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Purpose: To build and evaluate deep learning models for recognizing cataract surgical
steps from whole-length surgical videos with minimal preprocessing, including identi-
fication of routine and complex steps.

Methods:We collected 298 cataract surgical videos from 12 resident surgeons across 6
sites and excluded 30 incomplete, duplicated, and combination surgery videos. Videos
were downsampled at 1 frame/second. Trained annotators labeled 13 steps of surgery:
create wound, injection into the eye, capsulorrhexis, hydrodissection, phacoemulsifi-
cation, irrigation/aspiration, place lens, remove viscoelastic, close wound, advanced
technique/other, stain with trypan blue, manipulating iris, and subconjunctival injec-
tion. We trained two deep learning models, one based on the VGG16 architecture (VGG
model) and the second using VGG16 followed by a long short-term memory network
(convolutional neural network [CNN]– recurrent neural network [RNN] model). Class
activation maps were visualized using Grad-CAM.

Results: Overall top 1 prediction accuracy was 76% for VGG model (93% for top 3
accuracy) and 84% for the CNN–RNN model (97% for top 3 accuracy). The microaver-
aged area under receiver-operating characteristic curves was 0.97 for the VGG model
and 0.99 for the CNN–RNNmodel. The microaveraged average precision score was 0.83
for the VGGmodel and 0.92 for the CNN–RNNmodel. Class activationmaps revealed the
model was appropriately focused on the instrumentation used in each step to identify
which step was being performed.

Conclusions: Deep learning models can classify cataract surgical activities on a frame-
by-frame basis with remarkably high accuracy, especially routine surgical steps.

Translational Relevance: An automated system for recognition of cataract surgical
steps could provide to residents automated feedbackmetrics, such as the length of time
spent on each step.

Introduction

Cataract is a clouding of the lens which causes poor
vision and is the leading cause of blindness world-
wide.1 Cataract surgery restores vision by replacing
the cloudy cataractous lens with a clear lens implant
and is the most commonly performed surgery in the
United States.2 Cataract surgery is a highly delicate
and challenging operation involving manipulations of
micrometer-thick tissues under microscopic magnifica-

tion.3 Although some cases may be relatively straight-
forward, complex cases may include the manage-
ment of poor dilation, floppy iris syndrome, zonular
weakness, or advanced cataracts, the difficulty of which
may lead to complications such as vitreous loss. The
safe and skilled performance of cataract surgery is a
primary goal of residency training in ophthalmology.

The mainstay of surgical training is case-by-case,
one-on-one, real-time feedback from attending precep-
tors to trainees. Videos of cataract surgery are also
captured routinely by trainees to review subsequently
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for complications or learning opportunities. However,
human rating systems4 for video performance are
manual and time consuming, and infeasible for use on a
large scale (e.g., for every recorded surgery). Thus, aside
from the time in the operating room itself, there are
limited significant opportunities for external feedback
for one’s personal surgical performance. Furthermore,
it is difficult to tabulate efficiently objective metrics
for cataract surgical performance, such as the length
of time spent on certain important steps of cataract
surgery such as capsulorrhexis or phacoemulsification.
Other metrics of surgical training such as the use of
advanced techniques for complex cases and rates of
complications requiring anterior vitrectomy can only
be tabulated manually by the surgeon, which can be
onerous.

Motion analysis using traditional computer vision
techniques has been used to provide objective measures
of surgical performance in cataract surgeries.5 These
analyses could distinguish between novice and expert
surgeons in instrument movement and path. However,
they do not distinguish between different steps of
cataract surgeries.

The development of algorithms that can recog-
nize both basic and complex activities in cataract
surgery would enable detailed yet automated analyses
of cataract surgical videos, including the time spent
on individual steps and the presence of complications
and nonroutine surgical activities. This information
could be used to summarize cataract surgery experience
and performance, which would be particularly useful
to trainees seeking to further improve their surgical
performance.

