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Abstract

Innate-like B lymphocytes play an important role in innate immunity in periodontal disease

through Toll-like receptor (TLR) signaling. However, it is unknown how innate-like B cell

apoptosis is affected by the periodontal infection-associated innate signals. This study is to

determine the effects of two major TLR ligands, lipopolysaccharide (LPS) and CpG-oligo-

deoxynucleotides (CpG-ODN), on innate-like B cell apoptosis. Spleen B cells were isolated

from wild type (WT), TLR2 knockout (KO) and TLR4 KO mice and cultured with E. coli LPS

alone, P. gingivalis LPS alone, or combined with CpG-ODN for 2 days. B cell apoptosis and

expressions of specific apoptosis-related genes were analyzed by flow cytometry and real-

time PCR respectively. P. gingivalis LPS, but not E. coli LPS, reduced the percentage of

AnnexinV+/7-AAD- cells within IgMhighCD23lowCD43-CD93- marginal zone (MZ) B cell sub-

population and IgMhighCD23lowCD43+CD93+ innate response activator (IRA) B cell sub-

population in WT but not TLR2KO or TLR4KO mice. CpG-ODN combined with P. gingivalis

LPS further reduced the percentage of AnnexinV+/7-AAD- cells within MZ B cells and IRA B

cells in WT but not TLR2 KO or TLR4 KO mice. Pro-apoptotic CASP4, CASP9 and Dapk1

were significantly down-regulated in P. gingivalis LPS- and CpG-ODN-treated B cells from

WT but not TLR2 KO or TLR4 KO mice. Anti-apoptotic IL-10 was significantly up-regulated

in P. gingivalis LPS- and CpG-ODN-treated B cells from WT and TLR2 KO but not TLR4

KO mice. These results suggested that both TLR2 and TLR4 signaling are required for

P. gingivalis LPS-induced, CpG-ODN-enhanced suppression of innate-like B cell

apoptosis.
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Introduction

Innate immune system recognizes pathogen-associatedmolecular patterns with a set of germ-
line-encodedpattern-recognition receptors including Toll-like receptors (TLRs) [1, 2]. TLRs
play important roles in the process of B cell proliferation and apoptosis, and studies have
shown that TLR2, TLR4 and TLR9 are all expressed in murine B cells [3, 4] as well as in human
B cells [5, 6]. As multiple TLRs could be activated simultaneously by their corresponding
ligands during immune response to pathogens in diseases, the effect of co-activation of these
TLR pathways on B cell apoptosis has not been investigated.

Periodontal disease is an infection-associated, immune-mediated oral disease leading to the
gingival tissue destruction [7], alveolar bone resorption [8], and increased risk of systemic com-
plications [9]. Porphyromonas gingivalis (P. gingivalis), an anaerobic bacterium, is considered
one of the principal pathogens of adult periodontitis that can orchestrate inflammatory disease
by remodeling a normally benignmicrobiota into a dysbiotic one [10]. Different from E. coli
LPS, which is a definitive TLR4 ligand, P. gingivalis LPS has been shown to be able to activate
both TLR2 and TLR4 [11, 12]. Together with the ligation between bacterial DNA component
CpG oligodeoxynucleotides (CpG-ODN) and its receptor TLR9 during P. gingivalis infection,
it is valuable to determine the effects of multiple TLR activation (TLR2, TLR4 and TLR9) in the
regulation of immune B cell functions in order to understand the role of TLR signaling in infec-
tion-associated periodontal pathogenesis.

B cells are linked developmentally, reside in different regions in the lymphoid organs, and
mediate distinct functions [13]. In mice, three major B subsets have been identified as follicular
B2 cells, B1 cells (including CD51B1a and CD52 B1b cells) and marginal zone (MZ) B cells.
Innate-like B cells are heterogeneous populations that can rapidly acquire immune regulatory
activities through the secretion of natural IgM and IL-10 [14]. These unconventional B cells
with autoreactive properties can provide a rapid T cell-independent antibody response to pro-
tect against infections [15]. Innate-like B cells in mice are composed of B1 cells [16], marginal
zone (MZ) B cells [17] and other related B cells [18]. Recent studies indicated that innate-like B
cells can link innate immunity to adaptive immune responses during infection [19, 20].

