its prodrugs which
eventually led to development of the veterinary drug rabacfosadine. Various new ANP
structures are also currently investigated as antiparasitics, especially antimalarial agents
e.g., guanine and hypoxanthine derivatives with 2-(phosphonoethoxy)ethyl moiety, their
thia-analogues and N-branched derivatives. In addition to ANPs and their analogs, we also
describe prodrugs of 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a potent inhibitor
of the enzyme glutamate carboxypeptidase II (GCPII), also known as prostate-specific
membrane antigen (PSMA). Glutamate carboxypeptidase II inhibitors, including 2-PMPA
have been found efficacious in various preclinical models of neurological disorders which
are caused by glutamatergic excitotoxicity. Unfortunately its highly polar character and
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hence low bioavailability severely limits its potential for clinical use. To overcome this
problem, various prodrug strategies have been used to mask carboxylates and/or
phosphonate functionalities with pivaloyloxymethyl, POC, ODOL and alkyl esters.
Chemistry and biological characterization led to identification of prodrugs with 44–80
fold greater oral bioavailability (tetra-ODOL-2-PMPA).

Keywords: acyclic nucleoside phosphonates, antivirals, prodrugs, protides, GCPII, prostate-specific membrane
antigen, FOLH1, 2-PMPA

1 INTRODUCTION

Phosphonates are compounds bearing a phosphonate
(P(O)(OH)2) group attached to the molecule via a P-C bond.
They serve as non-hydrolyzable phosphate mimics in various
biomedical applications. Usually, they inhibit enzymes utilizing
phosphates as substrates. Some phosphonates occur in nature as
natural phosphonate antibiotics (e.g., fosfomycin). Some
important synthetic phosphonate-based drugs include
bisphosphonates (for the treatment of osteoporosis) and the
antivirals foscarnet and besifovir, and perzintofel (for the
treatment of stroke). In this review we focus on two groups of
biologically active phosphonates. The first originated from IOCB
in Prague (acyclic nucleoside phosphonates; ANPs) and the
second originated from a collaboration between IOCB and the
Johns Hopkins Drug Discovery team [prodrugs of 2-
(phosphonomethyl) pentanedioic acid (2-PMPA)].

2 ACYCLIC NUCLEOSIDE
PHOSPHONATES (ANPs)

The common structural attribute of ANPs is a nucleobase
attached to an aliphatic side chain and containing a
phosphonomethyl residue. A methylene bridge between the
phosphate moiety and the rest of the molecule excludes
enzymatic dephosphorylation. The absence of the glycosidic
bond increases resistance to chemical and biological
degradation. Flexibility of acyclic chains enables these
compounds to adopt conformations suitable for interaction
with active sites of enzymes. Their biological activities are
mostly antiviral but also cytostatic, immunomodulatory and
antiparasitic. Their disadvantage are unfavourable
pharmacological properties due to the presence of polar
phosphonic acid functionality. ANPs are mostly impermeant
to the cellular membrane and in addition, their absorption by
gastrointestinal tract is limited which is disqualifying for oral
application. To achieve oral bioavailability and intracellular
delivery, their transformation to prodrugs is highly advisable.

More than three decades of systematic investigations of ANPs
in our institute resulted in hundreds of their structural variations.
Three of them are commercially available pharmaceuticals
approved for the treatment of viral infections (cidofovir,
adefovir and tenofovir). The mentioned compounds represent
three different types of ANPs: HPMP derivatives, i.e., (S)-[3-
hydroxy-2-(phosphonomethoxy)propyl] derivatives (e.g., (S)-
HPMPC, cidofovir), PME derivatives, i.e., 2-

(phosphonomethoxy)ethyl derivatives (e.g., PMEA, adefovir)
and PMP derivatives, i.e., (R)-2-(phosphonomethoxy)propyl
derivatives [e.g., (R)-PMPA, tenofovir]. This large topic
became a subject of many reviews, especially by Antonín Holý
and Erik De Clercq (Holý, 2003; De Clercq and Holý, 2005; De
Clercq, 2007; De Clercq, 2011; De Clercq, 2013).

Syntheses of acyclic nucleoside phosphonates (ANPs) are
based on several alternative approaches: 1) preparation of N-
(hydroxyalkyl) derivatives of purine or pyrimidine bases followed
by introduction of the phosphonomethyl residue, 2) alkylation of
the nucleobase with an appropriate synthetic precursor, usually
dialkyl ester of phosphonomethoxyalkyl halide or tosylate, 3)
ring-closure reactions of some aminoalkylphosphonates forming
appropriate heterocyclic base moieties (preparation of aza and
deazapurine ANPs) and 4) transformation of reactive functional
groups at the side chain or in the heterocyclic base in a previously
prepared phosphonate (Holý, 2003).

2.1 Acyclic Nucleoside Phosphonate Drugs
and Drug Candidates. Synthesis, Clinical
Applications and Current Topics in Their
Research
2.1.1 Synthesis of (S)-HPMP Derivatives
Preparation of (S)-HPMP derivatives (HPMPC, HPMPA,
HPMPDAP, HPMP-5azaC) mostly utilizes the first approach:
base catalysed nucleophilic opening of the oxirane ring in (S)-2-
(trityloxymethyl)oxirane or (S)-glycidol butyrate with
appropriate nucleobase (Figure 1). Thus created 3-O-
substituted (S)-2,3-dihydroxypropyl derivatives are then
treated with diisopropyl tosyloxymethanephosphonate and
finally deprotected. Preparation of diisopropyl
tosyloxymethanephosphonate consists in the treatment of
diisopropyl phosphite with paraformaldehyde and
triethylamine followed by tosylation (Holý, 1993). The
alternative way is introduction of phosphonomethyl ether
group using diisopropyl bromomethylphosphonate (Göbel
et al., 1992; Holý, 2005; Oh and Hong, 2008).

2.1.2 Cidofovir and its Prodrugs
Cidofovir has unique activity against practically all DNA viruses.
Intracellularly, it is converted to cidofovir diphosphate which
suppresses virus replication selectively by competitive inhibition
of viral DNA polymerase. Incorporation of the drug disrupts
further chain elongation. Under the brand name Vistide™,
cidofovir was approved for the treatment of cytomegalovirus
retinitis in AIDS patients (Plosker and Noble, 1999; Drugs.com,
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2021). Off label it is used for the treatment of severe cases of
papillomatoses (Gi et al., 2012), progressive multifocal
leukoencephalopathy (Andrei et al., 2015), adenovirus
infections (Neofytos et al., 2007) and poxvirus infections, e.g.,
recalcitrant molluscum contagiosum and orf in
immunocompromised patients (Cundy, 1999; Andrei and
Snoeck, 2010). In justified cases, it was exceptionally applied
also to immunocompetent pediatric patients with very
complicated adeno-, polyoma- or cytomegalovirus infections
(Neant et al., 2018; Alcamo et al., 2020).

Application of cidofovir is possible only intravenously and its
bioavailability is very low. More than 90% of its intravenous dose
is excluded unchanged by kidney. Nephrotoxicity of the cidofovir
can be partially overcome by the pre-treatment with the
nephroprotective drug probenecid (Lacy et al., 1998; Wolf
et al., 2003).

