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Facial information is a powerful channel for human-to-human communication.
Characteristically, faces can be defined as biological objects that are four-dimensional
(4D) patterns, whereby they have concurrently a spatial structure and surface as well
as temporal dynamics. The spatial characteristics of facial objects contain a volume
and surface in three dimensions (3D), namely breadth, height and importantly, depth.
The temporal properties of facial objects are defined by how a 3D facial structure
and surface evolves dynamically over time; where time is referred to as the fourth
dimension (4D). Our entire perception of another’s face, whether it be social, affective
or cognitive perceptions, is therefore built on a combination of 3D and 4D visual cues.
Counterintuitively, over the past few decades of experimental research in psychology,
facial stimuli have largely been captured, reproduced and presented to participants
with two dimensions (2D), while remaining largely static. The following review aims to
advance and update facial researchers, on the recent revolution in computer-generated,
realistic 4D facial models produced from real-life human subjects. We delve in-depth to
summarize recent studies which have utilized facial stimuli that possess 3D structural
and surface cues (geometry, surface and depth) and 4D temporal cues (3D structure +

dynamic viewpoint and movement). In sum, we have found that higher-order perceptions
such as identity, gender, ethnicity, emotion and personality, are critically influenced by
4D characteristics. In future, it is recommended that facial stimuli incorporate the 4D
space-time perspective with the proposed time-resolved methods.
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THE 4D SPACE-TIME PERSPECTIVE OF FACIAL PERCEPTION

What does our visual-perceptual system “see” when we view a face? Prima facie, we see a three-
dimensional form, evolving over time, that enables multifaceted social, cognitive and affective
perceptions of one another. From cognitive information such as identity and recognition; to
detecting complex patterns of speech or emotion; to gleaning important social cues such as gender,
ethnicity, age or health. The human face has been defined by other authors as a multi-dimensional
pattern which evolves over time (Zhang et al., 2003; Liu et al., 2012; Marcolin and Vezzetti, 2017).
This multi-dimensional, complex pattern is also highly individualized; varying from person to
person. Thus, each human face possesses concurrently a unique volumetric structure and surface
pattern in three dimensions (or 3D) and a temporal pattern across time in four dimensions (or
4D). The 3D volumetric structure or form of human facial features contains spatial dimensions of
breadth, height and width, combined with a unique surface pattern. The 4D temporal pattern of the
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human face encompasses all dynamic movement and changes
to this 3D spatial form that evolve with time. Little is known
however, about how we detect and perceive the 3D spatial
or 4D temporal patterns of human faces on two-dimensional
computer screens.

Indeed, over the past few decades, the field of facial perception
has been largely built upon 2D static images and photographs
displayed on screens, which are computationally reproduced with
two-dimensions of width and height (for a review see Matsumoto,
1988; Lundqvist et al., 1998; Beaupré et al., 2000; Tottenham
et al., 2009; Langner et al., 2010; Krumhuber et al., 2017). 2D
dynamic or video-recorded stimuli have likewise made a valuable
contribution; demonstrating facial recognition may be enhanced
with motion (Kanade et al., 2000; Wallhoff, 2004; Pantic et al.,
2005; Lucey et al., 2010; Krumhuber et al., 2013, 2017; Dobs et al.,
2018) although this issue remains unresolved (Christie and Bruce,
1998; Krumhuber et al., 2013, 2017). 2D stimuli demonstrate
robust and reliable human facial recognition performance across
behavioral studies of face perception (Beaupré et al., 2000;
Goeleven et al., 2008; Rossion and Michel, 2018). These stimuli
have helped characterize individual abilities in facial recognition-
from face experts (Tanaka, 2001; Russell et al., 2009) to describing
a continuum of individual differences in face recognition abilities
(Wilmer et al., 2010; Dennett et al., 2012; Rhodes et al., 2014); and
to describe the challenges of face perception exhibited in clinical
or atypical populations (Behrmann and Avidan, 2005; Halliday
et al., 2014). Some of the most influential neuroimaging models
of facial processing have employed 2D faces, discovering spatio-
temporal networks and regions of activation (Haxby et al., 2000;
O’Toole et al., 2002; Kanwisher and Yovel, 2006). In addition,
significant practical advantages are afforded by these stimuli such
as; the ability to more precisely control and manipulate stimuli;
reduced data size and reduced computational load or complexity
(Wallbott and Scherer, 1986; Motley and Camden, 1988; Bruce
et al., 1993; Russell, 1994; Elfenbein and Ambady, 2002). Overall,
2D faces are a valuable source of experimental stimuli as they offer
a robust level of control, reproducibility and replication.

In recent years, three-dimensional virtual representations
of the human face that are more concurrent with our
everyday social experiences, are beginning to be recognized
as essential stimuli (Blauch and Behrmann, 2019; Zhan et al.,
2019). While these newer technologies are not being utilized
in psychology, they offer several advantages as naturalistic,
ecologically valid representations of human faces. Historically
however, creating a simulation of a biological human face on
a two-dimensional computer screen in 3D and 4D formats,
has proven difficult. Simulating concurrently the unique 3D
structure of a face, with the added dimension of movement over
time, has made computational recovery a challenging field. More
recently, computer science has seen rapid advancement in facial
reproduction technology in 3D and 4D formats, enabled through
development within gaming and virtual-reality (Blascovich et al.,
2002; Bailenson et al., 2004; Bülthoff et al., 2018; Chen et al.,
2018; Smith and Neff, 2018). In fact, computer-generated objects,
human bodies and faces give us a new sense of virtual dynamics
and interaction, producing the visual illusion of being able to
be moved, rotated or grasped in a virtual space (Freud et al.,

2018a; Chessa et al., 2019; Mendes et al., 2018; Sasaoka et al.,
2019). Evidence is beginning to emerge that it is also critical
to actively explore 3D spaces when viewing faces (Bailenson
et al., 2004; Bülthoff et al., 2018). Thus, while in the past we
have only been able to experiment with facial perception from
a largely two-dimensional or static perspective, our overarching
goal is to open-up other dimensions of these newer stimuli for
researchers. It is likely by viewing human facial modeling from a
space-time (4D) perspective, that much will be learned about how
naturalistic and ecologically valid facial perception is performed
in our interactions with each other.

HOW ARE 3D AND 4D FACIAL
DATABASES CAPTURED AND
REPRODUCED INTO A DIGITAL
STIMULUS?