Programmed cell death, including apoptosis, autophagy and programmed necrosis, is medi-
ated by intracellular programs to decide the fate of cells [21]. Among the three forms of pro-
grammed cell death, apoptosis is a major event during immune cell development and
responses to extracellular stimuli. Regulation of immune cell apoptosis is essential for the
maintenance of immune system homeostasis [22, 23], and dysregulation of apoptosis in B cells
may cause autoimmune manifestations [24]. Although numerous studies have indicated the
key role of TLR signaling in the regulation of non-immune cell apoptosis [25, 26], the potential
role of multiple TLRs in the control of innate-like B cell apoptosis is completely unknown.

The purpose of the study is to evaluate the role of specificTLRs on the innate-like B cell apo-
ptosis using periodontal pathogen-associatedTLR ligands (P. gingivalis LPS and CpG-ODN).
Information on the TLR-mediated control of innate-like B cell apoptosis will give a new insight
of host-pathogen interactions in the development of host immune response and periodontal
disease pathogenesis.

Materials and Methods

Animals

C57BL/6mice were purchased from the Jackson Laboratory (Bar Harbor, ME). TLR2 knockout
(KO) and TLR4 KO mice backcrossed to the C57BL/6 backgroundwere a kind gift from Dr.
Toshihisa Kawai (Forsyth Institute, Cambridge, USA). All the mice used in the study were
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from 8 to 10 weeks old and were maintained under pathogen-free conditions in laminar flow
cabinets. The experimental protocols were approved by the Institutional Animal Care and Use
Committee of the Forsyth Institute.

B cell isolation and culture

Mice were euthanized in CO2 chamber and spleens were harvested. All cell culture disposable
ware, including tips, tubes, serological pipettes, flasks and culture plates, were purchased from
USA Scientific, Inc and were RNase, DNase, DNA, and pyrogen free. Designated biological
safety cabinet and work area were used for culture experiments and were stringently cleaned
and disinfected at all times. To monitor potential LPS contamination, the presence of bacterial
endotoxins in buffers and culture mediumwere routinely performed by limulus amebocyte
lysate (LAL) test using chromogenic endotoxin quantitation kit (Thermo Scientific). Splenic
cell suspensions were prepared in MACS buffer (PBS/2mMEDTA/0.5% BSA). Non-B cells
were depleted by incubating splenic cell suspensions with biotin-conjugated antibodies against
CD4, CD11c, CD49b, CD90, Gr-1, and Ter119, followed by incubation with anti-biotin anti-
bodies coupled magnetic beads (Miltenyi Biotec). Unlabeled cells were collected by magnetic
depletion of labeled cells (contained>98.5% CD19+ cells). Isolated B cells were adjusted to
1×106/ml and were added into either 96-well plates (200μl/well) in IMDM complete medium
containing 10% FCS, 100 U/ml penicillin, 100 mg/ml streptomycin, 2 mM L-glutamine, 2.5μg/
ml Amphotericin B (Hyclone, Thermo Fisher Scientific, IL) and 50 μM 2-ME. Cells were cul-
tured at 37°C in a humidified incubator with 5% CO2. The TLR ligands were added to the B
cells culture as follows: E. coli LPS (10μg/ml, strain O55:B5, Sigma-Aldrich),P. gingivalis LPS
(10μg/ml, strain ATCC 33277, InvivoGen) and mouse stimulatory CpG-ODN (10μM, 5’-
TCGTCGTTTTGTCGTTTTGTCGTT-3’, Hycult Biotech).

