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As a serious cardiovascular complication, diabetic cardiomyopathy (DCM) refers to diabetes-related changes in myocardial
structure and function, which is obviously different from those cardiomyopathy secondary to hypertension, coronary heart
disease, and valvular disease. The clinical features of DCM are left ventricular hypertrophy, myocardial fibrosis, and impaired
diastolic function. DCM will lead to cardiac dysfunction, eventually progress to cardiac arrhythmia, heart failure, and sudden
cardiac death. At present, the pathogenesis of DCM is complex and not fully elucidated, and oxidative stress (OS),
inflammatory response, glucolipid metabolism disorder, etc., are considered as the potential pathophysiological mechanisms.
As a consequence, there is no specific and effective treatment for DCM. OS refers to the imbalance between reactive oxygen
species (ROS) accumulation and scavenging, oxidation, and antioxidants in vivo, which is widely studied in DCM. Numerous
studies have pointed out that regulating the OS signaling pathways and reducing the generation and accumulation of ROS are
potential directions for the treatment of DCM. This review summarizes the major OS signaling pathways that are related to
the pathogenesis of DCM, providing ideas about further research and therapy.

1. Introduction

Diabetes is a chronic metabolic disease that threatens the
health of hundreds of millions. The incidence of diabetes
was 4.6% in 2000 and quickly increased to 10.5% in 2021,
and alarmingly, the cases are predicted to reach 783 million
by 2045 [1]. Of all the cases, over 90% are type 2 diabetes
mellitus (T2DM), which is responsible for more than 6 mil-
lion deaths in 2021 [1]. Diabetic cardiovascular diseases
(DCVDs) are the leading causes of death in diabetic patients,
accounting for more than 50% [2]. DCVD includes coronary
heart disease, cerebrovascular disease, congestive heart fail-
ure, and diabetic cardiomyopathy (DCM) [3, 4]. As a serious
type of DCVD, DCM is defined as a specific disease with car-
diac structural abnormalities and dysfunctions in diabetic

patients independent of uncontrolled hypertension, coro-
nary artery disease, significant valvular disease, and congen-
ital heart disease [5, 6], but there is still no universally
accepted definition and no authoritative epidemiological
data on morbidity and mortality [7]. Its histopathology
reveals that the main pathological features are myocardial
hypertrophy and fibrosis [8, 9], which exacerbate cardiac
hypertrophy, reduce myocardial compliance, cause cardiac
diastolic dysfunction [3, 10], and eventually lead to cardiac
arrhythmia, heart failure or sudden cardiac death [11, 12].
The pathophysiology of DCM is not fully elucidated. Previ-
ous studies have shown that (1) increased flux of glucose
and other sugars through the polyol pathway, (2) increased
intracellular formation of advanced glycation end products
(AGEs), (3) increased expression of the receptor for AGEs
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and its activating ligands, (4) activation of protein kinase
(PK) C isoforms, and (5) overactivity of the hexosamine
pathway are probably the 5 major mechanisms for tissue
damage in DCM [13]. The excessive production of mito-
chondrial reactive oxygen species (ROS) is a single upstream
event by which all those 5 mechanisms are activated [14].
Therefore, ROS plays critical roles in the progression of
DCM.

Oxygen free radicals, together with nonradicals, consti-
tute ROS [15], which is salutary when it is a physiological
dose. Oxidative stress (OS) refers to the accumulation of
ROS or the attenuation of antioxidant mechanisms in cells
or the imbalance between oxidation and antioxidation
in vivo, which finally leads to the damage of biomacromole-
cules [16, 17]. In present paper, we focus on recent studies
and summarize the OS-related signaling pathways associated
with DCM.