How do we make you really look like you on a digital
screen? Facial databases, comprise sets of facial stimuli which
capture and reproduce multiple human subjects or individuals
into a digital format. Virtual humans, often termed “virtual
busts or avatars,” represent a burgeoning area of computational
development (Blascovich et al., 2002; Bailenson et al., 2004).
While “virtual avatars” are being presented to the viewer on
a two-dimensional flat screen, they elicit the illusion of being
three-dimensional. These virtual computer-generated human
bodies possess impressive anatomical-accuracy, including of both
individual body parts and holistic bodies (Allen et al., 2003;
Cofer et al., 2010; Ramakrishna et al., 2012; Pujades et al., 2019).
Likewise, the reproduction of biological human faces into a
virtual model on-screen, has been achieving a sense of realism
through the extensive development of several teams (Wang et al.,
2004; Vlasic, 2005; Gong et al., 2009; Weise et al., 2009; Sandbach
et al., 2012; Bouaziz et al., 2013; Chen et al., 2013; Garrido et al.,
2013; Li et al., 2013; Shi et al., 2014; Suwajanakorn et al., 2014;
Zhang et al., 2014; Cao et al., 2015; Hsieh et al., 2015; Thies, 2015;
Saito et al., 2016; Jeni et al., 2017; Zollhöfer et al., 2018). Digitized
facial databases are now available as stimuli across several media
formats; including 3D static models or images (Yin et al., 2006;
Saito et al., 2016) 4D dynamic movies or videos (Wang et al.,
2004; Vlasic, 2005; Gong et al., 2009; Weise et al., 2009; Garrido
et al., 2013; Shi et al., 2014; Suwajanakorn et al., 2014; Zhang et al.,
2014; Cao et al., 2015; Thies, 2015; Jeni et al., 2017) and as 3D/4D
interactive stimuli, such as in virtual reality (Bouaziz et al., 2013)
or with eye-gaze tracking (Thies, 2017; Chen et al., 2018).

The capture techniques, reconstruction algorithms and 3D
software packages used to develop and display a life-like 3D or
4D human face into a virtual form is a highly individualistic,
complex process and is achieved differently by each database.
Thus, the different capture and reproduction techniques are
comprehensively surveyed and reviewed elsewhere (Gaeta et al.,
2006; Beeler et al., 2010; Sandbach et al., 2012; Patil et al., 2015;
Feng and Kittler, 2018; Zollhöfer et al., 2018). Briefly however, the
databases above demonstrate methodologically how to produce
an anatomical head model through mesh, polygon or geometric
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structures, using width x height x depth coordinates (Egger
et al., 2019). They demonstrate the unique and highly technical
challenge of producing surface rendering or skin rendering with
shape deformations that are anatomically precise, while capturing
environmental lighting, reflectance, pigmentation, shadow and
texture (Egger et al., 2019). The 4D databases also exhibit how
animation and modeling are combined to produce anatomically
accurate rigid and non-rigid head and facial movements, whilst
maintaining 3D shape and surface properties (Egger et al., 2019).
For a more detailed overview of how facial information is
captured with lighting or viewpoint camera arrays within these
databases, see Figure 1. To see an illustration of the workflow
process of 3D modeling, rendering and animation for human
faces and its level of complexity and limitations, see Marschner
et al. (2000), Murphy and Leopold (2019) for primate faces.
To review state-of-the-art advancements over the past 20 of
development, as well as the more technical challenges that remain
in the field producing 3D animated faces see the comprehensive
review by Egger et al. (2019).

Of note, is that the reproduction of 3D facial models still
present challenges in stimuli recreation (Marschner et al., 2000;
Egger et al., 2019). Further challenges in implementing 3D or
4D facial models are also unique to research fields such as
psychology and neuroscience. Faces are a unique, special class
of images in human vision, where deviations from anatomically
accurate geometry, surfaces or movement can be described as
incorrect or “uncanny” by human observers (Marschner et al.,
2000; Kätsyri, 2006; Seyama and Nagayama, 2007). Therefore,
participant viewing conditions must be well-controlled to ensure
models are presented at the same viewing distance and settings
(e.g., environment lighting), as original development (Marschner
et al., 2000). In addition, future development of 3D or 4D
databases for experimental designs, can further improve stimuli
by being built as full-volumes and not surfaces. For example, the
database presented in Figure 2B, experiences a loss of data from
the posterior viewpoint of the head, which may impede studies
examining VR environments (Bulthoff and Edelman, 1992; Stolz
et al., 2019; Lamberti et al., 2020) or multiple viewpoints of a
facial stimulus (Bülthoff et al., 2018; Abudarham et al., 2019;
Zhan et al., 2019). Overall, despite some remaining challenges,
3D and 4D facial capture and reconstruction has demonstrated
that the unique facial features belonging to you and me, such as
the cheeks, eyes and nose, can simulated on-screen in a highly
realistic manner (see Figure 2).

HOW POPULAR ARE 3D AND 4D FACIAL
STIMULI?

An initial quantification of the most widely cited 3D stimuli,
suggests the static 3D facial database BU-3DFE by Yin et al. (2006)
and the Bosphorus 3D database by Savran et al. (2008) are at
the forefront. Similarly, the dynamic video-recorded BU4D-S 4D
database produced by Zhang et al. (2013, 2014) is the leading 4D
database in citation count (Figure 3). It is worth highlighting that
a selection of 3D and 4D facial databases, have been developed
with specific applications across disciplines. Facial identification

and recognition studies, commonly referred to as biometrics, may
benefit from the databases developed by Benedikt et al. (2010);
Feng et al. (2014), and Zhang and Fisher (2019). A relatively large
corpus of datasets has been developed to present stimuli as three-
dimensional forms or structures on-screen (built with breadth,
height and depth), as static emotional expressions (FIDENTIS-
3D; Urbanová et al., 2018; Bosphorus; Savran et al., 2008; BU-
3DFE; Yin et al., 2006; ICT-3DRFE; Stratou et al., 2011; ND-
2006; Faltemier et al., 2008; Casia 3D; Zhong et al., 2007; The
York 3D; Heseltine et al., 2008; GAVDB; Moreno, 2004; Texas
3DFRD; Gupta et al., 2010). To establish 4D dynamical facial
stimuli, faces have also been video-recorded and re-built with
naturalistic spontaneous or acted emotions; as dynamical 4D
objects that produce movement over a series of frames (Gur
et al., 2002; Cam3D; Mahmoud et al., 2011; BU-4DFE; Yin et al.,
2006; BU4D-S; Zhang et al., 2014; 4DFAB; Cheng et al., 2018).
Studies of facial perceptions which require precise control and
manipulation of artificial motion properties, may benefit from
the databases developed for morphing paradigms (D3DFACS;
Cosker et al., 2011; SIC DB; Beumier and Acheroy, 1999). In
sum, more extensive surveys of 3D and 4D facial databases
are available; whereby facial researchers can select stimuli from
a range of available databases (for a review see Weber et al.,
2018; Zhou and Xiao, 2018; Sadhya and Singh, 2019; Sandbach
et al., 2012; Smeets et al., 2012). For a comprehensive survey of
the publicly facial databases with both 2D and 3D stimuli, see
Sadhya and Singh (2019).