Advances in artificial intelligence and computer
vision in medicine now provide an opportu-
nity to analyze video data on a large scale, for
example, with recently developed algorithms for
detecting patient mobilization in intensive care
units6 and for detecting activities and instruments
in general surgery, enabling automated surgical
skills assessment in that domain.7 Deep learn-
ing has also been successfully applied to cataract
surgery analysis.8–10 However, most studies used
videos from a single institute and did not incor-
porate advanced surgical steps, thus limiting their
generalizability.

Our goal was to train a deep neural network to
automatically recognize the various steps of cataract
surgery, including both routine steps as well as the use
of advanced techniques for complex surgeries such as
use of themalyugin ring, staining with trypan blue, and
the management of complications, including anterior
vitrectomy.

Methods

Data Source and Preprocessing

We collected a sample of 298 resident cataract surgi-
cal videos that had been routinely recorded during
the residency training of 12 surgeons across 6 differ-
ent sites. All data were deidentified and this research
was deemed to be exempt by the institutional review
board. The original footage was in 1080 × 1920 resolu-
tion, which was downsampled to a resolution of 256
× 456. Videos that were significantly incomplete (e.g.,
recording began after main wound creation), dupli-
cated, or contained steps of another major surgery
(e.g., phacotrabeculectomy) were excluded (n = 30),
leaving 268 videos in the final dataset, which amounted
to approximately 131 hours of included footage. Videos
of poor quality caused by surgeons’ inexperience, such
as videos with decentered or out of focus views, were
kept in the dataset.

A team of four trained annotators used VIA
software11 to manually label the start and end times
for 13 specific steps of cataract surgery: create
wound, injecting substance into the eye, capsulor-
rhexis, hydrodissection, phacoemulsification, irriga-
tion/aspiration, place lens (including axis marking
for toric lenses), remove viscoelastic, close wound,
advanced technique/other (including anterior vitrec-
tomy, placement of capsular support devices, limbal
relaxing incisions, superior rectus traction suture,
conjunctival vessel cautery, and vitreous trimming
at wound), staining with trypan blue, manipulation
of iris (including placement and removal of malyu-
gin rings/iris hooks, and repositioning prolapsed iris),
injection into the subconjunctival space (including sub-
Tenon’s blocks). The frames containing none of these
activities are labeled as “no label,” resulting in a total
of 14 classes of labels. The start time was marked when
the relevant instruments are seen on the screen, and
the end time when the instruments leave the screen.
By this definition, failed attempts are also labeled as
within the step. All annotators received a presentation
on the steps of cataract surgery and observed several
examples of cataract surgical videos being annotated in
real-time by the ophthalmologist. They also indepen-
dently annotated approximately 10 cataract surgical
videos and received feedback from the ophthalmologist
before they started independent labelling. After initial
annotation by this team, final annotation for all videos
was adjudicated by a board-certified ophthalmologist
to resolve discrepancies.

Individual frames were extracted from the video
using OpenCV212 at a frame capture rate of 1 frame
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per second, yielding a total of 457,171 extracted frames.
Frames were cropped to a square shape of resolu-
tion 256 × 256, centering the square over the origi-
nal rectangular video frame. We split the dataset by
video to prevent data leakage, reserving the frames
from 211 videos for the training, 26 for the validation
and 31 for the test set, with roughly 8:1:1 ratio for
each surgeon. To ensure both validation and test set
contains video with rare steps, we randomly assigned
four videos containing advanced technique/other for
each set. To represent the time information, the raw
timestamp was extracted for each frame and normal-
ized by dividing themaximum timestamp in each video.
The normalization could mitigate the variation of the
durations of different surgical phases between differ-
ent levels of training. We also performed global mean
centering by subtracting the mean pixel values in each
channel across the whole training dataset.