To improve pharmacokinetic properties of cidofovir, various
prodrugs are being investigated. So far the most important
prodrugs are alkoxyalkyl esters (Kern et al., 2002; Beadle et al.,
2002; Ruiz, 2011). They can be prepared by alkylation of N,N,-
dicyclohexyl-4-morpholinocarboxamidinium salt of cyclic
cidofovir (cHPMPC) with appropriate alkoxyalkyl bromides
(Method 1, Figure 2) (Beadle et al., 2002; Kern et al., 2002) or
condensation of cHPMPC with alkoxyalcohols under Mitsunobu
conditions (Method 2) (Ruiz, 2011). Thus formed esters of cyclic
HPMPC are subsequently cleaved to corresponding monoesters
by the heating with aqueous sodium hydroxide. The method is
applicable also for various other phosphonates (not only in the
HPMP series) (Hostetler, 2009). Hexadecyloxypropyl (HDP)
ester of cidofovir (Brincidofovir, CMX001) was being
developed by Chimerix, Inc. as a drug against cytomegalovirus
and adenovirus infections in transplant recipients. Oral
brincidofovir was investigated in the Phase III of clinical trials
for CMV prophylaxis in stem cell transplants (Marty et al., 2019)
but the trials failed due to the toxicity in gastrointestinal tract.
Also two other Phase III trials for its use in preventing infection
after kidney transplantation and some trials targeted to
adenovirus were not successful (Marty et al., 2019;

Clinical.trials.gov.; Brincidofovir, 2021). It is speculated that
the compound tolerability may be improved by a change in
the drug formulation, e.g., by intravenous application. The
present plans with brincidofovir are targeted mostly to
poxviruses, especially variola virus for the case of a smallpox
outbreak. Finally, in June 2021, brincidofovir was approved by
FDA as a drug for the treatment of smallpox and is marketed
under the brand name Tembexa (FDA, 2021).While the smallpox
is eradicated in nature, there is still possibility of variola virus
abuse as a biological weapon or its accidental release (FDA, 2021).
During Ebola outbreak in 2014 Chimerix also received an FDA
approval for investigational applications of brincidofovir for the
treatment of Ebola virus disease in patients and approval for the
Phase II clinical trials. The trials were subsequently discontinued
because of a lack of suitable subjects. Anyway, they highlighted
the need to establish better practices for preclinical in vitro and
animal screening of therapeutics for potentially emerging
epidemic infectious diseases prior to their use in patients
(Dunning et al., 2016).

2.1.3 Synthesis of Purine N-2-(Phosphonomethoxy)
ethyl (PME) Derivatives
Synthesis of acyclic nucleoside phosphonates of the PME series
consists in the base catalysed condensation of a purine or
pyrimidine base with a relevant synthetic precursor,
i.e., compound containing the whole aliphatic part including a
phosphonomethyl arrangement and an appropriate leaving
group (mostly tosyl or halogene).

N-2-(Phosphonomethoxy)ethyl derivatives are synthesized
from dialkyl (diethyl or diisopropyl) 2-(chloroethoxy)
methylphosphonates. These precursors are accessible by the
treatment of trialkyl phosphites with 2-(chloroethoxy)methyl
chloride (Holý et al., 1999); Holý et al., 1989) The synthesis of
PMEA (adefovir) according to this procedure is described in
Figure 3. Analogous procedures were applied also to the
preparation of the cytostatic guanine derivative PMEG and the
series of N6-substituted PMEDAP, i.e., 9-[2-
(phosphonomethoxy)ethyl]-2,6-diaminopurine including 9-[(2-

FIGURE 1 | Synthesis of (S)-[3-hydroxy-2-(phosphonomethoxy)propyl] derivatives.
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phosphonomethoxy)ethyl]-N6-cyclopropyl-2,6-diaminopurine
(cPrPMEDAP, the compound which amidate prodrug is used as a
veterinary drug rabacfosadine). In these cases condensation of
diisopropyl 2-(chloroethoxymethyl)phosphonate is performed
with 2-amino-6-chloropurine and the resulting product was
further transformed according to Figure 3 (Holý et al., 2001).

Alternative way to 2-(phosphonomethoxy)ethyl derivatives is
the reaction of purine bases with dialkyl 2-
hydroxyethylphosphonate under Mitsunobu conditions (Chen
et al., 1996). Other methods utilize reaction of dialkyl
tosyloxymethylphosphonate with an appropriate 9-(2-
hydroxyethyl)purine derivative (Figure 4A) or reaction of an
analogous purine 2-iodoethyl derivative with diethyl
hydroxymethylphosphonate (Figure 4B on the example of
adefovir). The advantage of the latter one is commercial
availability of diethyl hydroxymethylphosphonate (Jones et al.,
2019).

2.1.4 Adefovir Dipivoxil
Adefovir is active against retroviruses and some types of DNA
viruses (Naesens et al., 1994; Holý, 2003; De Clercq and Holý,
2005; De Clercq, 2007). Its activity against HIV and hepatitis B
virus consists in the inhibitory effect towards reverse
transcriptase.

Synthesis of adefovir prodrug (adefovir dipivoxil, Bis(POM)-
PMEA) proceeds from adefovir by the action of chloromethyl
pivalate (Figure 3) (Starrett et al., 1992).

Adefovir in the form of bis(pivaloyloxymethyl) ester was being
developed originally as anti-HIV agent but the trials were finally
discontinued due to the nephrotoxicity at the required daily
therapeutic dose 120 mg (Kahn et al., 1999). On the other
hand, the efficacy for HBV was found higher when the
therapeutic effect was achieved with a ten times lower dose of
10 mg (Izzedine et al., 2004; Fontaine et al., 2005). It enabled
development of the compound for the treatment of chronic

FIGURE 2 | Synthesis of alkoxyalkyl ester prodrugs of cidofovir.
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hepatitis B in adults, especially for those with lamivudine
resistance. In 2002, adefovir dipivoxil was approved by FDA
under the trade name HepseraTM. Clinical practice shows that
sometimes a higher dose of the drug would have been more
efficacious but of course, it is ruled out due to the renal safety
(Izzedine et al., 2004; Hézode et al., 2007). In rare cases, it is also
reported that prolong treatment with adefovir even in a low dose

of 10 mg can cause adefovir-induced osteomalacia, a metabolic
bone disease that leads to softening of the bones. It is caused by
hypophosphatemia as a result of renal tubular dysfunction (Kim
et al., 2013; Park et al., 2018). Clinical use of adefovir dipivoxil
started to grow down since the more effective tenofovir disoproxil
fumarate and later on, tenofovir alafenamide were approved for
HBV (2008 and 2016).

FIGURE 3 | Synthesis of purine N-2-(phosphonomethhoxy)ethyl (PME) derivatives.
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2.1.5 Alternative Prodrugs of Adefovir
Alternative prodrug approaches for adefovir to improve adefovir
pharmacokinetics were also investigated, e.g., bis(S-acyl-2-
thioethyl esters (SATE-esters) (Benzaria et al., 1996) or
substitutes aryl esters, e.g., bis(o-ethoxyphenyl) ester
(Figure 3) (Shaw et al., 1997). The bis(tBu-SATE)PMEA has
50-times increased stability in human plasma compared to
bis(POM)-PMEA and improved stability in human gastric
fluid (Benzaria et al., 1996).

Extensive research was paid also to cyclosaligenyl (cycloSal)
phosphonates, i.e., cyclic esters with variously substituted salicyl
alcohol and cycloAmb phosphonates (cyclic ester amidates with
2-aminobenzyl alcohol). Investigation of anti-HIV-1 and anti-
HIV-2 activity of various cycloSal-PMEA on cell cultures revealed
increased antiviral activity compared to the parent PMEA and in
parallel, decreased toxicity and decreased stability compared to
other types of prodrugs [e.g., SATE or bis(amidates)]. cycloAmb-
derivatives had generally increased stability and lower antiviral
activity in comparison with cycloSal-PMEAs (Meier et al., 2005).
(Figure 5)

An original prodrug technology are HepDirectTM prodrugs.
They were developed by Ligand Pharmaceuticals, Inc. with the
aim to target adefovir directly to the liver due to specific activation

by enzymes overexpressed in the liver tissue (Erion et al., 2004;
Tillmann, 2007; Reddy et al., 2008). HepDirect prodrugs are
cyclic 1-aryl-1,3-propanyl esters which are susceptible to
oxidative cleavage of the ring by a cytochrome P450 isozyme
(CYP3A4) (Erion et al., 2004). Chemical synthesis consists in
condensation of adefovir with 1-(3-chlorophenyl)-1,3-
propanediol. While only cis-(2R,4S)-isomer was found as
appropriate prodrug, the synthesis includes stereoselective
resolution of racemic intermediate 1-(3-chlorophenyl)-1,3-
dihydroxypropane through diastereomeric menthone adducts
(Figure 6) (Reddy et al., 2008).