At first glance, the citation count pictured in Figure 4 appears
impressive. Yet, we observed that this citation count is largely
driven by the development of computer science and engineering;
including capturing, reproducing, recognition and tracking of 3D
and 4D facial technology. Thus we examined logarithmic growth
across academic fields below (Figure 5). Notably psychology
and neuroscience articles associated with terms such as “3D
or 4D faces,” in titles, abstracts and keywords, demonstrate
reduced logarithmic growth compared to other academic fields.
It appears that psychologists and neuroscientists continue to
reference more traditional, two-dimensional facial databases
in their research. Although not exhaustive, some examples of
the most popular, highly cited repositories of 2D image-based
facial sets across psychology include; “The Montreal Set of Face
Displays,” (Beaupré et al., 2000) “The Radboud Face Set,” (Langner
et al., 2010) “The Karolinska Directed Faces,” (Lundqvist et al.,
1998) “The Japanese-Caucasian Facial Affect Set,” (Matsumoto,
1988) and “The NimStim Set of Facial Expressions,” (Tottenham
et al., 2009). More recently, standardized stimulus sets of 2D
video-recorded faces have been developed; the “Cohn-Kanade
(CK),” (Kanade et al., 2000) “The Extended Cohn-Kanade (CK+)
Dataset,” (Lucey et al., 2010) “Face and Recognition Network-
Group,” (Wallhoff, 2004) “MMI face database,” (Pantic et al.,
2005). For a comparative review of the most-cited 2D static and
dynamic face stimuli utilized by the research community, please
see the review provided by Krumhuber et al. (2017).

Recent experimental studies utilizing 4D dynamical faces,
however, have raised issue with whether the human face should
be reduced on-screen to a 2D or static pattern (Elfenbein and
Ambady, 2002). While these arguments have existed for a lengthy
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FIGURE 1 | Techniques of lighting and viewpoint capture used in highly cited 3D + 4D facial databases. See comprehensive review of capture techniques by
Sandbach et al. (2012) and Table 1 in Zollhöfer et al. (2018).
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FIGURE 2 | 2D image compared to the 4D video-frame of a highly cited 4D facial database (The images pictured above were reproduced, modified and adapted
from the facial database originally developed by Zhang et al. (2013; 2014). Copyright 2013–2017, The Research Foundation for the State University of New York and
University of Pittsburgh of the Commonwealth System of Higher Education. All Right Reserved. BP4D-Spontaneous Database, as of: 26/03/2018. (A) A flattened
face. Traditional camera set-up produces a 2D image or photograph in gray-scale. (B) A bird’s eye view of 3D geometric mesh. Multi-view camera set-up producing
a 3D structured facial mesh, with skin texture, using 30,000–50,000 vertices (viewed from top of skull). (C) A 3D sense of re-created depth. Despite being on a
two-dimensional computer screen, a 3D face reconstructed with multi-view camera set-up, produced an illusion of depth. The final reconstruction produces the
same facial model, which stands out from the background and appear more lifelike than the 2D photograph. When working with 3D facial stimuli, we can change our
viewpoint of the facial stimulus. Here we have manipulated the viewer angle of the camera along a Z-axis is possible (top-frontal view), to view the same frame of a
face from many possible 360 degree viewpoints.

period within the literature, the recent cultural shift in gaming
and virtual-reality has enabled us to better envision “virtual-
facial realism.” It is timely, therefore, to review what 3D and 4D
dynamic face stimuli can offer by opening other dimensions of
facial stimuli for researchers in all fields.

WHAT IS THE 3D SPATIAL PATTERN OF
THE HUMAN FACE?

The Influence of 3D Volume and Surfaces
in Building Facial Perception
Despite experimental stimuli being displayed on a two-
dimensional, flat screen such as a computer monitor, the human

visual system perceives 3D structure remarkably efficiently.
Three-dimensional objects or models rely upon a geometric
structural and surface model presenting accurate reconstruction
of breadth, height and importantly depth, while still being
presented on a two-dimensional screen (Hallinan et al., 1999;
Marschner et al., 2000; Egger et al., 2019). Representing detailed
facial tissue, bone structure and the musculature system, which
make up the human face, has not been an easy feat, yet is
now computationally achievable (Zhang et al., 2003; Ekrami
et al., 2018). Moreover, these 3D facial models are revealing
key differences about both individual recognition, as well as
categorization or classification of human faces as objects.

To disseminate which visual elements of 3D geometry
contribute to facial recognition in humans, psychophysical
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FIGURE 3 | 3D and 4D facial databases publication frequency across Google Scholar, Scopus and Web of Science. Search on 13/02/2020, including count of the
original published journal article of each database.

studies have begun to examine volume and curvilinear shape
(Hallinan et al., 1999; Chelnokova and Laeng, 2011; Jones et al.,
2012; Eng et al., 2017). Psychophysical research comparing 2D
and stereoscopic 3D face stimuli are revealing some potential
key differences in how we detect and perceive 3D models.
Stereoscopic stimuli are used to develop 3D faces from 2D
images paired with red-cyan stereoscopic glasses, which elicit
depth through binocular disparity cues (Schwaninger and Yang,
2011; Häkkinen et al., 2008; Lambooij et al., 2011). Using these
methods, Chelnokova and Laeng (2011) have interpreted the
increased fixation time spent on cheeks and noses observed in
their study during the 3D viewing condition, as a preference
for the more volumetric properties of faces. In the case of
unfamiliar faces, recognition of identities were performed better
with upright 3D stereoscopic faces, compared to matched
2D stimuli (Chelnokova and Laeng, 2011; Eng et al., 2017).
Comparatively, inverted faces elicited no difference in identity
recognition between 2D or 3D stereoscopic form, suggesting
this is an effect observed using a holistic face template (Eng
et al., 2017). Further, reaction times appear significantly faster
for identifying 3D upright compared to 3D inverted faces,
suggesting it is more efficient to perceive upright faces (Eng et al.,
2017). Reaction times to 3D stereoscopic stimuli however, appear
to be generally slower than 2D matched-stimuli (Chelnokova

and Laeng, 2011; Eng et al., 2017). Thus, these preliminary
studies present initial psychophysical evidence that upright 3D
stereoscopic information contained within a face, may provide
better accuracy in identification than a matched 2D image.
Albeit, with a slower response. The implications of these studies
suggest that the structural facial features associated with 3D
geometric volume, such as cheeks and noses, may add a
critical element during naturalistic facial processing. Overall,
these studies provide preliminary psychophysical evidence that
stereoscopic volume within facial features may be involved in
perception; however, with large standard errors more rigorous
investigation is required.

