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Simple Summary: This paper presents an extended version of the Cox regression model to examine
heterogeneous effects of risk factors on disease subtypes defined by a continuous biomarker. This
approach can be easily applied to cancer studies and is accessible to researchers via user-friendly
R scripts.

Abstract: Molecular pathologic diagnosis is important in clinical (oncology) practice. Integration
of molecular pathology into epidemiological methods (i.e., molecular pathological epidemiology)
allows for investigating the distinct etiology of disease subtypes based on biomarker analyses, thereby
contributing to precision medicine and prevention. However, existing approaches for investigating
etiological heterogeneity deal with categorical subtypes. We aimed to fully leverage continuous
measures available in most biomarker readouts (gene/protein expression levels, signaling pathway
activation, immune cell counts, microbiome/microbial abundance in tumor microenvironment, etc.).
We present a cause-specific Cox proportional hazards regression model for evaluating how the
exposure–disease subtype association changes across continuous subtyping biomarker levels. Utiliz-
ing two longitudinal observational prospective cohort studies, we investigated how the association of
alcohol intake (a risk factor) with colorectal cancer incidence differed across the continuous values of
tumor epigenetic DNA methylation at long interspersed nucleotide element-1 (LINE-1). The heteroge-
neous alcohol effect was modeled using different functions of the LINE-1 marker to demonstrate the
method’s flexibility. This real-world proof-of-principle computational application demonstrates how
the new method enables visualizing the trend of the exposure effect over continuous marker levels.
The utilization of continuous biomarker data without categorization for investigating etiological
heterogeneity can advance our understanding of biological and pathogenic mechanisms.

Keywords: bioinformatics; environment; epigenomics; immune response; immunology; interdisciplinary
research; microbiology; molecular epidemiology; targeted intervention; time-to-event data
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1. Introduction

In clinical medicine, patients who share common symptoms and disease characteristics
are grouped into a certain disease entity. However, molecular pathological diagnosis is a
part of routine clinical practice, especially in oncology. Pathogenic mechanisms commonly
vary between patients with the same disease entity. Therefore, when appropriate, patients
with the disease are subclassified into groups (disease subtypes) based on their molecular
pathological diagnosis to improve clinical management and treatment outcomes. Different
disease subtypes are regarded as developing through distinct pathological mechanisms, on
which risk factors may exert differential influence [1–4]. Therefore, the disease-subtyping
framework and associated etiological heterogeneity have been widely applied in analyses
of both neoplastic and non-neoplastic diseases [5–7]. For example, subtype heterogeneity
has been identified when investigating the specific effects of a polygenic risk score and
breastfeeding for breast cancer subtypes: basal-like and ERBB2 (HGNC ID: 3430; so-called
HER2)-overexpressing breast cancer [8].

Despite continuous measurement readouts of many biomarkers used for disease
subtyping, such continuous biomarker measures are commonly reduced to a small number
of categorical levels (sometimes only two or three) to define disease subtypes, which
can simplify the statistical analysis and generate readily interpretable data. Therefore,
most existing statistical methods for studying etiological heterogeneity have focused on
categorical disease subtype settings [9]. However, this categorization leads to reduction
of information in the biomarker data, and is prone to bias due to arbitrary selection of
cutoff values. For example, a weakness of categorical subtyping is evident when the
exposure effect is limited to patients corresponding to extreme ends of the biomarker
measures. In such situations, the patients associated with the exposure effect will likely
be submerged among other patients not associated with the exposure effect. As a result,
analysis using limited disease subtype categories may fail to discover existing exposure–
disease associations. To maximize the value of disease subtyping biomarker information,
this article presents an analytical framework for assessing the heterogeneity of exposure–
disease subtype associations using continuous biomarker measures instead of categorical
subtyping [10].

For illustration, we applied the proposed method to assess how the association of
alcohol intake with colorectal cancer incidence changes across DNA methylation level at
long interspersed nucleotide element-1 (LINE-1), measured in tumors. We used data from
two prospective cohort studies, the Nurses’ Health Study (NHS) and Health Professionals
Follow-up Study (HPFS).