Pradefovir was advanced to Phase II of clinical trials where a
12-fold improvement in the liver/kidney ratio over adefovir
dipivoxil has been proven. Further investigation in
United States was discontinued when the more effective
tenofovir disoproxil fumarate became available. Nevertheless,
pradefovir is still in clinical development for Hepatitis B in
China. Promising results of their Phase 1b study have been
recently published (Zhang et al., 2020).

Besides antiviral effects extensive research was targeted to
antibacterial activity of PMEA prodrugs. Studies performed with
Bis(POM)PMEA revealed that adefovir upon intracellular
conversion into the active metabolite adefovir diphosphate has

FIGURE 4 | Alternative syntheses of PMEA.

FIGURE 5 | Alternative prodrugs of PMEA.
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strong activity against adenylate cyclase toxin (ACT) from
Bordetella pertussis, a causal agent of whooping cough, and
both ACT and edema factor (EF) from Bacillus anthracis.
Various symmetrical amino acid ester based bis(amidates) of
PMEA have been developed in our Institute as less toxic andmore
stable alternatives to bis(POM)PMEA (Česnek et al., 2015;
Břehová et al., 2016; Šmídková et al., 2014). The highest
activity and optimal pharmacokinetic profile was achieved
with bis(isopropyl phenylalanine) amidate promoiety. Besides,
also various base modified PMEA analogues (aza/deaza purine
derivatives) were synthesized. One of the most promising ACT
inhibitors was found 8-aza-7-deazapurine analogue of PMEA in
the form of bis(isopropyl phenylalanine) amidate with IC50

value16 nM and substantial selectivity over mammalian
adenylate cyclases (Česnek et al., 2018). Synthesis of
symmetrical bis(amidates) can be performed from
phosphonate diisopropyl esters which are deprotected first
with bromotrimethylsilane, followed by condensation with
appropriate amino acid ester in the presence of 2,2′-
dithiopyridine (Aldrithiol). The reaction scheme is outlined in
Figure 7. Extraordinary effect to ACT inhibitory potency has
replacement of the adenine moiety with another heterocyclic base
able to mimic adenine, namely 2-aminothiazole. These
compounds are 5-aryl-4-PME-2-aminothiazoles, 4-aryl-5-
PME-2-aminothiazoles and their bis(amidate)prodrugs and
phosphono diphosphate analogues (Břehová et al., 2021;
Česnek at al., 2022). The most potent inhibitor was
diphosphate of 4-(4-(benzylcarbamoyl)phenyl-5-PME-2-
aminothiazole (Figure 7). It is the most potent ANP-based

inhibitor of ACT (IC50 = 9 nM) and EF (IC50 = 11.6 nM)
known to date.

2.1.6 Cytostatic PME Derivatives: PMEG, cPrPMEDAP
and Rabacfosadine (GS-9219, VetDC-1101,
TanoveaTM)
Several years ago, a considerable attention started to be paid to
cytostatic 9-[2-(phosphonomethoxy)ethyl] derivatives derived
from guanine, 2,6-diaminopurine and N6-substituted 2,6-
diaminopurine (Figure 3). These compounds work via
perturbing DNA replication by terminating the growing DNA
chain and suppressing the cell growth (at low concentrations)
while at higher concentrations they induce apoptotic activity. In
cells, they are phosphorylated to diphosphates as active
metabolites inhibiting the cell growth due to a potent
inhibition of nuclear DNA polymerases. It results in inhibition
of DNA synthesis and/or DNA repair (Kramata et al., 1996;
Pisarev et al., 1997; Kramata et al., 1998). The most potent
compound is PMEG, 9-[(2-phosphonomethoxy)ethyl]guanine;
the activities generally increase in the order PMEA <
PMEDAP < PMEG. Antitumor effects of PMEG was proven
also in animal models in a Sprague–Dawley rat experimental
model for T-cell lymphoblastic leukemia/lymphoma (Rose et al.,
1990; Holý, 2003) but the utility of PMEG for clinical practice is
very limited by its poor cellular permeability and toxicity (Kreider
et al., 1990; Rose et al., 1990). A fundamental breakthrough was
made by the N6-substitution of the 6-amino group in 2,6-
diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP)
leading to numerous compounds with very promising activity

FIGURE 6 | Synthesis of pradefovir.
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(Holý et al., 2001). Finally, the cyclopropyl derivative,
cPrPMEDAP was selected as the lead compound. Its
antiproliferative effects were similar to PMEG in vitro,
however, in vivo, toxicity of cPrPMEDAP was substantially
reduced. In cell cultures, cPrPMEDAP is deaminated to
PMEG and then converted to the PMEG-diphosphate—it is
evident that cPrPMEDAP acts as an intracellular prodrug of
PMEG (Compton et al., 1999; Hatse et al., 1999). The enzyme
capable of this conversion was identified as N6-methyl-AMP/
dAMP aminohydrolase (Schinkmanová et al., 2006;
Schinkmanová et al., 2008).

Nevertheless, cPrPMEDAP, similarly as other ANPs, has a low
cellular permeability making its direct clinical use practically
impossible and transformation to an appropriate prodrug was
necessary. Development of amino acid amidate prodrugs resulted
finally in the development of compound GS-9219, the ethyl
alaninate prodrug of cPrPMEDAP and concurrently a double
prodrug of PMEG. The compound was designed as a cytotoxic
agent preferentially targeting lymphoid cells. The compound is
prepared from cPrPMEDAP by the action of L-alanine ethyl ester

hydrochloride after activation of phosphonic acid residue with
Aldrithiol and triphenylphosphine (Cheng et al., 2005; Jansa
et al., 2011). The scheme of metabolic conversion of GS-9219
to PMEGpp is outlined in Figure 8. Preclinical trials with dogs
with spontaneous non-Hodgkin’s lymphoma proved GS-9219 as
generally well tolerated drug with significant antitumor activity
warranting its further study in humans (Reiser et al., 2008).

Clinical trials of GS-9219 (Phase I/II) were started in July 2007.
The compound was tested in adult patients with non-Hodgkin’s
lymphoma, chronic lymphocytic leukemia andmultiple myeloma
in twenty leading experimental clinics in United States, Russia
and Czech Republic. Despite expectations, 3 years later, in
October 2010, the study on GS-9219 has been terminated due
to the unacceptable safety profile of the compound
(Clinical.trials.gov. GS-9219, 2014). Later on, it was licensed to
the veterinary drug company VetDC where the compound was
being developed as a veterinary drug against canine lymphoma
(VDC-1101, rabacfosadine). In April 2017, it has been approved
by FDA as a veterinary drug. The drug is currently marketed by
Elanco Animal health under the trade name TanoveaTM (Elanco,

FIGURE 7 | Synthesis and structures of inhibitors of bacterial adenlylate cyclases. (A) Synthesis of bis(amidate) prodrug of adefovir. (B) Synthesis of bis(amidate)
prodrug of 8-aza-7-deaza analogue of adefovir. (C) Structures of 5-aryl-4-PME-2-aminothiazoles and 4-aryl-5-PME-2-aminothiazoles.
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2021). The whole story has been recently reviewed by De Clercq
(De Clercq, 2018).