Further studies have explored how we perceive 3D faces
with a volumetric structure, through our classification of their
curvilinear properties or organic shape. Curvilinear geometry
is defined as a shape bound by curved, organic lines as seen
in animate objects. Inanimate objects, characteristically include
linear geometry or edges bound by straight lines. In fact, facial
identity or individuality is often built into 3D computerized
models, by using multiple, individualized curves, rather than
the straight lines used to build objects (Yin et al., 2006; Liu
et al., 2012; Li et al., 2018). Researchers have likewise utilized
curvilinear shapes in 2D images to demonstrate that the entire
class of animate objects (e.g., faces, bodies, animals) are detected
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FIGURE 4 | Logarithmic Scale of Scopus publication growth from 1980 to 2019 across fields containing key search terms. Search terms: (“allintitle, abstract or
keywords”: “3-D face” OR “3D face” OR “three-dimensional face” OR “three-dimensional face” OR “4D”).

and classified principally through curvilinear discrimination
(Levin et al., 2001; Long et al., 2016; Zachariou et al., 2018).
Inanimate object recognition, by comparison, relies mainly on
detecting rectilinear shapes and lines, such as that observed in
a box or house object (Levin et al., 2001; Long et al., 2016;
Zachariou et al., 2018). In terms of human 3D perception

of faces, Jones et al. (2012) have demonstrated that we can
perceive some personality traits in others, using exclusively 3D
shape or curvilinearity. Presenting 3D facial scans exclusively
with curvilinear shape, with all surface properties removed,
participants accurately reported above-chance another person’s
self-reported Big-5 trait-level of “Neuroticism” (Goldberg, 1993;
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FIGURE 5 | BP-4D-S facial database presented on gray background with bounding box representing a 3D depth plane (The images pictured above were
reproduced, modified and adapted from the facial database originally developed by Zhang et al. (2013, 2014). Copyright 2013–2017, The Research Foundation for
the State University of New York and University of Pittsburgh of the Commonwealth System of Higher Education. All Right Reserved. BP4D-Spontaneous Database,
as of: 26/03/2018. 3D faces are built on-screen as models with a geometric mesh in a three-dimensional plane; presenting an anatomically accurate modeled object
with width, height and depth. This is captured by the 3D camera set-up. This reconstruction by computer-scientists is highly individualized, but is typically underlined
by a geometric mesh or structure. The 3D surface features of the individual are then rendered. As the face moves around in 3D space, it becomes apparent why
having three dimensions maintains facial structure more realistically than a facial model built with only two dimensions, as indicated by the depth plane.

Jones et al., 2012). Thus, curvilinear shape appears to be a visual
cue that aids perception of faces, as well as categorizing social or
personality traits in others. Although, overall to identify traits, a
combination of geometry and surface cues have been found to
enhance perception (Jones et al., 2012).

Alongside, a geometric volume or structure, 3D surface
rendering is a key process in developing 3D and 4D facial models
(human faces see Marschner et al., 2000 or for primate faces
Murphy and Leopold, 2019). The surface of the human face,
or epogeneous skin layer, is a highly individualized, changeable
feature which aids recognition. Our unique skin surface,
including our individualized texture, shading, illumination,
reflectance and pigmentation can be reproduced and rendered on
a computer screen by using a 3D facial model (Egger et al., 2019).
One common skin rendering technique used in these databases,
for example, is bump surface models, with anatomically correct
models being the ultimate goal (Yin et al., 2006; Zhang et al.,
2014). As early as 1991, the psychological or neuroscientific
literature was described as “surface primitive” (Bruce et al.,
2013) indicating it lacked evidence of how 3D rendered surfaces
contributed to our perceptions. Since then 2D facial imagery has
helped reveal the contributions of surfaces to perception; where
our recognition of faces becomes impaired due to textural or
color cues being unexpected, such as in contrast polarity (Hayes
et al., 1986; Liu and Chaudhuri, 1997, 2003; Itier and Taylor, 2002;
Russell et al., 2006), or when lighting direction is in an unusual or
bottom position (Hill and Bruce, 1996; Braje et al., 1998; Johnston
et al., 2013).

Similarly, surface properties conveyed by 3D rendering have
shown that several factors contribute to our perceptions, such as
texture gradients, reflectance, pigmentation and lighting styles.
In viewing 3D images, both surface and structure have been
considered as key components of our perception of unfamiliar
faces or strangers (O’Toole et al., 2005). When examining 3D
scanned models of unfamiliar faces, Liu et al. (2005) reveal

texture gradients alone can facilitate recovery of facial identity
above-chance, although the performance was poorer than shape-
from-shading, suggesting shadows and illumination may be more
critical. More recently it has been suggested that when perceiving
familiar 3D faces of friends and acquaintances, we do not heavily
rely on texture or surface information and instead rely upon
3D structure (Blauch and Behrmann, 2019). Contrastingly, when
looking at 2D faces, familiar faces have been suggested to be
recognized more so from an individuals’ surface information,
rather than the two-dimensional shape (Russell and Sinha,
2007). For example, where skin surfaces are removed from an
underlying 2D facial shape, familiar faces cannot be recognized
(Russell and Sinha, 2007).

As well as texture, 3D rendering also encompasses coloring
or skin pigmentation, which has been shown to be a key feature
of identification (Yip and Sinha, 2002; Russell et al., 2007). One
study of the effect of color and pigmentation cues on 3D face
models, describes our accurate ability to detect kinship or genetic
relationships of individuals we have not seen previously (Fasolt
et al., 2019). For example, we can accurately detect kinship
through skin pigmentations exclusively, as well as genetic facial
morphology. Interestingly, Fasolt et al. (2019) concluded that we
did not require a combination of structure and pigmentation, as
high-accuracy was obtained from each of these properties alone.
Similarly, physical health is perceived in another, based on skin
pigmentation and texture, more so than 3D shape. For example,
Jones et al. (2012) demonstrate physical health of a 3D face can
be accurately classified using texture exclusively, based on true
health in daily living (Jones et al., 2012). Skin surfaces were also
suggested to provide accurate information about a person’s Big-
5 self-reported trait levels of “Agreeableness” and “Extraversion”
(Jones et al., 2012).

In summary, it appears the unique, complex geometric forms
and surface properties contained within 3D faces, may be a
vital factor underlying our perceptions of each other. This
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effect has been investigated in identity recognition tasks of
unfamiliar faces (Levin et al., 2001; Pizlo et al., 2010; Long
et al., 2016; Eng et al., 2017; Zachariou et al., 2018), memory
of familiar faces (Blauch and Behrmann, 2019; Kinect Xbo,,
2019; Zhan et al., 2019) and our detection of important social
cues, such as genetic relatedness (Fasolt et al., 2019) health or
personality traits (Jones et al., 2012). While studies examining our
perceptions of 3D facial volume and surfaces are relatively few,
they suggest potential for future behavioral and neuroimaging
studies. Further examining these 3D properties of faces using
applications, such as VR or stereoscopic stimuli, will not only
inform visual scientists, but also contribute knowledge of how
facial perceptions are achieved in social, affective and cognitive
psychology. For example, 3D models with volume, symmetry,
curvilinear edges, shadows, texture, pigmentation, reflectance
and illumination when systematically controlled may influence
our perceptions of identity, gender, ethnicity, age, health, beauty,
personality and kinship.