2. ROS Generation and Its Role in
DCM Progression

Mitochondria are the major sites of energy generation. It is
estimated that mitochondria in the heart produce up to
6 kg of ATP per day [18]. In addition to ATP production,
mitochondria are involved in the process of OS, which is
related to the ROS production and ROS scavenging. The
ROS production owe to the electron transport chain, a main
generator of mitochondrial free radicals, which is located in
the inner mitochondrial membrane [19, 20]. Apart from
mitochondria, the NAD(P)H oxidase, xanthine oxidase,
and uncoupled nitric oxide synthase are also the source of
ROS [10]. There are small amounts of ROS in the heart of
physiological conditions, and the basal levels of ROS are
essential for maintaining various cellular functions [21].
When the oxidative homeostasis of heart is broken, mito-
chondrial respiration is impaired, mitochondrial ROS pro-
duction exceeds its clear capacity, and ROS accumulation
occurs; free radicals significantly increase and damage the
myocardium [22, 23]. Conversely, excessive ROS can cause
oxidative damage to mitochondrial DNA, proteins, and
membranes, leading to mitochondrial dysfunction and con-
tributing to multiple diseases [24]. In diabetics, by increasing
glucose oxidation in the citric acid cycle, hyperglycemia itself
can increase hyperlipidemia or insulin resistance and lead to
OS directly or indirectly [25]. Insulin resistance or insulin
deficiency leads to hyperglycemia, which contributes to
increase ROS production [26, 27]. Excessive ROS generation
results in cardiac OS and inflammation, which leads to car-
diac fibrosis, cardiac hypertrophy, coronary microvascular
impairment, and left ventricular diastolic dysfunction. Usu-
ally, ventricular systolic dysfunction occurs in the late stage
and eventually develops into heart failure [5, 28, 29]. But
their detailed pathological mechanisms are still unclear.
DCM is a term used to describe diabetes-related changes in
myocardial structure and function and to distinguish these
changes caused by hypertension or coronary artery disease
[30]. Its characters are hypertrophie concentrique, myocar-
dial fibrosis, cardiac stiffness, and impaired diastolic func-
tion [3, 10].

3. Oxidative Stress Signalings Involved in the
Pathogenesis of DCM

Several mechanisms are involved in the pathogenesis of
DCM, among which OS plays a causative role in DCM path-
ophysiology. However, how OS promotes the development
of DCM is incompletely clear. We summarized some rele-
vant studies in recent years.