B cell proliferation analysis

B cells (2×105/well) were cultured in 200μl complete medium in 96-well plate for 2 days in the
presence of E. coli LPS (10μg/ml), P. gingivalis LPS (10μg/ml), E. coli LPS (10μg/ml) + CpG
(10μM), or P. gingivalis LPS (10μg/ml) + CpG (10μM). To determine the number of viable cells
in proliferation, MTS reagent was added (40μl/well) 4 hours before the termination of the
experiment using a CellTiter 96 AQueous Assay kit (Promega Corp). After 4 hour incubation,
the plate was read at OD 490nm using a microplate reader (BioTek). The absorbance of the for-
mazan at 490nm was measured as an indication of cell proliferation. Cell proliferation was also
measured by CellTrace Cell Proliferation kit (Invitrogen) following manufacture instructions.
Briefly, cells were stained with CellTrace CFSE reagents for 20 minutes and then incubated in
culture medium for 10 minutes to undergo acetate hydrolysis. Proliferated cell were analyzed
by flow cytometry at 488 nm excitation wavelength and at least 20,000 cells were counted for
each sample.

B cell apoptosis analysis by flow cytometry

Isolated B cells (1×106/well) in 200μl culture mediumwere cultured for 48 hours in “U” bottom
96-well plate with E. coli LPS (10μg/ml), P. gingivalis LPS (10μg/ml), E. coli LPS (10μg/ml) +
CpG (10μM), or P. gingivalis LPS (10μg/ml) + CpG (10μM). At the termination of cell culture,
B cells in the 96-well plates were washed with PBS followed by incubation with fluorescence
conjugated antibodies. The following anti-mouse monoclonal antibodies (mAbs) were used in
subpopulation analysis to distinguish cells: PE-conjugated anti IgM, PerCP-Cy5.5-conjugated
anti CD23, APC-conjugated anti CD93, Pacific Blue-conjugated anti CD43 (BD Biosciences).
The followingmAbs were also used for the analysis of B cell apoptosis: FITC- or PE-conjugated
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Annexin V (BD), 7-AminoactinomycinD (7-AAD) (BioLegend). Annexin V+7-AAD- cells are
considered as early apoptotic cells and Annexin V+7-AAD+ cells are considered as late apopto-
tic cells. At least 50,000 cells were counted for each sample.

Apoptosis-related gene array

Total RNA was extracted from cultured B cells using a Purelink RNA mini kit (Invitrogen).
The mouse RT2 ProfilerPCR array for Apoptosis (PAMM-012Z, SA Biosciences) were used to
profile expression of 84 apoptosis-related genes involved in programmed cell death, using a
Roche real-time PCRmachine (Roche Diagnostics Corporation, Indianapolis, IN). The data
for biological duplicates were analyzed using the PCR Array Data Analysis Software
(SABiosciences).

Real-time PCR

Total RNA was extracted from the cultured B cells using a Purelink RNA mini kit (Life Tech-
nology, Carlsbad, CA) followingmanufacturer’s instructions. Isolated mRNA (0.1μg each) was
reverse transcribed into cDNA using the SuperScriptII reverse transcription system in the pres-
ence of random primers (Invitrogen). The real-time PCR was carried out in a 20μl reaction sys-
tem using SuperScript II Platinum SYBR Green Two-Step qRT-PCR Kit (Life Technology) in a
Roche LightCycler 480 (Roche Diagnostics, Indianapolis, IN). Each cDNA sample was loaded
in duplicate into the plate with a template amount of 10ng. The primers used for specific genes
analyzed were from RT² qPCR Primer Assays (SA Biosciences). The real-time PCR conditions
were: 95°C for 10 minutes, followed by 40 cycles of 95°C for 10seconds, 65°C for 10 seconds
and 72°C for 15 seconds. Results were presented as fold changes relative to GAPDH reference.