The Influence of 3D Depth in Building
Facial Perception
Depth is a visual cue in 2D imagery and digital screens, that
creates the illusion of having linear perspective. In other words,
depth cues refer to all visual features which gives humans
the ability to perceive that objects are at a distance from
us. When viewing a two-dimensional screen, this requires
creating an illusion of depth perception from a flat surface.
Without being explicitly a 3D object, depth perception is still
recovered or perceived from two-dimensional flat screens,
through visual cues such as stereopsis or binocular disparity,
linear perspective or alignment, convergence, object constancy,
illumination, shadows and textural gradients (Hallinan et al.,
1999; Vishwanath and Kowler, 2004; Häkkinen et al., 2008;
Lambooij et al., 2011). The illusion of more realistic or
naturalistic depth, is often what separates stimuli from being
considered 2D, such as we see in traditional photographs,
or appearing 3D with applications such as VR (Blascovich
et al., 2002; Bailenson et al., 2004) or stereoscopic glasses
and monitors (Vishwanath and Kowler, 2004; Nguyen and
Clifford, 2019). However, to date the exact similarities
and differences between how we utilize depth perception
when viewing 2D facial imagery and 3D modeled faces
remains unresolved.

Several preliminary studies have investigated how depth
cues influence facial recognition with 3D models presented
on two-dimensional screens, however, findings so far have
generally been mixed (Chang et al., 2005; Farivar et al.,
2009; Dehmoobadsharifabadi and Farivar, 2016). For example,
Dehmoobadsharifabadi and Farivar (2016) demonstrate that a
facial identity can be recognized significantly above-chance with
only one depth cue presented within 3D faces; either stereopsis,
texture gradients, structure-from-motion and binocular disparity
cues. While use a similar method, but identify that shading
aids accurate identity recognition of 3D facial models more so
than other depth cues. In eye-tracking studies, Chelnokova and
Laeng (2011) demonstrate 3D stereoscopic faces alter eye-gaze

attention, directing attention toward the nose and chin, more
so than the eyes; an effect not commonly reported with typical
2D photographs of faces (Chelnokova and Laeng, 2011). Atabaki
et al. (2015) further demonstrate there is no eye-gaze pattern
or angular differences when perceiving a real human or 3D
stereoscopic avatar, suggesting that viewing a stereoscopic face
on a screen produces comparable attention strategies to viewing
physical humans. Neuroimaging studies present evidence of
increased dorsal-stream engagement when viewing 3D stimuli
containing depth cues, for example stereopsis cues and structure-
from motion-cues (Zeki et al., 1991; Tootell et al., 1995; Heeger
et al., 1999; Backus et al., 2001; Tsao et al., 2003; Kamitani and
Tong, 2006; Freud et al., 2018b). Depth added to unfamiliar
faces is largely attributed to increasing both dorsal-ventral
stream engagement, when presented with motion (Farivar, 2009).
Overall, these initial studies infer that depth cues presented with
3D models and applications, may impact our psychophysical
perception, eye-tracking and neural strategies. Comparatively,
conflicting studies have also demonstrated no psychophysical
improvement when comparing 2D and 3D stereoscopic faces
under different task conditions, such as when poses of the face
change (Hong et al., 2006) or for unfamiliar faces (Hancock et al.,
2000). Liu and Ward (2006) for example, found 3D (stereo) and
2D (without stereo) produce similar recognition, suggesting that
depth cues must be presented in the correct combination (Liu and
Ward, 2006). Overall, this preliminary evidence suggests both
similarities and differences may exist in how we perceive depth
from matched 3D and 2D stimuli. Future research therefore, may
benefit from directly comparing matched 2D-3D facial stimuli,
as presented by Sadhya and Singh (2019) or by implementing
3D depth with VR or stereoscopic vision (Blascovich et al., 2002;
Bailenson et al., 2004).

Concluding this section, depth cues such as texture and
shading gradients, shape-from-motion and stereoscopic vision
or binocular disparity cues, may be beneficial to identity
recognition for unfamiliar faces, as well as producing similar
eye-gaze attentional strategies as viewing real-life humans
(Chelnokova and Laeng, 2011; Dehmoobadsharifabadi and
Farivar, 2016). However, there may be no differences in
depth perception between viewing 3D facial models and 2D
imagery (Hancock et al., 2000; Hong et al., 2006). Depth
cues presented by 3D models on-screen, may also underlie
reproduction of natural eye gaze patterns toward more structural
features, that would typically occur in a physical human–human
interaction, and which is limited by 2D stimuli (Vishwanath
and Kowler, 2004; Chelnokova and Laeng, 2011; Atabaki
et al., 2015). Adding the third-dimension of depth to a facial
stimulus, alongside motion, may increase both dorsal and
ventral stream engagement (Farivar et al., 2009). Overall, there
remains unresolved areas for future research in how depth
cues of 3D and 2D models are perceived. Future research
can ultimately benefit by determining how important each
of these depth cues are in our facial perceptions of both
3D stimuli compared to 2D matched-stimuli (Sadhya and
Singh, 2019) and by utilizing 3D models presented in VR or
stereoscopic vision (Blascovich et al., 2002; Bailenson et al., 2004;
Chelnokova and Laeng, 2011).

Frontiers in Psychology | www.frontiersin.org 9 July 2020 | Volume 11 | Article 1842

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01842 July 25, 2020 Time: 18:33 # 10

Burt and Crewther 4D Space-Time Dimensions Facial Perception

WHAT IS THE 4D TEMPORAL PATTERN
OF THE HUMAN FACE?

The Influence of 4D Dynamic Viewpoint
Changes in Building Facial Perception
Another critical contribution of 3D facial models to
understanding facial perceptions, is the ability to present
faces at multiple viewpoints due to their dynamical, moving
nature. Faces are highly dynamical objects which move freely in
space. Thus, to examine the face as a realistic perceptual object
on-screen, it must be modeled with unconstrained motion.
Unconstrained motion on-screen, simply replicates the natural
dynamic movements and changes in viewpoint as a person
moves their head. From the observers view- This encompasses
changes to our viewpoint through rotation, position, orientation,
visual angle, distance, and occlusion. Similarly, this effect can be
reproduced on-screen to examine facial perception with different
viewpoints of the same face. One of the greatest contributions
3D face databases offer is the inclusion of unconstrained head
motion within space (for some examples see Figure 6 MPI;
Kaulard et al., 2012; BP-4D-S; Zhang et al., 2014).