2.1.7 N-[2-(Phosphonomethoxy)Propyl (PMP)
Derivatives Tenofovir and its Prodrugs
Syntheses of enantiomeric N-[2-(phosphonomethoxy)propyl
derivatives are based on the condensation of a nucleobase with
the appropriate chiral building block. The starting compound for
the synthesis of (R)-PMPA (tenofovir) is (R)-2-[bis(2-propyl)
phosphonomethoxy]propyl]-p-toluenesulfonate, i.e., “(R)-PMP
building block”, the compound prepared easily from (R)-1-
benzyloxy-2-propanol by multi-step process involving
chloromethylation, Arbuzov reaction with triisopropyl
phosphite, catalytic hydrogenation and final tosylation (Holý
et al., 1995). Condensation of adenine with this precursor
followed by deprotection of ester groups gives (R)-9-[(2-
phosphonomethoxy)propyl]adenine [(R)- PMPA, tenofovir].
For clinical utilization this compound is transformed to the
neutral prodrug, bis(isopropoxycarbonyloxymethyl) ester
[tenofovir disoproxil, Bis(POC)- (R)-PMPA] and marketed in
the form of fumarate salt under the trade name VireadTM. The
prodrug is synthesized from (R)-PMPA and chloromethyl
isopropyl carbonate (Arimilli et al., 1997; Arimilli et al., 1999).
The overall scheme of the synthesis of tenofovir and its bis(POC)
prodrug is outlined in Figure 9.

Tenofovir is a typical antiretroviral agent acting as a nucleotide
reverse transcriptase inhibitor (Srinivas and Fridland, 1998; Suo
and Johnson, 1998; Cihlar et al., 2002). In 2001, its
bis(isopropoxycarbonyloxymethyl) ester (tenofovir disoproxil
fumarate, TDF) was approved for the treatment of HIV
infections as one-component drug VireadTM (Srinivas and

Fridland, 1998; Lyseng-Williamson, 2005). Current trend in
anti-HIV therapy is a combined antiretroviral therapy (cART)
consisting in several anti-HIV drugs with different mechanism of
action in all-in-one pill. Marketed combinations of TDF are:
Truvada (TDF + emtricitabine), Atripla (TDF + emtricitabine +
efavirenz), Complera (emtricitabine + rilpivirine) and Stribild
(TDF + elvitegravir + cobicistat + emtricitabine) (Gilead, 2022;
Deeks and Perry, 2010; De Clercq, E., 2019).

Tenofovir is the most effective, safe and best selling anti-
HIV drug. Its special advantages are preventive effects in
mother-to-child HIV transmission and relative safety for
pregnant women and pediatric patients (Nachega, et al.,
2017; Gibb et al., 2012; Siberry et al., 2012; Wang et al.,
2013). In 2012, FDA approved Truvada (emtricitabine/
tenofovir disoproxil fumarate) as the first drug effective to
reduce the risk of HIV transmission to uninfected
individuals. Extensive investigations are also carried out
in the field of preventive effects of tenofovir containing
microbicides. Several clinical studies including daily use
of tenofovir vaginal gel or its combination with oral
tenofovir are under way in several African countries.
Despite an initial enthusiasm from the results of the
Caprisa 004 study published in 2010, the following
studies (VOICE and FACTS 001) failed due to a failure of
the human factor: An adherence in all aspects of the study
was too low to confirm effectiveness. The same result was
obtained from the FEM-PrEP clinical trial designed to assess
prevention of HIV infection with a daily dose of one pill of
Truvada (Van Damme et al., 2012; Marrazzo et al., 2015).

Tenofovir has been also investigated as anti-hepatitis B agent
and in 2008 approved by FDA for the treatment of chronic

FIGURE 8 | Metabolic conversion of rabacfosadine to PMEG diphosphate.

Frontiers in Chemistry | www.frontiersin.org May 2022 | Volume 10 | Article 8897379

Krečmerová et al. Phosphonates and Phosphonate Prodrugs

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


hepatitis B in adults and pediatric patients 12 years of age and
older. Tenofovir disoproxil is more efficacious than previously
approved adefovir dipivoxil, and so far there is no reported
resistance (Yang et al., 2015; Tillmann and Samuel et al., 2019;
de Fraga et al., 2020). Both ANPs (tenofovir and adefovir) act as
chain terminators when their metabolites get incorporated into
the viral DNA strands while they undergo replication by
polymerases or reverse transcriptase. However, recent
discoveries showed also an additional immunomodulatory
mechanism. Both ANP drugs, (but not nucleoside analogues),
induce interferon (IFN)-λ3 in the gastrointestinal tract.
Pretreatment of peripheral blood mononuclear cells from HBV
patients with these ANPs inhibited LPS-mediated interleukin
(IL)-10 production (Murata et al., 2020).

The new prodrug form of tenofovir developed by Gilead
Sciences is tenofovir alafenamide (TAF) (De Clercq, 2016; Lee
et al., 2005; Birkus et al., 2017). It is preferentially taken up by the
lymphatic tissue and, also by liver cells (Birkus et al., 2017). The
compound is a typical representative of “ProTides” - aryloxy
amino acid phosphoramidates, the technology developed
originally by C. McGuigan. “ProTides” are widely used due to
optimal pharmacokinetic properties and relatively easy synthesis
(Pradere et al., 2014; Heidel and Dowd, 2019). Synthesis of TAF
has been described in many patents, including variations of

experimental conditions and separation of diastereoisomers
(GS-7340 and GS-7339, Figure 10) (Chapman et al., 2001;
Ramanathan, 2013). The large-scale synthesis and process for
separation of diastereomers by simulated moving bed
chromatography (SMBC) is described in ref. (Chapman et al.,
2001). The desired isomer was found GS-7340 with anti-HIV-1
activity data about ten-fold higher than GS-7339. For clinical
application, the compound is used in the form of hemifumarate
(Liu, 2013). For HBV therapy, it is sold under the brand name
Vemlidy. At present, TAF has largely replaced TDF in HIV
treatments, primarily due to the significant difference in
dosage—only 30 vs. 300 mgs, with lower incidence of adverse
side effects as well as greatly increased levels of tenofovir inside
the virally infected cells (De Clercq, 2016; Seley-Radtke and Yates,
2018; De Clercq, 2019). TAF is also used in various combinations
with other antiretroviral drugs (Genvoya, Odefsey, Descovy,
Symtuza).

2.2 Current Trends and Future Perspectives
Despite the progress in modern medicine, there will be always
need for new biologically active molecules. The reason are
emerging infections, arising resistance of many pathogens
against standard treatments and increasing number of
patients with immunity problems. Many ANPs are active

FIGURE 9 | Synthesis of tenofovir and its prodrug, tenofovir disoproxil.
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against serious, life threatening infections still lacking
effective treatment e.g., cytomegalovirus and polyomavirus
infections (in perinatal patients and transplant or other
immunocompromised patients), poxvirus infections and
specific herpesvirus infections (e.g., human herpesvirus
type 6, HHV-6). All these facts substantiate further
investigations in the field which are targeted to the
following areas:

1 Compounds from Antonin Holy´s legacy—structures with
excellent biological activities still waiting for clinical/
preclinical investigations

2 Development of new ANP structures
3 New ANP prodrugs with improved pharmacokinetic
properties

4 New targets and new applications

2.2.1 “Old Compounds” Still Waiting for Their
Opportunity
During more than 30 years of ANP research at the IOCB,
hundreds of structures with excellent biological activities have
been synthesized. An integral part of this story was always a
personality of Erik De Clercq, Antonin Holy´s friend and
collaborator leading all antiviral investigations and also
author of many ANP reviews (De Clercq, 2009; De Clercq,
2011; De Clercq, 2013; De Clercq, 2019). Promising structures
deserving further investigation are discussed below
(Figure 11).

a) FPMP derivatives, i.e., (3-Fluoro-2-phosphonomethoxy)
propyl derivatives.

This group of purine ANPs inhibits selectively retroviruses
(HIV-1, HIV-2) and also HBV, with no effect towards other DNA
viruses. The adenine derivative, (S)-FPMPA has better
parameters in vivo compared to PMEA (adefovir) (Balzarini
et al., 1991; Jindřich et al., 1993). Anti-HIV activity was also
found in both enantiomers of FPMPDAP and FPMPG and some
N6-substituted derivatives of (R)-FPMPDAP (cyclopropyl,
propyl, allyl) (Baszczyňski and Janeba, 2013).