2. Materials and Methods

To evaluate the association of an exposure with an incident disease in a cohort study,
researchers typically use the Cox model [11], in which the hazard function is modeled as

λ(t | Xi(t), Wi(t)) = λ0(t)exp
{

βXi(t) + γT Wi(t)
}

(1)

where λ0(t) is the baseline hazard at time t, Xi is the possibly time-varying exposure for
the i-th individual, the coefficient β of X, represents the exposure–outcome association,
Wi is a p × 1 vector of potential confounders, which may also be time-varying, for the
i-th individual, and γ is a p× 1 vector of regression coefficients for W. Without further
specification, we assumed that the exposure is a scalar throughout this paper for notational
simplicity.

Now, it is of interest to evaluate how the association of an exposure with the disease
risk changes over the level of a disease marker. Extending Equation (1), we model the cause-
specific hazards [12] of the disease subtypes by incorporating a function of the marker’s
value as the coefficient of the exposure. Our model is

λz(t | Xi(t), Wi(t)) = λz0(t)exp
{

g(φ, Z)Xi(t) + γT Wi(t)
}

(2)



Cancers 2022, 14, 1811 3 of 10

where Z is the continuous disease marker (cause), λz0(t) and λz(t) are the baseline haz-
ard and hazard functions for disease with marker level Z, and g(φ, Z) is a given real-
valued function of Z with unknown parameters φ. The association between the expo-
sure and the disease with marker level Z can be then represented by the hazard ratio
HR(Z) = exp{g(φ, Z)}. If the exposure is a q-dimensional column vector, its coefficient will
also be vector-valued with the form

(
g1

(
φ(1), Z

)
, g2

(
φ(2), Z

)
, . . . , gq

(
φ(q), Z

))
, where gk

is the function of the disease marker corresponding to the coefficient of the k-th element of
the exposure, and φ(q) is a scalar or vector parameter of interest, k = 1, . . . , q.

The regression coefficients in the standard Cox model (1) are typically estimated by
maximizing the partial likelihood [13]. Under the cause-specific proportional hazards
model (2), we can construct the corresponding partial likelihood [14] as follows:

PL = ∏
i∈C

exp
{

g(φ, Zi)Xi(Ti) + γT Wi(Ti)
}

∑l I(Tl ≥ Ti)exp{g(φ, Zi)Xl(Ti) + γT Wl(Ti)}
(3)

where C is the set of all cases and T is the time to event, which in a cohort study is typically
age at disease diagnosis. Statistical software for the standard Cox model does not work
here, as the marker level Z in g(φ, Z) is defined only among cases. In this partial likelihood,
the subjects in a risk set are assigned the marker value of the case in that risk set so that the
numerator and denominator in PL correspond to the hazard defined at the same marker
level. The parameters φ and γ in Model (2) can be estimated through maximizing this
partial likelihood. Similar to the standard Cox model setting, the variances of the parameter
estimates can be estimated based on the inverse of the Hessian matrix.

We suggest using the restricted cubic spline approach [15] to characterize g(φ, Z). The
restricted cubic spline approach has advantages of parsimony while allowing for great
flexibility in characterizing nonlinear curves. A restricted cubic spline function g(φ, Z) with
K (≥ 3) knots includes one intercept, one linear, and K− 2 nonlinear terms of Z; that is,

g(φ, Z) = φ0 + φ1Z +
K−2

∑
j=1

φj+1Sj(Z), (4)

where Sj(Z) is the j-th basis function of the restricted cubic spline, evaluated at Z. See
Supplementary Material Section S1 for details. If K = 2, g(φ, Z) only includes the intercept
and the linear term. The unknown parameter φ contains the intercept and all the coefficients
of the linear and nonlinear terms. The number of knots can be determined using the Akaike
information criterion (AIC) or the Bayesian information criterion (BIC) [16], and typically,
the knots can be evenly spaced over the distribution of Z.

We used the likelihood ratio test to test for zero elements of φ. All elements of φ being
zero implies no exposure–outcome association. Non-zero intercept and zero coefficients of
all the linear and nonlinear terms imply an exposure–disease association that is independent
of the disease marker. A non-zero coefficient of the linear term along with zero coefficients
of all the nonlinear terms implies that the exposure–outcome association increases or
decreases linearly over the marker level.