Conventionally, viewpoint changes have been highly restricted
in experimental research in the past. In the literature, two-
dimensional faces are consistently presented at one fixed-
viewpoint, which is incongruent with our daily life experience
(Trebicky et al., 2018). This viewpoint is termed the “central-
frontal plane,” where a face is positioned directly facing the
camera. Indeed, the reasoning behind this decision may be
sound. Incremental shifts in camera angle away from the
“central-frontal” viewpoint of a 2D face, leads to incrementally
poorer recognition performance (Lee et al., 2006). Similarly,
psychophysical evidence indicates that 2D faces with a different
or novel viewpoint, suffer a cost to reaction time and sensitivity
(Shepard and Metzler, 1971; Bulthoff and Edelman, 1992; Hill
et al., 1997; Wallraven et al., 2002). Of course, where repetitive
learning or familiarity with a face-viewpoint is gained (Bulthoff
and Edelman, 1992; Logothetis and Pauls, 1995; Tarr, 1995) or
when experimental task demands are changed (Vanrie et al., 2001;
Foster and Gilson, 2002) improvement can occur.

2D databases are available, where facial viewpoint is
systematically changed in orientation or visual angle (UT Dallas;
O’Toole et al., 2005; AD-FES; Van Der Schalk et al., 2011;
GEMEP Core set; Bänziger et al., 2012; MMI; Valstar and Pantic,
2010; MPI bio; Kleiner et al., 2004) or alternatively through
capturing unconstrained head movement (FG-NET FEEDtum;
Wallhoff, 2004). 4D facial databases containing unconstrained
head movement in a three-dimensional space have also been
developed. For example, see the MPI; Kaulard et al., 2012 or
BP-4D-S; Zhang et al., 2014. Psychophysical investigation using
3D stimuli has identified viewpoints or angles that may be
beneficial for facial identification. For example, a decline in
accuracy and efficiency in 3D facial recognition is observed,
where viewpoint rotations occur along yaw, pitch and roll axes
for 3D simulated stimuli (Favelle et al., 2011, 2017). Optimal
viewpoints of unfamiliar faces, by contrast, are gained by
presentation at both a frontal plane or yaw rotation (Favelle

FIGURE 6 | Changing facial viewpoint along a 3D axis with upper and lower
head tilts (The images pictured above were reproduced, modified and
adapted from the facial database originally developed by Zhang et al. (2013,
2014). Copyright 2013–2017, The Research Foundation for the State
University of New York and University of Pittsburgh of the Commonwealth
System of Higher Education. All Right Reserved. BP4D-Spontaneous
Database, as of: 26/03/2018.

and Palmisano, 2018). Interestingly, recognition of 3D models in
one study does not appear affected by viewing the asymmetrical
right or left sides of the face, through yaw and roll rotations
(Favelle et al., 2011, 2017).

Another study of 3D models in a VR environment, has
suggested that the amount of facial information available to
the visual system is the factor which most impacts recognition
(Bülthoff et al., 2018). For instance, occlusion of prominent facial
features or the holistic configuration of features, will reduce
performance significantly in a VR environment. Consequently,
pitch rotations impact recognition greatly (Bülthoff et al., 2018) –
an upward pitch will produce poorer performance followed by
downward pitch occlusions of 3D face stimuli (Van der Linde and
Watson, 2010; Favelle et al., 2011, 2017). Roll rotations produce
the greatest accuracy overall, simply because they do not contain
any occlusion of facial features, with little disruption to the facial
configuration information detected by the visual system (Favelle
et al., 2011). Contrastingly, Wallis and Bülthoff (2001) used 3D
head models to show that identity is not recognized well, if
the identity changes as the head rotates in a temporally smooth
sequence suggesting we have a strong temporal association of
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facial identity from memory. Thus, it appears that 3D faces with
viewpoint changes may both enhance or decrease our recognition
performance depending on the task conditions, with substantial
contributions to the theories of featural or configural facial
processing being made.

In another study, as the viewing angle of 3D model
faces changed, information regarding dominance, submission
and emotions displayed by another person was gained. More
precisely, Mignault and Chaudhuri (2003) describe how a 3D
viewpoint of a raised head tilt or upright pitch, is associated
with increased personality trait-attributions of dominance and
superiority; alongside emotional states of increased contempt,
pride and happiness. Contrastingly, a downward head tilt or
pitch implies to the viewer increased personality-attribution of
submissiveness; alongside emotional states of increased sadness,
inferiority, shame, embarrassment, guilt, humiliation and respect.
By using 3D dynamical facial models which naturally change
viewpoint and position in space, these initial studies have
identified how personality and emotion perception can be
impacted with viewpoint changes of the head.

Neuroimaging evidence suggests that 2D facial processing
relies upon neurons sensitive to changes in viewpoint, in the
Superior Temporal Sulcus (STS) and Infero-Temporal Cortex
(IT). Unimodal function or exclusive firing for changes in
viewpoint is demonstrated in these areas (Perrett et al., 1985,
1992; Oram and Perrett, 1992). For example, significant decrease
in firing rates of these regions is observed when facial viewpoint
is changed from the “central-frontal” plane, such as left and
right profile or anterior positions (Logothetis and Pauls, 1995).
These detected neurons groups may be responsible for the
psychophysical findings of facial viewpoint, as discussed above.
More broadly, Pourtois et al. (2005) found the Temporal cortex
will respond to viewpoint changes, while the FFA does not
respond to changes in viewer angle. To pursue this question
in three dimensions, Ewbank and Andrews (2008) presented
both familiar and unfamiliar 3D faces. When viewing rotation
or orientation changes, face-selective voxels required more
recovery from adaption (Grill-Spector et al., 1999; Andrews and
Ewbank, 2004). Both emotion and viewpoint changes in 3D face
stimuli did however, activate FFA (Grill-Spector et al., 1999;
Andrews and Ewbank, 2004). While shape or size dimensions
did not appear to matter, the FFA appeared to activate category-
specific information of viewpoint change. These results are
consistent with single-cell recording data of the primate infero-
temporal cortex (IT) or the superior temporal sulcus (STS) and
fMRI studies with human and primate subjects, which have
independently studied the effects of size and viewpoint changes
(Perrett et al., 1985, 1992; Sáry et al., 1993; Lueschow et al., 1994;
Logothetis and Pauls, 1995; Wang et al., 1996; de Beeck et al.,
2001; Pourtois et al., 2005).