In the pyrimidine series, no antiviral activity was found but
both enantiomers of the thymine derivative 1-[3-fluoro-2-
phosphonomethoxy)propyl]thymine (FPMPT) have inhibitory
activity towards thymidine phosphorylase, the enzyme playing
the key role in the angiogenesis in tumors (Folkman and Shing,
1992; Esteban-Gamboa et al., 2000; Pomeisl et al., 2005). A study
carried out on human purine nucleoside phosphorylase (PNP)
revealed that the monophosphates derived from both
enantiomers of FPMPG are its potent inhibitors. PNP is a
purine salvage pathway enzyme catalysing the phosphorolysis
of guanosine, inosine and 2′-deoxyguanosine to the
corresponding purine base and ribose-1-phosphate or 2′-
deoxyribose-1-phosphate, respectively. Pharmacological aspect
of PNP inhibition is connected with the treatment of human
T-cell proliferative disorders (Votruba et al., 2010)101.

b) (R)-PMP-derivatives, i.e., (R)-2-(Phosphonomethoxy)propyl
derivatives.

FIGURE 10 | Synthesis of proTides derived from tenofovir.
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The most active antiretroviral compound of this series, 2,6-
diaminopurine analogue of tenofovir, (R)-PMPDAP, has not been
thus far sufficiently studied, despite the fact that it is 10-fold more
potent against HIV-1 compared to tenofovir in vitro and in vivo
(Balzarini et al., 1993; Balzarini et al., 1996). It is also strongly active
against animal retroviruses, especially feline immunodeficiency virus.
Although strong conclusions cannot still be done, some studies
revealed slightly positive (Vahlenkamp et al., 1995; Taffin et al.,

2015). It is clear that the activity of (R)-PMPDAP in vivo warrants
further investigations including synthesis of prodrugs (Krečmerová
et al., 2013).

c) “Open-ring” analogues are ANPs having PME-, PMP or
HPMP-grouping attached to the position 6 of the 2,4-
diaminopyrimidine ring via oxygen atom. They mimic 2,6-
diaminopurine ANPs with an open imidazole ring. Their

FIGURE 11 | Biologically active acyclic nucleoside phosphonates still waiting for their opportunity for further development.
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antiviral activity is essentially identical to that of their parent
compounds, including the enantiomeric specificity. It means
that (R)-HPMPO-DAPy is a typical anti-DNA virus agent
(similarly as cidofovir and other HPMP derivatives) whereas
PMEO-DAPy, (R)-PMPO-DAPy a 5-substituted PMEO-
DAPy inhibit retroviruses and HBV (Balzarini et al., 2002;
Holý et al., 2002; Hocková et al., 2003; De Clercq et al., 2005;
Herman et al., 2010). The most effective antiretroviral
compounds are PMEO-5-methyl-DAPy and other 5-
substituted PMEO-DAPy derivatives (Hocková et al., 2003).
Compound PMEO-DAPy is active not only against
retroviruses but also against many DNA viruses, especially
herpesviruses affecting immunocompromised patients
including those with HIV/AIDS. For this purpose we
studied PMEO-DAPy also in the form of various structural
types of prodrugs (Krečmerová et al., 2017).

d) HPMP-5-azaC (5-aza analogue of cidofovir), its cyclic form
and prodrugs

1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine
(HPMP-5-azaC) has been developed as less toxic and more
effective alternative to cidofovir. It shows potent and selective
activity against all DNA viruses. The activity is comparable to
cidofovir concerning herpes viruses (HSV-1, HSV-2) and
vaccinia virus, and 2 to 7 times more active against varicella
zoster virus (VZV), human cytomegalovirus (HCMV), human
herpesvirus type 6 (HHV-6) and adenovirus (Ad2), with
generally lower cytotoxicity (Krečmerová et al., 2007a). The
prodrug form, hexadecyloxyethyl ester of cyclic HPMP-5-azaC
revealed extremely high values of anti-DNA virus activities
including imposing selectivity indices on the order of
thousands, e.g., 1,160 for herpes simplex virus (HSV-1),
≥5,800 for varicella zoster virus (VZV) or ≥24,600 for human
cytomegalovirus (HCMV) (Krečmerová et al., 2007b).
Unfortunately, HPMP-5-azaC has rather complicated
metabolic profile due to instability of the 5-azacytosine ring
and the compound was finally not advanced to clinical
investigations (Dračínský et al., 2008; Naesens et al., 2008).

e) HPMPA, HPMPDAP and aza/deaza purine base analogues

(S)-Enantiomers of HPMPA, HPMPDAP and 3-deazaHPMPA
are compounds strongly active against DNA viruses, especially
herpesviruses but their therapeutic possibilities are so far
underexplored. Some of them, e.g., HPMPDAP could be useful
for veterinary medicine for their effects towards African swine
fever virus (Gil-Fernandez et al., 1987; Holý, 2003). First
experiments with HPMPDAP performed in mice were
successful. Unfortunately, application of free HPMPDAP to pigs
caused serious side effects—the compound was strongly toxic.
More research concerning dosing and formulation must be
done but it is clear that future investigations need to be
performed with prodrug forms (Roels et al., 2013).

Special effort has been also paid to investigation of (S)-
HPMPDAP and its prodrugs as anti-pox virus agents. The
collaborative project of our institute with Rega Institute and

Gilead Sciences had to find a potential drug candidate against
poxviruses for the purpose of bioterrorist attack with variola
virus (Krečmerová et al., 2010). Large series of cyclic and
acyclic HPMPDAP esters were prepared: alkoxyalkyl, POM,
2,2,2-(trifluoro)ethyl, butylsalicylyl, and prodrugs based on
peptidomimetics. The most potent prodrugs in vitro (tested
on vaccinia virus) were the alkoxyalkyl ester derivatives with
50% effective concentrations 400- to 600-fold lower than
those of the parent compound. Nevertheless, further in vivo
experiments selected finally as the best candidate the acyclic
POM ester (Figure 12).

Compounds deserving further investigation are also ANPs
active against herpesviruses so far lacking any treatment (e.g.,
human herpesvirus type 6, HHV-6). HHV-6 takes part in
pathogenesis of exanthema subitum (roseola),
lymphoproliferative diseases, chronic fatigue syndrome and it
is known also a co-factor of AIDS. It causes severe complications
(e.g., encephalitis) in immunocompromised patients. Testing of
ANPs for activity against HHV-6 selected 3-deaza-HPMPA and
its cyclic form as compounds with the highest activity and
selectivity (Reymen et al., 1995). In the series of 8-azapurine
analogues, PME-8-azaguanine and (R)-PMP-8-azaguanine are
compounds with interesting antiretroviral potency (Holý et al.,
1996).

2.2.2 Development of New ANP Structures
New ANP structures modified in the aliphatic side chain and/or
in the base moiety are currently being developed in many
laboratories. The successful example is besifovir, 9-[2-
cyclopropyl-2-(phosphonomethoxy)ethyl]-2-aminopurine. Its
prodrug form, besifovir disoproxil is investigated for the HBV
treatment in the Phase III of clinical trials (Jung et al., 2020; Kim
et al., 2020).

Replacement of a natural nucleobase with another heterocycle
has been already mentioned in antibacterial PME-2-
aminothiazoles (chapter 1.1.5). Another example is a series of
HPMP and PME derivatives bearing a 1,2,4-thiadiazole base
moiety which was intended as a cytosine mimic. In contrast to
HPMPC, none of these compounds has antiviral activity but they
were found potent inhibitors of cysteine dependent enzymes,
such as Cathepsine K and glycogen synthase kinase 3β
(Pomeislová et al., 2021).

Many side-chain modified ANPs are investigated as potent
antiparasitic agents (see chapter 1.2.4.)

2.2.3 New Prodrugs
Prodrugs are pharmacologically inactive compounds which
are transformed in vivo to active drugs via metabolic and/or
chemical processes occurring in the body. They are
developed to optimize pharmacological properties of
parent drugs. It is estimated that around 10% of all
marketed drugs are prodrugs and their share in the new
drug development is continuously increasing (Najjar and
Karaman, 2019).