Casp4 and Casp9 activity assay

Splenocyte B cells were separated fromWT, TLR2KO and TLR4KO mice and cultured 48
hours with P. gingivalis LPS (10μg/ml), P. gingivalis LPS (10μg/ml) + CpG (10μM) and
untreated control. Casp4 and Casp9 protein activities were performed by using Caspase 4
Assay kit (Abcam) or Caspase 9 Assay kit (Abcam) following user’s instruction. Briefly, cells
(1×106 per sample) were lysis in 50 μl cell lysis buffer incubated on ice for 10 minutes and then
incubated with 50 μl reaction buffer and 5 μl LEHD-AFC substrate at 37°C for 2 hours. The
plate was read in a microplate fluorometer reader (BioTek) and fold-increase in Caspase 4/9
activity was determined by comparing these results with the level of the untreated control.

Statistics

Results are presented as means ± standard errors (SE). Paired Student’s t-test was used to ana-
lyze differences between two treatments. One-Way ANOVA was used to analyze differences
among groups. Results with probability values of less than 0.05 are considered statistically
significant.

Results

B cell proliferation after treatment with LPS and CpG-ODN

To test the innate proliferative property of B cells in response to the TLRs stimulation, purified
B cells were cultured under 5 different conditions (untreated control, E. coli LPS, P. gingivalis
LPS, E. coli LPS + CpG-ODN and P. gingivalis LPS + CpG-ODN) and cell proliferation assays
were performed after 48 hours. E. coli LPS strongly stimulated the proliferation of B cells from
WT and TLR2 KO mice (Fig 1A, 2nd bar in each type of animal). P. gingivalis LPS stimulated
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proliferation of B cells fromWTmice only (Fig 1A, 3rd bar in each type of animal), and the
intensity of such stimulation was weaker than those observed in E. coli LPS. In all types of
mice, the addition of CpG-ODN together with LPS significantly elevated the proliferation of B
cells as compared to those treated with LPS alone (Fig 1A, 4th and 5th bars in each group of ani-
mal). To confirm the MTS proliferation results, cell proliferations of each groups were also
measured by CellTrace CSFE cell proliferation assay and similar results were observed, demon-
strating that the addition of CpG-ODN together with LPS significantly elevated the prolifera-
tion of B cells as compared to those treated with LPS alone (Fig 1B).

Inhibition of B cell early- and late-apoptosis by P. gingivalis LPS and

CpG-ODN

To determine the overall B cell apoptosis, purified B cells fromWT and TLRs KO mice were
cultured for 2 days under different treatment conditions followed by staining with AnnexinV
and 7-AAD and analyzed by flow cytometry (Fig 2A). In WTmice, the percentage of

Fig 1. B cell proliferation after E. coli LPS, P. gingivalis LPS and CpG-ODN treatment. Splenocyte B cells were

separated from WT, TLR2 KO and TLR4 KO mice and cultured 48 hours with E. coli LPS (10μg/ml), P. gingivalis LPS

(10μg/ml), E. coli LPS (10μg/ml) + CpG (10μM), and P. gingivalis LPS (10μg/ml) + CpG (10μM). Viable cells quantities

were measured by absorbance at 490 nm reading from each group of WT, TLR2 KO and TLR4 KO mice respectively (A)

(mean±SE, n = 6, *p<0.05, **p<0.01). Proliferation cells quantities were also measured by CellTrace CSFE staining and

presented as percentages of total cells (B). (mean±SE, n = 3, *p<0.05, **p<0.01).

doi:10.1371/journal.pone.0165862.g001
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AnnexinV+/7-AAD- (early apoptotic) B cells was significantly decreased after treatment with
P. gingivalis LPS (p<0.05) as compared to control group (Fig 2B). The percentage of Annex-
inV+/7-AAD- B cells was further reduced when treated with P. gingivalis LPS and CpG-ODN
(p<0.01) as compared to group treated with P. gingivalis LPS alone (Fig 2B). However, the per-
centage of AnnexinV+/7-AAD- B cells was not changed after treatment with E. coli LPS alone,
or combined with CpG-ODN, when compared to their respective controls. No changes were
observed in the percentage of AnnexinV+/7-AAD- B cells from TLR2 KO or TLR4 KO mice
under each treatment condition (Fig 2B). Similar results were observedwhen the percentage of
AnnexinV+/7-AAD+ (late apoptotic/necrotic) B cells was evaluated after different treatments.
Only inWTmice, the percentage of AnnexinV+/7-AAD+ B cells was significantly decreased
after treatment with P. gingivalis LPS (p<0.05), but not with E. coli LPS, and such effect was
further enhanced by the addition of CpG-ODN (p<0.05) (Fig 2C).