In summation, 3D and 4D models have already made
a substantial contribution to facial research pertaining to
viewpoint change, for both familiar and unfamiliar faces
(Wallis and Bülthoff, 2001; Favelle et al., 2011, 2017; Favelle
and Palmisano, 2018). Renewed potential for investigations
into the featural and configural theories of facial processing,
has also been addressed by occlusions through viewpoint

change (Van der Linde and Watson, 2010; Favelle et al.,
2011, 2017; Bülthoff et al., 2018). Initial investigations into
viewpoint-dependent face regions (FFA) in the brain are
emerging (Grill-Spector et al., 1999; Andrews and Ewbank, 2004)
although require more extensive analysis. Finally, naturalistic,
unconstrained viewpoint changes provided by 4D dynamical
facial modeling, may be most beneficial in understanding how
we perceive emotional state and personality traits of others
(Mignault and Chaudhuri, 2003).

The Influence of 4D Dynamic Movement
in Building Facial Perception
Historically, facial literature has fixated on static, 2D imagery
in experimental design; that is, on-screen stimuli without
movement (Kamachi et al., 2013). Overall, inconsistent findings
in the literature have been reported for facial recognition
relating to 2D dynamic or moving faces that were recorded
with 2D capture- namely width and height (for a review
see Kätsyri, 2006; Fiorentini and Viviani, 2011; Alves, 2013;
Krumhuber et al., 2017). Some psychophysical studies have
revealed an advantage in identification, when 2D facial motion
is displayed, compared to static counter-parts (Pike et al.,
1997; Wehrle et al., 2000; Knappmeyer et al., 2003; Ambadar
et al., 2005; Cunningham and Wallraven, 2009) while others
have not (Fiorentini and Viviani, 2011; O’Toole et al., 2011).
Another significant contribution of 3D models to the facial
research community therefore, is the progression of databases
into four dimensions (4D). In other words, facial stimuli can
now be presented with the additional dimension of dynamic
movement to a 3D model. This progression is ultimately
necessary when we consider that human faces are “highly
dynamical” by nature or rarely “still” objects and yet are also
three-dimensional. Indeed, precise variation in facial motion
displayed in three dimensions, allows us to portray and
communicate a wealth of information as a social species
(Jack and Schyns, 2017).

Communication, or our wide-ranging emotions, mental
states and speech, is conveyed to other humans principally
through two forms of movement which are built into 3D
digitized models. Facial movement can be modeled as rigid
and non-rigid motion (for review see Smeets et al., 2012;
Chrysos et al., 2018). Evidence suggests anatomically accurate
rigid and non-rigid facial movements are essential to facial
perception (Trautmann et al., 2009; Johnston et al., 2013) and
is achievable computationally (Zhang et al., 2003; Zhang and
Fisher, 2019). Deformable facial modeling, relates to movement
we produce through voluntary, striated musculature or facial
muscles. For example, when we talk, raise our eyebrows
or smile, we activate this musculature system. Rigid head
modeling, relates to the constrained-motion produced by the
head, which is controlled through the neck musculature. An
example of rigid motion is when we change the posture of
our head, such as when shaking our head in disagreement or
nodding in agreement. Both deformable modeling and rigid
head modeling help reproduce naturalistic movements on-
screen. Briefly, some stand-out examples of facial databases
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with motion include the BU4D-S (Zhang et al., 2014) and
the D3DFACS (Cosker et al., 2011). However, also see (Wang
et al., 2004; Vlasic, 2005; Gong et al., 2009; Weise et al.,
2009; Garrido et al., 2013; Shi et al., 2014; Suwajanakorn
et al., 2014; Zhang et al., 2014; Cao et al., 2015; Thies,
2015; Jeni et al., 2017). Comprehensive reviews comparing
the static (3D) and dynamic (4D) datasets are also available,
as evaluated by Sandbach et al. (2012) and Smeets et al.
(2012). However, a recent shift toward dynamic, moving facial
databases has also been observed in the 2D literature and is
worth mentioning (for a review see Krumhuber et al., 2013;
Krumhuber et al., 2017).

The emerging field of 4D facial research is therefore likely
to offer answers into how naturalistic social, cognitive and
affective perceptions are achieved when observing facial motion.
Deformable movement is the more popular facial research
area, encompassing studies of speech, language and emotional
expressions. Deformable movement of our facial musculature in
the literature is defined popularly by the Facial Action Coding
System (Ekman and Friesen, 1978; Ekmans and Rosenberg,
1997). FACS is a highly cited, objective system of measuring
facial movement activated by groups of facial muscles, defined
as “action units.” (Ekman and Friesen, 1978; Ekmans and
Rosenberg, 1997 44 action units, the FACS system groups
facial muscles which activate collectively. These activations are
ultimately what produce deformable expression and speech
output. For example, an emotion pattern such as a disgusted
response, can be quantified into an action unit or series
of muscle activations (AUs), such as a “grimace” of the
mouth and “screwing up” of the eyes. Exemplars of different
FACS coded muscle activations, illustrating smiles, frowns
and grimaces of deformable facial features are displayed in
Figure 7.

Recently, Savran et al. (2012) presented a detailed review
to compare how the FACS system aids perception of 2D
and 3D faces, suggesting emotion recognition with the FACS
system is superior in 3D faces, particularly with low intensity
emotions. While the FACS system has been extensively used
with 2D dynamic faces displaying emotional expressions, for
example, 2D images (Pantic and Rothkrantz, 2004; Cohn and
De la Torre, 2014; Baltrušaitis et al., 2015) and 2D dynamic
videos (Donato et al., 1999; Pantic and Rothkrantz, 2004;
Bartlett et al., 2006) this study indicates 3D/4D dynamic
faces may be more important for low intensity emotions.
The FACS system has likewise achieved action unit detection
in 3D facial videos or scans (Cosker et al., 2011) for
successful emotion detection (Sun et al., 2008; Tsalakanidou
and Malassiotis, 2010; Berretti et al., 2013; Reale et al.,
2013; Tulyakov et al., 2015; Danelakis et al., 2018); and
even more socially related morphologies such as dominance,
trustworthiness and attractiveness (Gill et al., 2014) or the
influences of ethnicity and gender on how we display emotional
expressions differently from one another (Jack et al., 2014;
Jandova and Urbanova, 2018).