Prodrugs developed for acyclic nucleoside phosphonates can
be categorized to the following groups (Pradere et al., 2014;
Heidel and Dowd, 2019):
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- Symmetrical phosphonate diesters—Alkyl, aryl,
acyloxyalkyl (pivaloyloxymethyl, POM),
alkoxycarbonyloxyalkyl (isopropoxycarbonyloxymethyl,
POC), S-acylthioalkyl (SATE) (Benzaria et al., 1991).

- Asymmetric phosphonate diesters: HepDirect prodrugs
(Erion et al., 2004; Reddy et al., 2008) Cyclosaligenyl
(cycloSal) phosphonates (cyclic esters with variously
substituted salicyl alcohol) (Meier, 2006; Meier and
Balzarini, 2006). Despite an enormous amount of work in
the area of cycloSal nucleosides, in the field of ANPs, only
cycloSal-PMEA and cycloSal-(R)-PMPA were investigated
(Meier et al., 2005).

- Phosphonate monoesters—internal cyclic monoesters
(esters of cyclic HPMP derivatives, e.g., Figure 2,
Figure 12) and monoesters -P(O)(OH)(OR) where R is
alkyl, aryl, alkoxyalkyl (e.g., brincidofovir), POM, POC,
alkyloxycarbonyl.

- Symmetric bisamidates—bisamidates with amino acid esters
(e.g., rabacfosadine) (De Clercq, 2018).

- Asymmetric mixed ester/amidate/prodrugs—proTides
(Cahard et al., 2004; Pradere et al., 2014; Heidel and
Dowd, 2019).

Besides improving antiviral activity, cellular uptake and
toxicity profile, some types of ANP prodrugs are also reported
with respect to influence the antiviral activity spectrum of parent
compounds. In the HPMP series, it concerns
octadecyloxyethyl (ODE) monoesters derived of HPMPA.
(S)-HPMPA is active exclusively against most double-
stranded DNA viruses but has no in vitro effect against
RNA viruses and retroviruses (Holý, 2003; De Clercq and
Holý, 2005). Its opposite enantiomer, (R)-HPMPA is
completely inactive against all viruses. Despite these facts,
HDP and ODE monoesters of (S)-HPMPA were reported as
active compounds against HCV (positive sense single-
stranded RNA virus). Interestingly, even a prodrug
derived from R-enantiomer was active against HCV
(Wyles et al., 2009). Moreover, alkoxyalkyl esters of (S)-

FIGURE 12 | Prodrugs derived from (S)-HPMPDAP as antipox virus agents.
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HPMPA and its 3-O-methyl derivative, (S)-MPMPA are
potent inhibitors of HIV-1 replication (EC50 value of
7 nM for HDP ester of (S)-HPMPA) (Hostetler et al.,
2006; Valiaeva et al., 2006). As expected, remarkable
increase in antiviral activity against DNA viruses (HSV-1,

HCMV, vaccinia, cowpox and ectromelia virus) was
observed in ODE esters of (S)-HPMPA, (S)-HPMPG, (S)-
HPMPDAP and its 6-cyclopropylamino analogue (S)-
HPMP-cPrDAP. The two most active compounds against
HSV-1 were ODE–(S)-HPMPA and ODE–(S)-HPMPC with

FIGURE 13 | Examples of peptidomimetic and tyrosine based prodrugs of acyclic nucleoside phosphonates.
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subnanomolar EC50 values in cell cultures (Valiaeva et al.,
2009).

Another example of influencing antiviral activity spectrum via
synthesis of prodrugs are both enantiomers of 3-fluoro-2-
(phosphonomethoxy)propyl]adenine (FPMPA) and other
FPMP derivatives. These ANPs are effective antihuman
immunodeficiency virus (HIV) agents, but have no activity
against a wide range of DNA viruses. The introduction of a
diamyl aspartate amidate motif together with a phenyl ester
moiety at the phosphorus (de facto a special kind of proTides)
not only enhanced antiviral potency against HIV (by a factor up
to 1,500), but also against HBV. Interestingly, some of the
synthesized compounds exhibited activity against DNA
viruses, namely herpes viruses (Luo et al., 2017).

Despite of the huge number of prepared structures and
promising in vitro or in vivo studies, only a few of them have
been proceeded into clinical trials or clinics (POM, POC, HDP,
proTides). It can be attributed to the difficulty of achievement of
the right prodrug properties balance, particularly suitable
chemical stability at physiological pH, rate of conversion,
safety with respect to formed by-products, avoidance of
stereoisomers, physical properties (ability to crystallize,
solubility), and ability to synthesize substantial quantities.
Therefore, search for new structural types of prodrug
promoiety is highly desirable.

One such promising strategy is the concept of amino acid
prodrugs (Krečmerová, 2017). Single amino acid ester prodrugs
were reported in Herdewijn´s group for (S)-HPMPA and its
cyclic form (Luo et al., 2018).

Extensive research is paid to prodrugs where the
phosphonic acid residue is esterified by a hydroxyl group of
hydroxyl amino acids (serine, threonine, tyrosine) which can
be used either as single amino acid or as a component of small
peptides (dipeptides and tripeptides). To circumvent the
problem of the low permeation of peptides through the cell
membranes and enzymatic instability in the gastrointestinal
tract, structural modifications to form peptidomimetics are the
solution. These modifications consist in esterification of a
carboxyl group or its transformation. This approach enables
wide spectrum of “fine tuning” of pharmacokinetic properties.
Additionally, introduction of D-configurated N-terminal
amino acids to the dipeptide increases enzymatic stability of
the prodrug and its uptake to plasma (Eriksson et al., 2008;
Peterson et al., 2011). Extensive research finally showed the
best pharmacokinetic profiles in single amino acid prodrugs,
especially tyrosine derivatives (Krylov et al., 2013; Zakharova
et al., 2011; Williams et al., 2011). Synthesis and structures of
peptidomimetic and tyrosine based ANP prodrugs are
depicted in Figure 13 on the example of cidofovir.
Analogous prodrugs were prepared also from (S)-HPMPA
(Zakharova et al., 2011). They have excellent antiviral
activity against DNA viruses (HCMV, poxviruses, HSV-1)
without any cytotoxicity. Activity data of the cyclic forms
are not dependent on stereochemistry at the phosphorus
atom (EC50 for RP ≈SP). Oral bioavailability in mice was 8-
10x higher than that of parent phosphonates (39% vs. <5%)
while the tyrosine alkylamide esters had better stability than

carboxylate ester derivatives (Zakharova et al., 2011; Krylov
et al., 2013).

Significant results have been recently published using tyrosine
in synthesis of ANP proTides whose phenyl group is replaced
with a modified (S)-tyrosine moiety (Figure 13). This approach
applied to tenofovir leads to compounds with substantially
increased potency and selectivity index towards HIV as well as
HBV compared to tenofovir alafenamide. It is caused by their
high cellular uptake and rapid cleavage to the parent drug
tenofovir in the target cells (Kalčic et al., 2021).

2.2.4 New Targets, New Applications: Development of
ANPs as Antiparasitic Agents
Various purine ANPs have remarkable antiprotozoal activity. The
therapeutic potential for the treatment of African
trypanosomiasis was identified originally in (S)-HPMPA and
(S)-HPMPDAP. The compounds revealed inhibitory effects
against Trypanosoma brucei brucei both in vitro and in vivo
while inhibitory activity against Trypanosoma congolense was
found in PMEDAP (Kaminsky et al., 1994; Kaminsky et al., 1996).
Recent studies selected as the best inhibitors 6-oxopurine ANPs
further modified in the side chain (branched nitrogen containing
derivatives, bisphosphonates and C-1′-branched ANPs)
(Doleželová et al., 2018; Teran, 2020; Doležalová et al., 2021;
Kalčic et al., 2021).