Different responses of innate-like B cell subsets after treatment with

LPS and CpG-ODN

The percentage of four sub-types of innate-like B cells in WTmice were detected by flow
cytometry using surfacemarkers as previously described [18] to evaluate the innate-like B cell
responses to LPS and CpG-ODN stimulation. IgMhighCD23low B cells were selected to repre-
sent overall innate-like B cell population based on the previous reports [19, 27], from which
the four sub-types of innate-like B cells were identified by CD43 and CD93 labeling (Fig 3A).

Fig 2. B cell early apoptosis and late apoptosis after E. coli LPS, P. gingivalis LPS and CpG-ODN treatment.

Splenocyte B cells were separated from WT, TLR2 KO and TLR4 KO mice and cultured 48 hours with E. coli LPS (10μg/

ml), P. gingivalis LPS (10μg/ml), E. coli LPS (10μg/ml) + CpG (10μM), and P. gingivalis LPS (10μg/ml) + CpG (10μM).

Cells were then stained by FITC-conjugated AnnexinV mAb and 7-AAD and measured by flow cytometry (A). Percentage

of Annexin V+7-AAD- cells (B) and Annexin V+7-AAD+ cells (C) in different treatment groups of WT, TLR2KO and

TLR4KO mice were analyzed and compared respectively (mean±SE, n = 6, *p<0.05, **p<0.01).

doi:10.1371/journal.pone.0165862.g002
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CD43 has been identified as a marker to define adaptive regulatory B cells from spleenMZ
over their innate counterparts of B1 B cells in immune responses against bacterial infection
[28]. CD93 has been used to discriminate between transitional 1 (T1) cells and mature B cells
[29]. Addition of CpG-ODN to E. coli LPS or P. gingivalis LPS significantly reduced the per-
centage of CD43-CD93- marginal zone (MZ) B cells (Fig 3B). Contrarily, the percentage of
CD43-CD93+ transitional (T1) B cells was largely increasedwhen treated with E. coli LPS or
P. gingivalis LPS together with CpG-ODN (Fig 3C). The percentage of CD43+CD93+ innate
response activator (IRA) B cells was increased by E. coli LPS or P. gingivalis LPS treatment
alone, whereas addition of CpG-ODN to E. coli LPS or P. gingivalis LPS significantly reduced
the percentage of IRA B cells (Fig 3D). The percentage of CD43+CD93- B1 B cells was reduced
only when treated with CpG-ODN together with E. coli LPS (Fig 3E).

Suppression of Innate-like B cell apoptosis by P. gingivalis LPS and

CpG-ODN

In order to determine the TLR-mediated regulation of innate-like B cell apoptosis, the percent-
age of AnnexinV+/7-AAD- (early apoptotic) B cells from each innate-like B cell subpopulation
was evaluated after treatment with LPS and CpG-ODN. In WTmice, P. gingivalis LPS but not

Fig 3. Frequencies of Innate-like B cell subsets after E. coli LPS, P. gingivalis LPS and CpG-ODN treatment. Splenocyte B cells were

separated from WT mice and cultured 48 hours with E. coli LPS (10μg/ml), P. gingivalis LPS (10μg/ml), E. coli LPS (10μg/ml) + CpG (10μM), and P.

gingivalis LPS (10μg/ml) + CpG (10μM). Cells were then stained by PE-conjugated anti IgM, PerCP-Cy5.5-conjugated anti CD23, APC-conjugated

anti CD93, Pacific Blue-conjugated anti CD43 and measured by flow cytometry (A). Within overall innate-like B cell (IgMhighCD23low B cells)

population, the percentage of CD43-CD93- marginal zone B cells (B), CD43-CD93+ transitional B cells (C), CD43+CD93+ innate response activator B

cells (D) and CD43+CD93- B1 B cells (E) in different treatment groups were analyzed and compared respectively (mean±SE, n = 4, *p<0.05,