Models 1: Transfer Learning from the VGG16
Architecture (VGG)13

We initialized the VGG16 network with weights
pretrained on the ImageNet dataset.14 We removed the
original densely connected layers and output layer from

the top of the VGG network and replaced it with two
densely connected layers of 512 hidden nodes each, and
a final softmax output layer that predicted which activ-
ity was represented in an individual video frame. The
timestamp of the frame, normalized by the length of
the video, was also used as an input to the model and
was concatenated with the densely connected layer at
the top of the model. We froze the first 15 layers of the
VGG network up until Block 5 convolution 1, allowing
parameters to be trained and updated for the remaining
six layers (21,767,694 trainable parameters). Themodel
architecture is summarized in Figure 1a.

Data augmentation was performed during the train-
ing process by transforming each frame with a random
combination of rotation (≤180°), color channel shift-
ing, brightening/dimming ± 20%, and zooming in/out
± 10%. Rare classes were upsampled during the train-
ing based on the following ratio: advanced techniques
4×, staining with trypan blue 8×, manipulation of iris
2×, injection into the subconjunctival space 2×, and
1× for the rest.

The model was trained with the Adam optimizer
(learning rate 0.00001) and sparse cross entropy loss,
for nine epochs, noting that overfitting occurred after
that. The class with the highest output was defined

Figure 1. Deep learningmodel architectures for recognition of cataract surgical steps from surgical videos. Model architectures for (a) VGG
and (b) CNN–RNN are shown. Top refers to the last three dense layers.
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as the final prediction. Final predictions were further
smoothed by averaging the predicted class probabili-
ties across a continuous rolling window of five consecu-
tive frames, to minimize the flicker of rapidly changing
class predictions across neighboring frames.

Models 2: Convolutional Neural Network
(CNN)–RNN

In the second model, we use the encoding from
the last pooling layer of best VGG model as the
input to our recurrent neural network (RNN), which
is composed of bidirectional long short-term memory
with 512 units.15 Output from each long short-term
memory cell was connected to two dense layers and one
output layer with softmax activation. Adam optimizer
was used with a learning rate fixed at 0.0001, beta1 0.9,
and beta2 0.999. The loss function was sparse categor-
ical cross entropy. The number of timesteps was tuned
to 90, which means each input batch contained 90
consecutive frames, regardless of whether it included a
phase transition or not. Themodel was trained until no
decrease in validation loss in three consecutive epochs
and was saved when it generated the lowest validation
loss. Similar to VGG model, the output contained 14
softmax activation scores, and the class with the highest
score was defined as the final prediction. The model
architecture is summarized in Figure 1b. Both models
were trained in Python 3.7.10 using tensorflow 2.4.1
and keras 2.4.3.

Evaluation Methods

Per-class receiver operating characteristic and preci-
sion recall (PR) curves along with areas under those
curves and average precision scores were calculated. To
summarize across the dataset, the same metrics were
calculated butmicroaveraged across each class of activ-
ity. Microaveraging treats each observation equally
regardless of which true class it belongs to and calcu-

lates the metric across the whole dataset, instead of
first calculating the metric for each class and averaging
them. This procedure puts more proportional weight
on major classes and, therefore, represents a weighted
average of the metric of interest. Frame-by-frame top-
N accuracy was determined by examining whether the
actual label was among the topN predicted classes with
the highest predicted probabilities. We also evaluated
per-class accuracy, sensitivity (recall), specificity, and
precision (positive predictive value). Confusion matri-
ces between true labels and model prediction were used
for error analysis. Statistical analysis was performed
using sklearn 0.22.1.

Class activation maps were visualized using Grad-
CAM16 by examining the last convolutional layer
of the VGG network and the gradient information
flowing into that layer to determine the critical regions
to classify each class. A heatmap of highly activated
pixels was overlaid with the original image for a
random sample of correctly classified frames.