3. Results
3.1. Simulation Study

We conducted a simulation study to assess the finite sample performance of the method
when K = 3. See Supplementary Material Section S2 for details. This simulation study
shows that the point estimate φ̂ of φ performs satisfactorily (Table S1 in the Supplementary
Material Section S2). When the number of cases was 900, the percent bias of φ̂ was 4 to
8% in five out of six configurations and 11% in the last configuration. It was 0.3 to 4% in
five out of six configurations and 9.7% in the last configuration when the number of cases
was increased to 4500. The empirical standard error of φ̂ decreased by about 60% when the
number of cases were increased from 900 to 4500.
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3.2. Results of Illustrative Example

We used colorectal cancer (adenocarcinoma) and its subtyping biomarker, LINE-
1 methylation (with continuous unitless values) [17], as a disease biomarker example
to illustrate the method. We utilized data from ongoing large prospective cohort stud-
ies, namely the Nurses’ Health Study (NHS) [18,19] and Health Professionals Follow-up
Study (HPFS) [20,21]. The main exposure was cumulative average alcohol intake (0, ≤15,
>15 g/day). Detailed descriptions of the study population, assessment of main exposure
and covariates, ascertainment of colorectal cancer cases, and quantification of LINE-1 levels
are described in Supplementary Material Section S3. The age-standardized characteristics
of participants in the two cohorts are summarized in Table S2 (Supplementary Material).

Shown in Figure 1 and Figure S1 (Supplementary Material) are the curves of the
hazard ratios (HRs) representing the association between alcohol intake and incidence of
colorectal cancer subtype as a function of continuous LINE-1 methylation level. These
curves were constructed by plotting exp

{
g
(
φ̂, Z

)}
over the LINE-1 marker values (Z)

within the plausible range (25 to 85). The number of knots considered were K = 2, 3, 4.
The knots were evenly spaced over the LINE-1 distribution. Figure 1 and Figure S1 were
drawn based on the results using the combined cohort, HPFS alone, and NHS alone. We
considered two models: the main model, with stratification factors only, and the full model,
which adjusted for additional covariates as described in the Methods section. Since the
inclusion of additional covariates in the full model had little impact on the set of estimated
coefficients φ, we simply utilized the estimation results from the main model hereafter.
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Figure 1. Heterogeneous Effect of Cumulative Categorical Alcohol Intake (>15 g/day vs. 0 g/day)
on continuous subtypes of colorectal cancer; the 3 × 3 plot panel illustrates the combination of
three choices of the knot number in g(φ, Z) and three cohort settings. Abbreviations: HPFS,
Health Professionals Follow-up Study; LINE-1, long interspersed nucleotide element-1; NHS, Nurses’
Health Study.

Table 1 and Table S3 (Supplementary Material) present p-values from testing the
following null hypotheses for the same choices of knot numbers and cohort settings as in
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Figure 1 and Figure S1: (i) the intercept and all the coefficients in g(φ, Z) are zero (the overall
test); (ii) all the coefficients in g(φ, Z) except the intercept are zero (test for heterogeneity);
(iii) all the coefficients of the nonlinear terms in g(φ, Z) are zero (test for nonlinearity).
For the NHS cohort and the combined cohort, the linear model (K = 2) had the smallest
BIC and AIC, and for the HPFS cohort, the linear model had the smallest BIC and the
model with K = 3 had the smallest AIC. For the comparison between >15 g/day intake
and 0 g/day based on the models with K = 2, 3, as shown in Table 1, there were significant
associations between alcohol and cancer risk in the HPFS cohort (overall test p < 0.001) and
the combined cohort (overall test p < 0.001), but there was insufficient statistical evidence to
establish such an association in the NHS cohort. There was insufficient statistical evidence
to establish a difference in the comparison of ≤15 g/day intake versus 0 g/day in the NHS,
HPFS, or the combined cohort (Table S3). Furthermore, in the comparison of >15 g/day
versus 0 g/day in the combined cohort, the heterogeneity tests were statistically significant
(p < 0.001) under K = 2, 3, and the alcohol effect changed with the LINE-1 level linearly
(nonlinear test p = 0.54 for K = 3).