Extensive research is currently paid to ANPs as antimalarial
agents. The parasitic 6-oxopurine phosphoribosyltransferases
(PRTase) have been shown to be drug targets to inhibit
malarial parasites (Plasmodium falciparum, Plasmodium
vivax). 6-Oxopurine PRTases are present in all organisms. For
a drug candidate, high selectivity towards parasitic enzyme
PfHGPRT (and low or no inhibition of the human HGPRT) is
always required (De Jersey et al., 2011; Keough, et al., 2013a).

Effective inhibitors of Plasmodium HGXPRT are guanine and
hypoxanthine ANPs with the following arrangements of the side
chain:

a) 2-(Phosphonoethoxy)ethyl derivatives (PEE derivatives:
PEEG, PEEHx) (De Jersey et al., 2011; Keough, et al., 2013a).

b) 2-Hydroxy-3-phosphonomethoxypropyl (“iso-HPMP”
derivatives) (Krečmerová et al., 2012).

c) Bisphosphonate structures formed by attachment of a second
phosphonate group to the ANP scaffold. The most potent was
found guanine derivative derived from iso-HPMPG by
replacing its hydroxyl with a phosphonomethoxymethyl
residue (Figure 14) (Keough, et al., 2013b).

d) N-Branched ANPs (aza-ANPs) containing a trisubstituted
nitrogen in the side chain. The most potent inhibitors are
9-[N-(3-methoxy-3-oxopropyl)-N-(2-phosphonoethyl)-2-
aminoethyl]hypoxanthine and 9-[N-(2-carboxyethyl)-N-(2-
phosphonoethyl)-2-aminoethyl]guanine (Figure 14). The
hypoxanthine derivative exhibits the highest ever reported
selectivity for PfHGXPRT compared to human HGPRT
(Hocková et al., 2012).

e) Thia-ANPs—sulfur bridged acyclic nucleoside analogues,
active against Plasmodium enzyme PfHGXPRT in
micromolar concentrations and highly selective compared
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to the human enzyme. Promising inhibitory data were found
also in their phosphoramidate prodrugs (Klejch et al., 2019)

Besides above described guanine and hypoxanthine ANP
inhibitors, there are also highly effective and selective “ANP-
like“inhibitors with unnatural pyrrolidine base moiety (Keough
et al., 2018). Purine metabolism was also identified as a
ubiquitous factor in the physiology of various other pathogens
including Mycobacterium tuberculosis, Mycobacterium smegmatis
and other mycobacteria. The purine salvage enzyme HGPRT was
found essential for Mycobacterium tuberculosis growth
in vitro; however, its precise role in M. tuberculosis
physiology is so far unclear. Membrane permeable

prodrugs of HGPRT inhibitors arrest the growth of M.
tuberculosis and represent potential new antituberculosis
compounds (Knejzlík et al., 2020).

3 2-(PHOSPHONOMETHYL)
PENTANEDIOIC ACID, 2-PMPA

2-PMPA belongs to the group of phosphorus-based inhibitors of
the enzyme glutamate carboxypeptidase II (GCPII) first identified
by Jackson and Slusher in 1991 (Jackson at al., 1996; Jackson and
Slusher, 2001). When first purified from the brain, Slusher et al.
(Slusher et al., 1990) initially named the enzyme NAALADase for

FIGURE 14 | Acyclic nucleoside phosphonates as potential antimalarial agents.
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its substrate specificity for N-acetylated-alpha-linked acidic
dipeptides; the enzyme has also been called
N-acetylaspartylglutamate (NAAG) peptidase, prostate specific
membrane antigen (PSMA) and folate hydrolase I (FOLH 1). The
enzyme is a zinc metallopeptidase that hydrolyzes terminal
glutamate from various substrates. The enzyme is a
transmembrane glycoprotein which consists of six domains
including the N-terminal cytoplasmic tail, a helical
transmembrane region, and four large extracellular domains.
The active site of GCPII where 2-PMPA and other
competitive inhibitors bind is extracellularly facing (Bařinka
et al., 2004).

In the nervous system GCPII converts
N-acetylaspartylglutamate (NAAG), one of the most abundant
peptides in the brain, to glutamate and N-acetylaspartate while in
the jejunum its role also consists in the cleavage of pteroyolpoly-
gamma-glutamate to folate and glutamate. In the prostate, GCPII
is intensively studied as a both a prostate cancer biomarker and a
target for radiotherapy (Jones et al., 2020; Zhang et al., 2021).
More recently the Slusher team identified that GCPII enzymatic
activity is highly upregulated in patient biopsies with
inflammatory bowel disease (IBD) and inhibition of this
upregulated activity provides therapeutic benefit in preclinical
IBD models (Rais et al., 2016; Date et al., 2017; Peters et al., 2019;
Peters et al., 2022).

Overexpression of GCPII in the brain leads to reduced NAAG
and excess extracellular glutamate which can be pathogenic.
Thus, inhibitors of GCPII have been investigated as
therapeutic agents for disorders arising from excess
glutamatergic transmission (Vornov et al., 2016; Neale and
Yamamoto, 2020). Specifically, GCPII inhibitors have been
developed as potential therapeutics for the treatment of
neuropathic pain (Vornov et al., 2013), peripheral neuropathy
(Zhang et al., 2002; Zhang et al., 2006), stroke (Slusher et al.,
1999), amyotrophic lateral sclerosis (Ghadge et al., 2003; Tallon
et al., 2022), multiple sclerosis (Rahn et al., 2012; Hollinger et al.,

2022), schizophrenia (Olszewski et al., 2012), epilepsy (Luszczki
et al., 2006), traumatic brain injury (Feng et al., 2011; Gurkoff
et al., 2013), addiction (McKinzie et al., 2000; Xi et al., 2010),
cognition (Janczura et al., 2013), and perinatal injury (Zhang
et al., 2016).

GCPII inhibitors developed so far are polar compounds with
structural similarity to NAAG and glutamate. In general, they
contain a dicarboxylic acid moiety which binds to the C-terminal
glutamate recognition site of GCPII and a zinc-binding group
which engages one or both zinc atoms at the active site (Ferraris
et al., 2012). Themost potent classes belong to phosphonates such
as 2-PMPA (Jackson at al., 1996), thiols such as 2-(3-
mercaptopropyl)pentane-dioic acid (2-MPPA) (Majer et al.,
2003), ureas such as N-[N-[(S)]-1,3-dicarboxypropyl]
carbamoyl]-L-leucine (ZJ43) (Olszewski et al., 2017) and (N-
[N-[(S)-1,3-dicarboxypropyl]carbamoyl]methyl-L-cysteine
(DCMC) (Foss et al., 2005), and hydroxamates such as 2-
(hydroxycarbamoylmethyl)pentanedioic acid (Stoermer et al.,
2003) (Figure 15). Unfortunately, these compounds, with the
exception of thiols, have low membrane permeability and oral
bioavailability. The thiol inhibitor 2-MPPA advanced to clinical
studies (van der Post et al., 2005). It was safe and well tolerated in
two Phase 1 studies but subsequent immunological toxicities were
observed in chronic GLP primate studies, halting its
development. The toxicity was attributed to the thiol nature of
the compound, not its GCPII inhibiting activity as it is well
documented that thiol-containing drugs can elicit immune
hypersensitivity reactions (Jaffe, 1986; Smith et al., 1989;
Friedmann et al., 2003).

2-PMPA is one of the most potent GCPII inhibitors identified
to date and has been found to have broad and robust
neuroprotective and analgesic effects in many preclinical
studies conducted by multiple independent laboratories (for
review see: Barinka et al., 2012; Vornov et al., 2016; Nonaka
et al., 2017). In addition to CNS diseases, GCPII provides
metabolic substrates for cancer growth so its inhibition may

FIGURE 15 | Representative examples of GCPII inhibitors.
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provide anticancer activity (Kaittanis et al., 2018; Nguyen et al.,
2019). In fact, a recent study showed the therapeutic potential of
2-PMPA in the treatment of glioblastoma (Gao et al., 2021). New
opportunities may also arise using 2-PMPA as a nephron-
protective strategy in PSMA-targeted prostate cancer
radiotherapy (Kratochwil et al., 2015; Chatalic et al., 2016) or
use of 2-PMPA as an inhibitor of cytosolic carboxypeptidases
(Wang et al., 2020). Despite its proven utility in multiple
preclinical models, clinical use of 2-PMPA remains
problematic due to its poor pharmacokinetic profile including
low cellular uptake, low oral bioavailability, and minimal brain
penetration caused by its strongly polar character. Given this, the
IOCB and Johns Hopkins Drug Discovery collaborative team
decided to focus on synthesizing 2-PMPA prodrugs (Majer et al.,
2016; Dash et al., 2019).