Results

The distribution of rare steps, advanced surgical
techniques, and complications across the train, valida-
tion, and test videos are summarized in the Table, and
the distribution of these between different surgeons are
summarized in Supplementary Table S1. The number
of videos contributed by five individual surgeons was
106, 97, 36, 18, and 2. A group of seven residents
anonymously contributed nine additional videos. The
overall classification accuracy was 76% for the VGG
model and 84% for the CNN–RNN model. The VGG
model had a weighted average precision of 77% and
a weighted average sensitivity of 76%. CNN–RNN
model had a weighted average precision of 85% and a
weighted average sensitivity of 84%.

Using VGG, the area under receiver operating
characteristic curves ranged from 0.82 in advanced

Table. Characteristics of Cataract Surgical Videos

No. of Videos Containing Advanced Cataract Surgery Steps Total Train Validation Test

No. 268 211 26 31
Anterior vitrectomy 5 3 1 1
Place capsule support 3 2 1 0
Trypan blue staining 111 95 5 11
Iris manipulation (malyugin ring, iris hooks, repositioning floppy iris) 41 32 4 5
Subconjunctival injection 62 50 4 8
Other/miscellaneous (limbal relaxing incisions, superior rectus traction
suture, conjunctival vessel cautery, vitreous trimming at wound)

30 25 2 3
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Figure 2. Receiver operating characteristic (ROC) and precision-recall (PR) curves for recognizing cataract surgical step. Per-class ROC
curves with area under curves and PR curves with average precision (AP) scores for (a) (b) VGG and (c) (d) CNN–RNN model. (e) Microav-
eraged ROC curves and area under curves for both models. (f ) Microaveraged PR curves and AP scores for both models.

technique/other to 0.99 in phacoemulsification, and
that of CNN–RNN ranged from 0.85 in advanced
technique/other to 1.00 in phacoemulsification, irriga-
tion/aspiration, and trypan blue staining. Themicroav-
eraged area under receiver operating characteristic
curve was 0.97 in VGG and 0.99 in CNN–RNN. The
microaveraged average precision score was 0.83 for
VGG and 0.92 for CNN–RNN. The receiver operating
characteristic and PR curves are shown in Figure 2.

Per-class accuracy, sensitivity, specificity, and preci-
sion are summarized in Supplementary Table S2. Both

models have the highest sensitivity in phacoemulsi-
fication, which were 0.944 and 0.977, respectively.
Advanced technique/other, subconjunctival injection,
and iris manipulation were the most difficult for the
VGG model to predict, resulting in sensitivities of less
than 50%. Notably, VGG did not predict any correct
subconjunctival injection frames. The CNN–RNN
model also struggled in these three classes, but the
performance was improved. A simple (macro) average
of step-specific accuracies of the VGG model was
96.5% and the CNN–RNN model 97.8%. Weighted
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Figure 3. Confusion matrices for the deep learning models. Confusion matrices for (a) VGG and (b) CNN–RNNmodels.

Figure 4. Gradient activationmaps illustratingwhich pixels aremost important to predict which cataract surgical step is being performed.
A single frame from each surgical stepwas randomly sampled from the test set. A heatmap generated by Grad-CAM is overlaid on the frame,
showing which pixels are highly activated in making the prediction for each class.

(micro) average of step-specific accuracies by label
frequency of theVGGmodel was 93.9% and theCNN–
RNN model 96.4%.

Confusion matrices for both models’ predictions
are shown in Figure 3. For most misclassifications,
VGG most commonly predicted no label. The error
rates were lower in the CNN–RNN model, but
no label was still the most common misclassifica-
tion. Top N accuracy with N ranging from 1 to
5 are illustrated in Supplementary Figure S1. Top
2 accuracies of CNN–RNN model improved to
94%, while VGG achieved a similar level at top 4
accuracies.

A Grad-CAM heatmap is shown in Figure 4. In
classes with high accuracies, the model relied on the
tool appearance, mostly tooltips, to predict surgical
step. In contrast, the model did not look at the tool
position in classes with low accuracies. For example,
the model predicted close wound using information
from the center of the pupil, which would not be
expected to contain much information about close
wound.