3.1. Nrf2-Mediated Antioxidant Signaling Pathways. Nuclear
factor erythroid 2-related factor 2 (Nrf2) is a transcription
factor, which binds to its repressor Kelch-like
epichlorohydrin-associated protein 1 (Keap1) and exists in
the cytoplasm. The conjugate of Nrf2 and its repressor
Keap1 can be dissociated and activated by OS; then, Nrf2
translocates into the nucleus to induce the expression of
antioxidant genes. Meanwhile, among the downstream
Nrf2-driven genes, p62 is a specific autophagy receptor of
Keap1, which promotes Keap1 degradation and activates
Nrf2 [31]. The dynamic interaction between Nrf2, Keap1,
and p62 is to maintain cardiac homeostasis and reduce dam-
age during OS in diabetics. The feed-forward loop linking
Nrf2-Keap1-p62 is broken in streptozotocin- (STZ-)
induced diabetic rats. After allopurinol treatment, it signifi-
cantly increases the expression of Nrf2 and p62 and reduces
the expression of Keap1 to repair the circuit and ease OS and
apoptosis induced by high glucose [32]. Normally, Nrf2
activity is suppressed by its native repressor Keap1; however,
OS or electrophilic stress liberates Nrf2 from Keap1, allow-
ing Nrf2 to translocate into the nucleus and bind to the pro-
moter region of the antioxidant response element (ARE).
This activates antioxidant genes such as glutathione S trans-
ferase, SOD, and quinone oxidoreductase 1 (NQO-1) [33].
These antioxidant enzymes alleviate OS damage by enhanc-
ing antioxidant capacity, inhibiting inflammation, and trans-
porting toxic metabolites. Therefore, the Nrf2-Keap1-ARE
pathway is identified as the major mechanism of myocardial
defense against oxidative damage in diabetes mellitus and
high glucose [33]. Empagliflozin, a sodium-glucose co-
transporter 2 (SGLT2) inhibitor, is a novel oral hypoglyce-
mic drug to reduce hyperglycemia by highly selective inhibi-
tion of SGLT2 [34]. Empagliflozin attenuates OS by
promoting the nuclear translocation of Nrf2 and activating
the Nrf2-ARE pathway, improving antioxidant levels and
reducing oxidative products in the type 2 diabetic KK-Ay
mice model [35], which remarkably reduces heart failure
and cardiovascular-related deaths in diabetic patients [34].
The activation of Nrf2 increases mRNA levels of Nrf2-
target genes Heme oxygenase-1 (HO-1) and NQO-1 to alle-
viate OS and prevent cardiac dysfunction in STZ-induced
diabetic mice [36]. Allisartan isoproxil, a blocker of the
angiotensin II receptor that is used to reduce the risk of heart
disease, mitigates diabetes-induced OS and inflammation by
upregulating Sirt1/Nrf2/HO-1 signal and inhibiting the NF-
κB activation, respectively, in diabetic cardiomyopathy
(DCM) rats [37]. Another study also confirmed that increas-
ing the expression of Nrf2/HO-1 signaling pathway can alle-
viate the OS in DCM [38]. Nrf2/HO-1 can also alleviate
inflammation by restraining nuclear translocation of RelA
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(p65), a canonical NF-κB subunit. In reverse, Nrf2 can be
inhibited by p65 activity, and its mechanism is a competition
for the transcriptional coactivator CREB-binding protein-
(CBP-) p300 complex [39]. Some natural products such as
garlic, curcumin, sulforaphane, and phenolic acids affect
the Nrf2 activation to alleviate OS and maintain cellular
antioxidant protection and redox homeostasis, achieving
cardiac protection [40]. Various substances protect diabetic
cardiomyocyte against OS and inflammation-induced injury
through activating adenosine monophosphate-activated
protein kinase (AMPK)/Nrf2/HO-1 signaling pathway
[41–43]. In general, Nrf2 acts as a mediator between
upstream genes and downstream target genes in multiple
signaling pathways, which plays an antioxidant role in
DCM to alleviate OS damage and improve cardiac function.

3.2. NF-κB-Mediated Proinflammation Signaling Pathways.
Nuclear factor-κB (NF-κB) is a family of transcription fac-
tors, which is secluded by inhibitor of NF-κB (IκB), known
as a family of inhibitory proteins, in the cytoplasm. The
IκB kinase (IKK) complex leads to IκB phosphorylation,
ubiquitination, and degradation and releases NF-κB translo-
cation into the nucleus to activate inflammatory gene
expression [44, 45]. Inhibition of IKK partially normalizes
ROS levels in hypothalamic arcuate nucleus (ARC) and
heart in diabetic rats and alleviates OS. This effect is thought
to be related to the suppression of NF-κB signaling path-
way [46].

Kosuru et al. confirmed that, respectively, inhibiting NF-
κB and nucleotide-binding oligomerization domain-like
receptor protein 3 (NLRP3) inflammasome through activat-
ing AMPK signaling effectively attenuate the cardiac inflam-
mation; however, the further interaction between NF-κB and
NLRP3 inflammasome was not revealed [42]. NLRP3
inflammasome is a multiprotein complex assembled by pat-
tern recognition receptor, which is not critical for the innate
immune system but also related to the pathogenesis of sev-
eral inflammatory diseases including diabetes [47]. Further
research showed that the inhibition of NF-κB activation
can prevent the expression and activation of NLRP3 inflam-
masome, which can further convert precursor caspase-1 into
cl.casp-1 to trigger mature inflammatory factor IL-1β and
IL-18 release and induce inflammation in diabetic mice [48].