Deformable modeling has made a further advancement in
facial stimuli design, by digitizing naturalistic, spontaneous
movements, rather than the synthesized, artificial movements

produced in the past (Wehrle et al., 2000; Tcherkassof et al.,
2007). For example, high classification accuracy using the 3D
FACS system has been demonstrated for spontaneous emotions
displayed in these databases (96%; Tarnowski et al., 2017).
Spontaneous deformation provides computer scientists the
ability to track anatomically accurate emotional displays from
humans in-situ (Bartlett et al., 2006; Zhang et al., 2014). This is
of consequence to emotion and language research, as motion or
timing of deformable changes, is considered important (Bassili,
1978; Ekman, 1982; Wehrle et al., 2000; Kamachi et al., 2013).
This is exemplified in the case of “false smiles.” For example,
while the FACS activated in any smile is highly similar, it is
the timing of activation which reveals the difference between
a deceptive smile and a smile of genuine happiness, as can
the consistency between the eye and mouth FACS (Ekman,
1982; Cohn and Schmidt, 2003; Guo et al., 2018). 4D faces
have also helped delineate when we can evaluate an emotional
expression. For example, most expressions begin the same, with
the 6 basic emotional expressions becoming revealed temporally
later in Western Caucasians, as shown through the FACS system
(Jack et al., 2014). More culturally specific, East Asians have
demonstrated more overlap and less specificity in the FACS
displaying surprise, fear, disgust and anger, compared to Western
Caucasians (Jack et al., 2014). Overall, deformable modeling
of 4D faces combined with 3D FACS, offer researchers a
promising methodology of speech, language and emotion which
use deformable facial musculature.

Albeit less studied, rigid modeling of 4D face datasets is also
of key importance to include in dynamic stimuli presentation.
Rigid head movement is defined as that constrained by the
neck, involving changes to the position or posture of the
head. Rigid motion in the literature is defined and measured
along 3D axes, including changes in head tilt, pitch, yaw
and roll. Using 3D neutral facial models, emotional states or
personality traits associated with head tilt include a downward
head angle as guilt, sadness, embarrassment, gratitude, fear,
surprise, shame, guilt as submissive displays upward head angle
as pride, contempt, and scorn as dominance (Mignault and
Chaudhuri, 2003). For example, rigid head motion alone has
demonstrated the ability to determine an individuals’ identity
(Hill and Johnston, 2001). 3D head posture alone, with neutral
expression, indicates a wide array of information (Mignault
and Chaudhuri, 2003), including gender-based displays of
dominance and aggression, or alternatively submission. Many
traits are perceived through head tilt; including a lowered head
indicating sadness, inferiority and submissiveness (Otta et al.,
1994). Overall, these initial studies of unconstrained movement,
while relatively rare, have provided methodologies whereby 4D
faces can be used to improve studies of language, emotion
and personality traits, alongside social factors such as gender
and ethnicity. Thus, it is likely a growing number of studies
in future will utilize facial stimuli with unconstrained head
motion, as presented by deformable and rigid head modeling.
Overall, both rigid and deformable modeling of 4D faces
combined with the 3D FACS system, offer psychologists a
promising methodology for all areas of speech, language and
emotion research.
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FIGURE 7 | Video-recorded dynamic 4D facial stimulus captured as still frame-by-frame images, displaying happy and disgusted FACS coded emotion (The images
pictured above were reproduced, modified and adapted from the facial database originally developed by Zhang et al. (2013, 2014). Copyright 2013–2017, The
Research Foundation for the State University of New York and University of Pittsburgh of the Commonwealth System of Higher Education. All Right Reserved.
BP4D-Spontaneous Database, as of: 26/03/2018. This exemplar presents the frame-by-frame stills from a video-recording of a 4D face, moving from a happy
expression to a disgusted expression.
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RECOMMENDATIONS

In this review, we discuss the nature of 4D face stimuli that
are modeled over space and time. The review introduces the
available 3D/4D face models and databases for researchers,
while considering how these are captured and reconstructed
for experimental design. Finally, we review studies which
incorporate 3D spatial and 4D temporal properties to reveal
how volume, surfaces, depth, viewpoint and movement affect
our perceptions of others. In sum, we recommend the
implementation of 4D stimulus models built from real-
life human faces with anatomically accurate spatial and
temporal dimensions, to resolve many unanswered questions of
facial perception.

Future research in the vision sciences can ultimately benefit by
determining how important 3D structural and depth properties
are in our facial perceptions of 3D models compared to 2D
matched-stimuli (Sadhya and Singh, 2019). Secondly, at the
start of this revolution, we will begin to understand how facial
perception is realized in increasingly naturalistic settings, which
capture and reproduce the complex interaction of 3D volume,
surface, depth, viewpoint and movement properties (Bulthoff
and Edelman, 1992; Bailenson and Yee, 2006; Stolz et al., 2019;
Lamberti et al., 2020). For example, 3D/4D facial models enable
complex visual cues and 3D depth within naturalistic social
environments, once integrated with applications such as VR
and stereoscopic technology (Bailenson et al., 2004; Stolz et al.,
2019; Lamberti et al., 2020). By assimilating complex models of
face stimuli into future research, we can resolve long-standing
questions about how we identify familiar compared to unfamiliar
faces, especially from different viewpoints (Wallis and Bülthoff,
2001; Abudarham et al., 2019; Zhan et al., 2019). We may also
improve understanding of how we identify social characteristics
of individuals; such as gender, ethnicity or personality traits.
We can better explore social perceptions with 3D facial features
and surfaces by investigating many unresolved questions, such
as what the nose or eyes reveal about ethnicity and gender? (Lv
et al., 2020) or how do we identify race, health and age from
skin surfaces? (Jones et al., 2012). Likewise, we can examine the
decoding of more complicated emotional expressions, speech

and language with 3D FACS over time (Lu et al., 2006; Jack
et al., 2014). Finally, we may better understand the reasons
why emotional expressions, inversion or movement, present
challenges for specific clinical subpopulations during facial
perception tasks, such as in Autism Spectrum Disorder (Weigelt
et al., 2012; Anzalone et al., 2014) or Schizophrenia (Onitsuka
et al., 2006; Wang et al., 2007; Marosi et al., 2019).

To meet the challenges of integrating complex 4D face models
in psychological methodology, more complex computational
methods of analysis will be required. It is recommended that
future experiments utilize multivariate time-resolved methods of
analysis. Thus, as a facial stimulus evolves over time, methods
of analysis should simultaneously capture this dynamical
information. Existing methods such as psychophysical behavioral
measures (eye-tracking, reaction-time, inspection time, accuracy)
or neuroimaging measures (decoding, multivariate pattern
analysis or time-frequency analysis) are recommended.

CONCLUSION

In conclusion, this in-depth review highlights the effects of
presenting on-screen facial stimuli with both 3D visual properties
(volume, surface and depth) and 4D dynamical properties
(viewpoint, movement). We conclude that the human face is
inherently defined as a 4D dynamic perceptual object. Ignoring
this definition in experimental stimuli remains a widespread
issue which confounds our understanding of naturalistic human
facial perception is performed. To date, the emerging use of 4D
dynamic models in facial research has so far revealed an amazing
richness in facial perceptions of identity, gender, ethnicity,
personality traits, speech and emotional expressions.
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