2-PMPA prodrugs were synthesised using two different
strategies. The first strategy was focused on enhancing its oral
bioavailability by covering its charge functionalities using FDA
approved promoeities such as pivaloyloxymethyl (POM),
alkoxycarbonyloxyalkyl (POC), and 5-methyl-2-oxo-1,3-dioxol-
4-yl)methyl (ODOL) known to be activated via esterase enzymes
expressed in intestines, plasma and liver (van Gelder et al., 2002;
Rautio et al., 2008). The second strategy was focused on designing
prodrugs for enhanced CNS penetration employing intranasal
delivery methods (Rais et al., 2015; Nedelcovych et al., 2017).

To develop orally available 2-PMPA prodrugs, our initial
strategy was to cover only the phosphonate with hydrophobic
moieties (POM, POC) keeping the α—and γ -carboxylates
unsubstituted. Unfortunately, these derivatives were chemically
unstable and exhibited low permeability. Addition of various α,γ-
carboxylic diesters and α-monoesters to the bis-POC/POM
derivatives enhanced their chemical stability but these mixed
esters were too stable in vivo, resulting in minimal release of 2-
PMPA. Iterative medicinal chemistry and pharmacokinetic
efforts led to identification of tris-POC-2-PMPA (Figure 16)
designed by introducing POC groups on both the phosphonate
and the α-carboxylate. (Majer et al., 2016). Inmice, oral tris-POC-
2-PMPA provided sustained levels of 2-PMPA for over 4 h, with
>20 fold enhancement in total 2-PMPA exposure when
compared to orally administered 2-PMPA at a molar
equivalent dose. The substantial oral exposure was
subsequently confirmed in a beagle dog. The results provided

the first example of orally bioavailable prodrugs of phosphonate
based GCPII inhibitors and provided a roadmap for the design
and development of other prodrugs from this potent class of
compounds.

Encouraging results with tris-POC-2-PMPA stimulated
further efforts in investigation and optimization of 2-
PMPA prodrugs which resulted in the synthesis of (5-
methyl-2-oxo-1,3- dioxol-4-yl)methyl (ODOL) derivatives
(Figure 17). ODOL promoieties have been applied to
enhance oral absorption of several FDA-approved drugs
including olmesartan and azilsartan medoxomil (Brousil
and Burke, 2003; Babu et al., 2009; Garaga et al., 2015). 2-
PMPA derivatives masked with two, three, or four ODOL
groups were synthesised and evaluated for in vitro stability
and in vivo pharmacokinetics in mice and dogs (Dash et al.,
2019). All prodrugs were found to be moderately stable at
physiological pH, but rapidly hydrolysed in plasma and liver
microsomes by the action of ubiquitous esterase enzymes.
Like tris-POC-2-PMPA, ODOL prodrugs increased 2-PMPA
plasma and brain exposures. The tetra-ODOL-2PMPA
prodrug was the best and demonstrated a remarkable 80-
fold enhancement in exposure versus oral 2-PMPA. In dogs,
relative to orally administered 2-PMPA, the compound
delivered a 44-fold enhanced 2-PMPA plasma exposure.

Unfortunately, while high plasma exposures were achieved
with orally administered tris-POC-2-PMPA and tetra-ODOL-2-
PMPA, the brain/plasma ratio remained low (<5%) due to their
rapid conversion by plasma and liver enzymes. To further
enhance brain exposures and brain/plasma ratio for use as a
CNS therapeutic, we designed additional 2-PMPA prodrugs for
intranasal (IN) administration by masking its γ-carboxylate.
When compared to IN delivered 2-PMPA at 1 h post dose, γ-
(4-acetoxybenzyl)-2-PMPA [Compound 1 in: Nedelcovych et al.,
2017 and Figure 16)] resulted in enhanced delivery of 2-PMPA
delivery to both plasma (4.1-fold) and brain (11-fold). The
combined prodrug and IN delivery strategies are currently
being employed with other inhibitors in an attempt to identify
a clinically viable candidate.

The synthesis of tetra-ODOL-2-PMPA from 2-PMPA
dibenzyl diethyl ester utilizes different reactivity of
carboxylic and phosphonate esters towards
bromotrimethylsilane. Carboxylic benzyl esters are

FIGURE 16 | Structures of tris-POC 2-PMPA (A) and γ-(4-acetoxybenzyl)-2-PMPA (B).
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deprotected first by catalytic hydrogenation and replaced by
the ODOL moieties. The following deprotection of
phosphonate ethyl esters with bromotrimethylsilane
proceeds with the preservation of ODOL esters in the
carboxylic groups which enables subsequent esterification
of the phosphonate groups with 4-(hydroxymethyl)-5-
methyl-1,3-dioxol-2-one (Figure 17).

CONCLUSION

Phosphonates have unique and irreplaceable position in drug
design and development due to their increased metabolic stability
and bioisostericity with phosphates. The ability to interact with
various enzymes and influence diverse metabolic pathways in the
body is a benefit usable practically in all areas of medicine. The
main research challenges on their way from chemistry to clinics
are formulation strategies and/or transformation to prodrugs due
to their low bioavailability related to a strongly polar character.
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GLOSSARY

ACT adenylate cyclase toxin

ANP acyclic nucleoside phosphonate

cPrPMEDAP 9-[(2-phosphonomethoxy)ethyl]-N6-cyclopropyl-2,6-
diaminopurine

DAPy 2,4-diaminopyrimidine

DCMC (N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]methyl-L-cysteine

DIAD diisopropyl azodicarboxylate

EF edema factor

GCPII glutamate carboxypeptidase II

FPMP 3-fluoro-2-(phosphonomethoxy)propyl]

HBV hepatitis B virus

HCMV human cytomegalovirus

HCV hepatitis C virus

HDP hexadecyloxypropyl

HHV-6 human herpesvirus type 6

HPMP 3-hydroxy-2-(phosphonomethoxy)propyl]

HPMPA 9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine

HPMPC 1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine

HPMPDAP 9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-
diaminopurine

HSV-1 herpes simplex virus type 1

IBD inflammatory bowel disease

LPS lipopolysaccharide

2-MPPA 2-(3-mercaptopropyl)pentane-dioic acid

NAAG N-acetylaspartylglutamate

ODE octadecyloxyethyl

PEE 2-(phosphonoethoxy)ethyl

PfHGPRT Plasmodium falciparum hypoxanthine-guanine-xanthine
phosphoribosyltransferase

PME 2-(phosphonomethoxy)ethyl

PMEA 9-[2-(phosphonomethoxy)ethyl]adenine

PMEDAP 9-[2-(phosphonomethoxy)ethyl]-2,6-diaminopurine

PMEG 9-[2-(phosphonomethoxy)ethyl]guanine

PMEO-DAPy 6-[2-(phosphonomethoxy)ethoxy]-2,4-
diaminopyrimidine

PMP 2-(phosphonomethoxy)propyl

PMPA 9-[2-(phosphonomethoxy)propyl]adenine

2-PMPA 2-(phosphonomethyl) pentanedioic acid

POM pivaloyloxymethyl

POC isopropoxycarbonyloxymethyl

PRTase phosphoribosyltransferase

PSMA prostate specific membrane antigen

ODOL (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl

SATE S-acyl-2-thioethyl

TDF tenofovir disoprovil fumarate
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