High glucose-induced ROS mediates cardiomyocyte
pyroptosis, a form of programmed cell death that accom-
panies an inflammatory response [49], by activating NLRP3
inflammasome. NF-κB and thioredoxin-interacting protein
(TXNIP) are involved in the ROS-induced NLRP3 inflam-
masome activation [50]. TXNIP, as a member of α-arrestin
family, is a multifunctional adaptor protein for different sig-
naling pathways and is related to the regulation of OS [51].
AMPK activated by OS via ROS-dependent phosphorylation
can downregulate TXNIP to regulate NLRP3 inflammasome
activity and mediate pyroptosis [52, 53]. On one hand,
exendin-4 is a peptide hormone belonging to the glucagon
superfamily, which promotes insulin secretion to control
blood sugar [54]. On the other hand, exendin-4, as an anti-
oxidant, can not only directly inhibit the activation of
caspase-1 but also indirectly suppress the activation of

caspase-1 by downregulating TXNIP to prevent myocardial
pyroptosis caused by high glucose [55]. Hyperglycemia can
damage mitochondria which resulting in ROS overproduc-
tion and activate NLRP3 inflammasome to injure myocar-
dial cell. Gypenoside, an extract of plant Gynostemma
pentaphyllum with antioxidation, antilipidemia, and anti-
inflammatory effects [56], inhibits this pathway in diabetic
mice, reducing IL-1β release and attenuating heart damage
[57]. Similarly, the overexpression of ALDH2 could suppress
the mitochondrial ROS production and inhibit the occur-
rence of NLRP3 inflammasome expression to protect the
H9c2 cardiac cells against hyperglycemia-induced OS and
inflammation, thus protecting cardiomyocytes [58].

Luteolin, a natural flavonoid in many plants with anti-
inflammatory and antioxidant activities, exerts dual protec-
tive effects by inhibiting ROS-mediated activation of NF-
κB which can decrease the proinflammatory cytokines IL-6
and TNF-α in the heart [36]. Multiple studies have con-
firmed that hyperglycemia can upregulate NF-κB expression,
but by suppressing NF-κB signaling pathway, it can effec-
tively ease cardiac inflammation and OS and improve car-
diac dysfunction and remodeling [59–62]. NF-κB
modulates the transcription and activity of Nrf2, having pos-
itive and negative bidirectional regulation effect on the target
gene expression, while the absence of Nrf2 aggravates NF-κB
activity, leading to the increase in the production of inflam-
matory cytokines [39]. NF-κB and Nrf2 interact with each
other to take part in diabetes-induced OS and inflammation.
To summarize, NF-κB, as a key regulatory molecule, is a link
between OS and inflammation. The ROS-induced NF-κB-
NLRP3 signaling activation is a crucial inflammatory signal-
ing pathway in DCM.

3.3. Sirt1-Mediated Signaling Pathways Prevent OS Damage.
Sirtuin1 (Sirt1), a cellular nicotinamide adenine dinucleo-
tide- (NAD+-) dependent deacetylase that catalyses
deacetylation of proteins, is the most studied one in seven
members of the sirtuin family (Sirt1-Sirt7), especially in car-
diovascular diseases [63]. Sirt1 acts as a protector when suf-
fering from cardiovascular disease and other disorders. In
both high glucose-cultured H9c2 cardiomyocyte and STZ-
induced diabetic mice, Sirt1 expression decrease is observed;
meanwhile, its two crucial downstream enzymes SOD and
GSH-Px, whose enzymatic activities are observed to
decrease, result in a significant increase in ROS production.
Activating the expression of Sirt1 can reverse the above sig-
naling pathway to protect DCM against OS damage [64, 65].
Moreover, Sirt1 blocks the expression of proinflammatory
genes via inhibiting NF-κB signaling [66]. Overexpressed
microRNA-22 can directly bind to the 3′untranslated
repeats (3′-UTRs) of its target gene Sirt1 and alleviate dia-
betic cardiomyopathy OS via upregulating Sirt1 in vivo
and in vitro [67]. Through animal and cell experiments,
Zhang et al. confirmed that Honokiol, a plant extract from
Magnolia grandiflora seed cone, has been widely used in tra-
ditional Chinese medicine could attenuate OS and apoptosis
by activating Sirt1-Nrf2 signaling pathway, effectively
improve myocardial ischemia/reperfusion injury in type 1
diabetic rats, and achieve cardiac protection [68]. Caloric
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restriction can increase the expression of Sirt1 and peroxi-
some proliferator-activated receptor-γ coactivator-1α
(PGC-1α), improve mitochondrial function, reduce ROS
production, relieve cardiac OS and inflammation caused by
hyperglycemia, and play a cardioprotective role [69]. Previ-
ous studies have also shown that activation of PGC-1α
reduced mitochondrial ROS in adipocytes via the induction
of HO-1 [70]. Recent studies have confirmed that activation
of the Sirt1-PGC-1α signaling pathway protects against
Drp1 (a mitochondrial fission-related proteins)-mediated
mitochondrial fission (a dynamic process that maintains
mitochondrial homeostasis and regulates cellular stress
response) [71], suppresses mitochondrial OS, and improves
mitochondrial dysfunction [72]. Therefore, the Sirt1-PGC-
1α-HO-1 axis plays a key role in protecting diabetic heart
against hyperglycemia-induced OS damage [69, 73].