**p<0.01).

doi:10.1371/journal.pone.0165862.g003
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E. coli LPS significantly inhibited the percentage of AnnexinV+/7-AAD- B cells in MZ and IRA
subpopulations (Fig 4A–4C), but not those in T1 or B1 subpopulations (Fig 4B–4D). In TLR2
KO or TLR4 KO mice, no differences were observed in the percentage of AnnexinV+/7-AAD-

B cells in each innate-like B cell subpopulation (Fig 4A–4D) after different treatments.

Regulation of apoptosis-related genes in B cells by P. gingivalis LPS

and CpG-ODN

Gene Arrays were performedwith RNA samples from spleen B cells isolated fromWT, TLR2
KO and TLR4 KO mice and cultured 48 hours with P. gingivalis LPS (10μg/ml) and P. gingivalis
LPS (10μg/ml) + CpG (10μM) (Fig 5A). Genes obtained from array results that were up-regu-
lated or down-regulated by more than 2-fold relative to control were selected and individually
verifiedwith separate real-time PCR reactions using the same gene specific primers. The results
showed that pro-apoptotic genes, Caspase 4 (Casp 4) and Caspase 9 (Casp 9) were down-regu-
lated by P. gingivalis LPS in B cells fromWTmice, but not B cells from TLR2 KO or TLR4 KO
mice (Fig 5B and 5C). CpG-ODN further enhanced such down-regulation of Casp 4 and Casp
9 in B cells fromWTmice (Fig 5B and 5C). Furthermore, pro-apoptotic genes, death-associated

Fig 4. Early apoptosis analysis of innate-like B cell subsets after E. coli LPS, P. gingivalis LPS and CpG-ODN

treatment. Splenocyte B cells were separated from WT, TLR2 KO and TLR4 KO mice and cultured 48 hours with E. coli

LPS (10μg/ml), P. gingivalis LPS (10μg/ml), E. coli LPS (10μg/ml) + CpG (10μM), and P. gingivalis LPS (10μg/ml) + CpG

(10μM). Cells were then stained by FITC-conjugated AnnexinV, 7-AAD, PE-conjugated anti IgM, PerCP-Cy5.5-conjugated

anti CD23, APC-conjugated anti CD93, Pacific Blue-conjugated anti CD43 and measured by flow cytometry. In different

innate-like B cell subsets including CD43-CD93- marginal zone B cells (A), CD43-CD93+ transitional B cells (B),

CD43+CD93+ innate response activator B cells (C) and CD43+CD93- B1 B cells (D), the percentage of AnnexinV+/7-AAD-

(early apoptotic) B cells in different treatment groups of WT, TLR2 KO and TLR4 KO mice were analyzed and compared

respectively (mean±SE, n = 5, *p<0.05, **p<0.01).

doi:10.1371/journal.pone.0165862.g004
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protein kinase 1 (Dapk1) was down-regulated by P. gingivalis LPS in B cells fromWT and
TLR2 KO mice, but not those from TLR4 KO mice (Fig 5D). However, anti-apoptotic gene
interleukin 10 (IL-10) was up-regulated by P. gingivalis LPS in B cells fromWT and TLR2 KO
mice, but not from TLR4 KO mice (Fig 5E). The down-regulation of Dapk1 and up-regulation
of IL-10 were further enhanced by addition of CpG-ODN in B cells fromWT and TLR2 KO
mice, but not B cells from TLR4 KO mice (Fig 5D and 5E). To further study the functional
changes of pro-apoptotic genes, Casp4 and Casp9 proteins activities were investigated from

Fig 5. Differential mRNA levels of apoptosis-related genes in B cells after P. gingivalis LPS and CpG-ODN

treatment. Splenocyte B cells were separated from WT, TLR2 KO and TLR4 KO mice and cultured 48 hours with P.