An example video timeline is shown in Figure 5,
demonstrating the true timeline of events as well
as the VGG and CNN–RNN predicted timelines. A
companion video demonstrating activity recognition
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Figure 5. Video timeline comparison between ground-truth labels andmodels prediction. Model prediction and ground-truth labels for a
randomly chosen video in the test set are shown as parallel timelines for comparison. CNN–RNNmodel produces more stable and accurate
prediction than VGGmodel. (Note: The video recording started during the first paracentesis and captured only 1 second of it. As a result, for
the true labels, the initial section for “create wound” is very slim and invisible.)

for an entire phacoemulsification movie is available as
Supplementary Material.

Discussion

In this study, we developed, evaluated, and
compared the performance of two deep learning
models that identify the surgical step being performed
in any given frame in a cataract surgery video. A novel
aspect of our study was that we curated a larger and
more varied corpus of videos with trainee surgeons
from several different institutions. In addition, our
videos were directly input into our models in an end-
to-end manner, requiring minimal preprocessing, and
they also included advanced techniques and complica-
tions, allowing us to predict the presence of these steps
that had not been possible in previous studies. Our
goal was to establish a more realistic estimation of the
accuracy of deep learning models in this task. We also
provided visualization of the gradient map to enhance
interpretability and reliability of model prediction.

The VGG16 model with timestamp inputs gener-
ated reasonably good test accuracy of 76% and CNN–
RNN model improved the overall test accuracy to
84%. The accuracy of our CNN–RNN outperformed
previous work using hand-crafted features, which had
achieved 72.9% and 81.2%.17,18

We found that a CNN alone could predict the
core steps of cataract surgery well. Morita et al.8
used Inception V3 to detect continuous curvilinear
capsulorrhexis and nuclear extraction in real-time and
achieved greater than 90% sensitivity. Our performance
was higher in phacoemulsificationand other surgical
steps, although performance was lower in capsulor-
rhexis. This finding could be attributed to the fact that
our model has more steps to distinguish. For example,
the similarity between cystotome and cannula used in
anterior chamber injection could lead to misclassifica-
tion.

A combination of RNN and CNN previously
showed promising results in cataract surgical phase
recognition as well.9,10 Zisimopoulos et al.9 trained
ResNet-152 to predict the tools present in a frame and
discovered that using encoding features after the last
pooling layer to train RNNproduced the best accuracy
of 78%. Our approach is different in that we trained
CNN directly to predict the phase instead of the tools
present and achieved better overall accuracy. The best
length of input sequences was found to be roughly
33 seconds in their study, which was less than
90 seconds, as in our study. This finding might indicate
that inclusion of instrument labels provides richer
information than plain video frame images for predic-
tion of surgical step. Yu et al.10 compared the perfor-
mance of CNN and CNN plus RNN models using
both video frame images and/or additional metadata,
including labels indicating which surgical tools were
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present in the frames. The results showed that the
RNNwhich incorporated the information about surgi-
cal tools, gave the highest accuracy.However, in deploy-
ment the model would then have to rely on prean-
notated information about surgical tools present in
each frame, which would not be available generally.
They also examined CNN and CNN plus RNN using
only the unlabeled video frame images. Unlike our
study, addition of the RNN to the architecture did
not consistently improve the accuracies.10 These studies
only used datasets from a single institution and did
not examine the model’s performance on advanced
surgical technique, which is essential to provide objec-
tive metrics in the presence of surgical complica-
tions or challenging case conditions. Our CNN–
RNN reached significantly higher per-class accuracies,
sensitivities, specificities, precisions, and areas under
receiver operating characteristic curve than previous
CNN plus RNN designs, possibly owing to a larger
training dataset.