3.4. Other Signaling Pathways of OS-Related in DCM.
Hyperglycemia leads to OS and excessive ROS production
and induces cardiovascular damage. Ren et al. showed that
activation of Sirt1-FOXO1 and PI3K-Akt signaling pathways
can control blood glucose metabolism, reduce ROS produc-
tion, inhibit OS and myocardial cell apoptosis, delay cardiac
complications, and achieve the purpose of alleviation or even
treatment of diabetic cardiomyopathy [74]. Forkhead box
protein O1 (FOXO1) is a transcriptional factor involved in
regulating myocardial metabolism. Overactivation of
FOXO1, through increasing pyruvate dehydrogenase kinase

4 (PDK4) and carnitine palmitoyltransferase 1 (CPT1)
expression, induced disarranged cardiac oxidative metabo-
lism. Treatment of diabetic rats with FOXO1-selective inhib-
itor reduces mitochondrial ROS production, restores
mitochondrial morphology and mitochondrial membrane
potential, and reverts myocardial apoptosis [75]. In STZ-
induced DCM mouse model, the levels of phos-
phatidylinositol 3-kinase (PI3K) and Akt mRNA expression
were increased, which can upregulate the Bax and caspase-3
protein, while the levels of Bcl-2, PI3K, p-GSK-3b/GSK-3b,
and p-Akt expression were decreased, and this means the
PI3K/Akt signaling pathway is involved in mediating myo-
cardial damage caused by OS and inflammation [76]. Addi-
tionally, PI3K/Akt/FoxO3a pathway also has been
confirmed to improve cardiac function and prevent cardiac
remodeling in diabetic cardiomyopathy by inhibiting apo-
ptosis [77]. Importantly, gestational diabetes mellitus
(GDM) exposure can induce OS of cardiac myocyte in off-
spring and excessive ROS selective activation and increase
DNA methyl transferase expression, thereafter leading to
DNA hypermethylation, downregulating Sirt1 protein
expression and Akt phosphorylation. GDM mediated down-
regulation of the Sirt1/Akt signaling pathway resulting in
aberrant development of heart ischemia-sensitive phenotype
in offspring [78].