gingivalis LPS (10μg/ml) and P. gingivalis LPS (10μg/ml) + CpG (10μM). Total RNA was extracted from these cells and

used for RT Profiler™ PCR Array Mouse Apoptosis (A). mRNA levels of Casp4 (B), Casp9 (C), Dapk1 (D) and IL-10 (E) in

different groups of WT, TLR2 KO and TLR4 KO mice were determined by real-time PCR and the ratio of each treatment

group to control group were analyzed and compared respectively (mean±SE, n = 3, *p<0.05, **p<0.01). Total cell lysis

were used to detect Casp4 activity (F) and Casp9 activity (G) using fluorometric Assay kits. The ratio of each treatment

group to control group were analyzed and compared respectively (mean±SE, n = 3, *p<0.05, **p<0.01).

doi:10.1371/journal.pone.0165862.g005
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total cell lysis of each group. Consistent with mRNA results (Fig 5B and 5C), Casp 4 and Casp 9
activities were down-regulated by P. gingivalis LPS in B cells fromWTmice, but not from TLR2
KO or TLR4 KO mice (Fig 5F and 5G); CpG-ODN further enhanced such down-regulation of
Casp 4 and Casp 9 activities in B cells fromWTmice (Fig 5F and 5G).

Discussion

B lymphocytes are the predominant cells in established and advanced periodontal lesions, con-
tributing to the B cell-mediated immune defenses as well as periodontal pathogenesis. How-
ever, the role of TLR signaling on B cells during periodontal diseases is not fully understood. In
the present study, we have determinedwhether innate-like B cell apoptosis could be regulated
by TLR ligands from periodontal pathogens.

In this study we elected to use high concentration of LPS in our cell culture experiments to
test the effect of P. gingivalis LPS and E. coli LPS on B cell proliferation and apoptosis. We have
previously tested extensively the dose response of cultured purified B cells to both P. gingivalis
LPS and E. coli LPS inWT, TLR2 KO and TLR4 KO mice. Our results indicated that higher
concentration of LPS (10ug/mL), especially P. gingivalis LPS, is needed to effectively stimulate
purified B cell responses in the absence of other cells (S1 Fig). The purified B cells do not
respond well to LPS probably due to the lacking of T cell help [30] and B cells from TLR2 and
TLR4 KO mice respond poorly to LPS due to their deficiency in TLR2/4 signaling.Moreover,
P. gingivalis LPS showed less induction on proliferation and stronger inhibition on apoptosis
than E. coli LPS, suggesting a complexity of links between cell proliferation and apoptosis in B
cells. It has been showed that cell proliferation and apoptosis may address both positive rela-
tionship [31, 32] and negative relationship [33] due to cell type, cellular environment and
genetic background [34, 35] and further study is needed to investigate the links between prolif-
eration and apoptosis in B cells.

We demonstrated that P. gingivalis LPS- or E. coli LPS-induced B cell proliferation was
enhanced by CpG-ODN. However, B cell proliferation was differentially regulated by P. gingi-
valis LPS as compared to E. coli LPS. LPS derived from the periodontal pathogen P. gingivalis
has been shown to differ from E. coli LPS in structure and function; therefore, triggering differ-
ent intracellular inflammatory signaling pathways [36]. Studies have suggested that P. gingivalis
LPS and E. coli LPS differently regulate cytokine production in human gingival fibroblasts [37].
E. coli LPS, but not P. gingivalis LPS stimulates IL-6 production of periodontal ligament cell
[38]. Furthermore, the tetra- and penta-acylated lipid A structures of P. gingivalis LPS differen-
tially activate TLR4-mediatedNF-kappa B signaling pathway, and significantlymodulate the
expression of IL-6 and IL-8 in human gingival fibroblasts [39]. Our results indicated that P.
gingivalis LPS, but not E. coli LPS suppressed the early and late apoptosis of B cells, which
could be enhanced by CpG-ODN (Fig 2). It has long been recognized that stimulatory
CpG-ODN has anti-apoptotic effect on B cells [40–42], indicating that CpG can act indepen-
dently against cell apoptosis. However, our results showed that CpG-ODN and LPS induced
anti-apoptotic effects involve common TLR signaling pathways (TLR2/4). Addition of CpG
further enhanced gene expression profiles observed in LPS-treated group inWT but not TLR2/
4 KO mice (Fig 5). This suggests that CpG-ODN induced enhancement of anti-apoptotic effect
could be achieved through both LPS-dependent and independent mechanisms, which will be
important to be addressed in future studies.