The frequent misclassification of no label as other
surgical steps might be due to the subtle subjectiveness
in determining the exact start time of an activity. Some
actions involve instruments leaving the frame and re-
entering it, resulting in a small portion of interpolated
frames that contain no instruments, which sometimes
were mislabeled as other steps.

Another source of misclassification in the VGG
model came from the rolling average procedure. Using
five consecutive frames might over-smoothen short
surgical steps that contained fewer than five frames. We
noticed 2% and 3% drops of sensitivity for the typically
shorter steps of create wound and anterior chamber
injection, respectively. Nonetheless, this rolling average
improved sensitivities by 1% to 7% for longer steps,
thus making the overall sensitivity higher. Of note,
the rolling average procedure was only used for the
VGG model and was not required for the CNN–RNN
model which automatically provides some smoothing
for predictions of temporally adjacent frames.

The model’s reliance on seeing the instruments
present in the frame to produce its prediction is reassur-
ing, because humans would also use the presence of
certain instruments as a clue to determine which surgi-
cal step is occurring. However, one possible limitation
of this behavior is that the ability of themodel to differ-
entiate between surgical steps could be constrained by
instruments with similar appearances. For example, the
tiny visual difference between the cystotome and the
injection cannula, sometimes only a matter of seeing
a few extra pixels at the end of the cystotome, might be
one of the reasons why the model could not differenti-
ate well between capsulorrhexis and anterior chamber
injection. Theoretically, higher resolution images could

help to solve this problem by simply presenting more
pixels to the model, but they also contribute to higher
computational burden. This behavior also induces the
risk of misclassification with different brands of instru-
ments in different countries, regions, or surgeons and
maymiss useful information in other parts of the image
that human surgeons would also rely upon, such as the
presence of a fragmented lens or an intraocular lens.

Our study has high translational relevance for the
improvement of surgical training and development of
automated surgical systems. For example, a simple but
valuable application would be to automatically calcu-
late the time a surgeon spends in each step, which is
correlated with a surgeon’s performance.19 After each
surgery, residents could easily use our model to track
surgical times on a granular level over time and deter-
mine which steps he or shemight need further improve-
ment. In addition, the ability to recognize surgical steps
is a key step toward the development and implemen-
tation of context-aware computer-assisted surgery20,21
or even fully robotic surgery. Such systems can be used
to perform context-aware adaptation of device settings,
provide danger notifications to surgeons, and deliver
real-time insights. Another future application is apply-
ing a similar strategy to train models to recognize the
steps of other ophthalmic surgeries, such as glaucoma
surgeries.

Our model directly learned useful features from
images during the training process, which has become
one of the most common data types used in surgi-
cal phase recognition in recent years.22 This avoids the
need to extract other information, such as instrument
use, color histograms, texture, etc. before running the
model and allows faster and easier model deployment.

Our study has several limitations. First, because we
included complete cataract surgical videos in the train-
ing data, in future applications residents would have
to input the whole-length video to achieve the same
model performance. Second, the relatively few videos
with rare surgical steps (such as anterior vitrectomy,
placement of capsular tension ring, etc.) caused signif-
icant difficulty for model prediction despite aggressive
upsampling of these video frames. Amassing more
examples of these types of actions would be ideal to
further improve performance on these steps before
model deployment. Third, the relatively long time
sequence needed for our CNN–RNN model currently
excludes the possibility of deployment in a real-time
prediction setting. Fourth, the level of training of each
surgeon in our dataset is uncertain because of the
semianonymous collection of videos, which may limit
the robustness of the model. Last, our models only
take static images as inputs and do not take advantage
of the valuable information of object motion from
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videos. Incorporating movement-based models such as
two-stream convolutional networks23 could have
potential for performance improvement.

In summary, by using a larger and more varied
dataset, our deep learning model with a CNN plus
RNN architecture showed highly accurate predictions
for routine steps of cataract surgery and gives realistic
estimates on how the model might perform in diverse
cataract surgeries with advanced surgical steps.
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