As a class of highly evolutionally conserved endogenous
single-stranded small noncoding RNAs, microRNAs are
involved in many biological processes and diseases. miR-

SIRT1

OS/ROS

Keap1
Nrf2

Nrf2

Keap1

Target genes

SO
D

N
Q

O
-1

Antioxidation

p6
2

H
O

-1

I𝜅B
NF-𝜅B

NF-𝜅B

I𝜅B

Target genes
N

LR
P3

Inflammation

GSH-Px
PGC-1𝛼

SOD HO-1

IL
-1

8

IL
-1
𝛽

Cell nucleus

NF-𝜅B Nrf2

N
rf2

Activation
Inhibition
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30c is the most abundant microRNA in the heart tissue of
C57 mice. In db/db mice, the expression of miR-30c
decreased significantly and then led to the increase in
PGC-1β, which enhanced the transcriptional activity of per-
oxisome proliferator-activated receptor α (PPARα). The
upregulated PPARα targeted on CD36 and PDK4 genes pro-
motes the uptake of fatty acid and reduces glucose utiliza-
tion, respectively. This pathway affects mitochondrial basal
energy metabolism and produces excessive ROS, eventually
leads to myocardial cell apoptosis and cardiac dysfunction,
whereas excessive fatty acid intake will further inhibit the
expression of miR-30c, forming a vicious cycle. Exogenous
miR-30c introduced into db/db mice can play a protective
role through the miR-30C/PGC-1β/PPARα signaling path-
way [79, 80].

Nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (Nox) is a major donor of ROS in myo-
cardial ischemia/reperfusion injury. In vitro and in vivo
experiments showed that the OS and programmed cell death
were enhanced by inhibiting AMPK pathway, which can
activate the subtype Nox2 of NADPH oxidase and exacer-
bate myocardial infarction size [81]. Through activation of
Nox1, TGF-? mediated fibrosis, NF?B, and ERK1/2 path-
ways and decreased expression of SOD-1, advanced glyca-
tion end product/its receptor (AGE/RAGE) signaling is
implicated in OS of diabetes-mediated vascular calcification
[82]. Hyperglycemia in diabetic patients induces OS, which
leads to subcellular abnormalities such as sarcolemma mem-
brane defects, impairment of sarcoplasmic reticulum func-
tion, myofibrillar abnormalities, and abnormal Ca2
+-handling of cardiomyocyte, resulting in abnormal cardiac
function [28]. Salusin-β is a bioactive peptide widely distrib-
uted over many tissues, characterized by hemodynamic and
mitogenic activity, and can be synthesized in cardiomyocyte
locally. Knockout Salusin-β can alleviate OS and inflamma-
tory response in DCM via suppressing Nox2/ROS/NF-κB
signaling [83].

Mammalian target of rapamycin (mTOR) not only plays
a key role in energy metabolism but also takes part in the
maintenance of normal microvascular barrier function and
endothelial permeability, cardiometabolic homeostasis, and
OS. It is activated by ROS and subsequently exerts a dual
regulatory role. The chronic increase in mTORC1 activity
in T2DM can lead to insulin resistance, resulting in hyperin-
sulinemia and hyperglycemia [84]. Previous studies showed
the activation of its four related signal pathways which are
cardioprotective effects: (1) insulin-mediated PI3K/Akt/
mTOR signaling pathway, (2) GSK-3β inhibition signaling
pathway, (3) mTOR-dependent angiogenesis signaling path-
way, and (4) mTORC2 activation signaling pathway [85].
Recently, the activation of AMPK which downregulates the
mTOR signaling to protect cardiomyocyte against OS and
inflammation damage induced by high glucose is demon-
strated [86, 87].

4. Conclusion

There are various kinds of OS-related signaling pathways
involved in the pathogenesis of DCM. Elevated ROS is asso-

ciated with OS and inflammatory response induced by high
glucose in DCM. High glucose inhibits Nrf2 and Sirt1-
mediated antioxidant signals and activates NF-κB-mediated
proinflammatory signals, respectively. OS and inflammation
interact with each other to increase the production of ROS
and inflammatory factors, which promote and aggravate car-
diac dysfunction and remodeling. Activating the Nrf2 and
Sirt1 and inhibiting the NF-κB-mediated signaling pathways
can restore the above damage in vivo and in vitro. The above
signaling pathways can overlap and influence each other (see
Figure 1). Therefore, the pathogenesis of DCM is complex
and multifactorial, and further research is needed.
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