Recent studies have shown that P. gingivalis could manipulate TLR signaling and subvert
leukocytes to create a favorable environment for a select community of bacteria that, in turn,
adversely affects the periodontal tissues [43, 44]. Thus, this TLR ligands- induced dysregulation
of apoptosis in B cells may cause autoimmune manifestations.
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Our findings indicated that MZ B cells and IRA B cells were the predominant innate-like B
cell subsets that their spontaneous programmed death was suppressed by P. gingivalis LPS and
CpG-ODN. MZ B cell subset is critical for antibody-mediated protection against bacterial and
viral infections at relatively early stages of infection [45]. Compared with follicular (FO) B cells,
MZ B cells are more readily activated upon TLR stimulation [46]. These properties enable MZ
B cells with an important role in host defense at the early stages of an innate immune response
as well as adaptive immune response [19, 47]. IRA B cells are a recently identified effector B
cell population that is functionally distinctive from B1a B cells and protects against microbial
sepsis [18]. While sustained innate response can be protective [48] as well as pathogenic [49],
further in vivo investigations are needed to determine whether disruption of B cell apoptosis
could be another mechanism for Porphyromonas gingivalis to uncouple bacterial clearance
from inflammation.

Casp 4 and Casp 9 are protease enzymes playing essential roles in programmed cell death
(including apoptosis, pyroptosis and necroptosis) and inflammation [50, 51]. P. gingivalis LPS
and P. gingivalis LPS + CpG-ODN significantly decreased the mRNA of Casp 4 and Casp 9 in
B cells of WTmice but not of TLR2 KO and TLR4 KO mice, suggesting the inhibition of B cell
apoptosis by P. gingivalis LPS and CpG-ODN was depended on both TLR2 and TLR4. How-
ever, Dapk1, a positive mediator of gamma-interferon induced programmed cell death [52],
showed similar reduction in TLR2 KO mice not TLR4 KO mice compared withWTmice after
P. gingivalis LPS and P. gingivalis LPS + CpG-ODN treatment. These results suggest that
TLR4, but not TLR2, is essential to regulate Dapk1 in B cells by stimulation with P. gingivalis
LPS and CpG-ODN. Moreover, up-regulation of IL-10 was also in TLR4-dependentmanner.
Thus, TLR2 and TLR4 signaling were differentially involved in regulating Casp 4/Casp 9 and
Dapk1/IL-10 and their underlyingmechanisms need to be further investigated.

In summary, our results provided new information about multiple TLR signaling on the
control of innate-like B cell-apoptosis and may contribute to the development of therapeutic
strategies that are effective in preventing and/or reducing periodontal disease pathogenesis.

Supporting Information

S1 Fig. B cell proliferative response to P. gingivalisLPS and E. coli LPS stimulation. Purified
B cells (2×105/well) were cultured in 200μl complete medium in 96-well plate for 2 days in the
presence of P. gingivalis LPS or E. coli LPS (200ng, 2μg and 10μg/ml).MTS reagent was added
(40μl/well) 4 hours before the termination of the experiment using a CellTiter 96 AQueous
Assay kit (Promega Corp). After 4 hour incubation, the plate was read at OD 490nm using a
microplate reader (BioTek). The absorbance of the formazan at 490nm was measured as an
indication of cell proliferation. N = 3.
(PDF)
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