Table 1. Model testing for the association of categorical alcohol intake (>15 g/day vs. 0 g/day) with
colorectal cancer incidence, based on the main model for three functional forms and three cohorts.

Knots Model Assessment NHS HPFS Combined

K = 2

p-value
Overall 0.19 <0.001 <0.001
Heterogeneity - <0.001 <0.001

BIC 11,634 7784 20,436
AIC 11,586 7739 20,386

K = 3

p-value
Overall 0.12 <0.001 <0.001
Heterogeneity - <0.001 <0.001
Nonlinearity - <0.001 0.54

BIC 11,660 7804 20,464
AIC 11,588 7736 20,389

K = 4

p-value
Overall 0.17 <0.001 0.002
Heterogeneity - <0.001 <0.001
Nonlinearity - <0.001 0.56

BIC 11,686 7830 20,492
AIC 11,589 7741 20,393

All p-values reported above are two sided. Hypothesis testing: H0: the intercept and all the coefficients in g(φ, Z)
are zero (the overall test); H0: all the coefficients in g(φ, Z) except the intercept are zero (test for heterogeneity); H0:
all the coefficients of the nonlinear terms in g(φ, Z) are zero (test for nonlinearity). Abbreviations: AIC, Akaike’s
information criterion; BIC, Bayesian information criterion; HPFS, Health Professionals Follow-up Study; LINE-1,
long interspersed nucleotide element-1; NHS, Nurses’ Health Study.

Table 2 and Table S4 (Supplementary Material) display the estimated HRs, with
95% pointwise confidence intervals, representing the alcohol–cancer association for some
plausible LINE-1 values (30 to 80 in steps of 10) for the choices of knot numbers and data
settings considered in Figure 1. As shown for the HPFS and combined cohorts in Figure 1
and Table 2, the alcohol–cancer association (for >15 g/day vs. 0 g/day) tended to decrease
with increasing LINE-1 methylation level, as seen from the two g(φ, Z) functions with
K = 2, 3 as selected by AIC and BIC.
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Table 2. Hazard ratio for categorical alcohol intake (>15 g/day vs. 0 g/day) modeled using three
functional forms for the LINE-1 marker value in three cohort settings, based on the main model.

Cohort
LINE-1

Methylation
Level

Hazard Ratio with 95% Confidence Interval

Linear Function
(K = 2)

Restricted Cubic Spline
(K = 3 Knots)

Restricted Cubic Spline
(K = 4 Knots)

Combined

30 1.64 (0.95, 2.82) 1.79 (0.76, 4.21) 1.59 (0.55, 4.61)
40 1.53 (1.03, 2.28) 1.62 (0.91, 2.87) 1.51 (0.76, 3.01)
50 1.43 (1.10, 1.86) 1.48 (1.03, 2.13) 1.37 (0.78, 2.40)
60 1.34 (1.14, 1.58) 1.38 (1.00, 1.92) 1.27 (0.72, 2.22)
70 1.25 (1.05, 1.50) 1.32 (0.77, 2.26) 1.40 (0.74, 2.64)
80 1.17 (0.87, 1.57) 1.28 (0.53, 3.05) 1.85 (0.18, 18.5)

HPFS

30 2.47 (1.12, 5.48) 1.18 (0.32, 4.32) 0.91 (0.17, 4.87)
40 2.10 (1.18, 3.75) 1.35 (0.57, 3.16) 1.16 (0.40, 3.31)
50 1.78 (1.22, 2.61) 1.38 (0.82, 2.32) 1.18 (0.54, 2.59)
60 1.52 (1.19, 1.93) 1.13 (0.72, 1.77) 1.02 (0.52, 2.00)
70 1.29 (0.98, 1.70) 0.74 (0.35, 1.56) 1.03 (0.33, 3.22)
80 1.09 (0.7, 1.710) 0.43 (0.13, 1.50) 1.29 (0.03, 63.8)

NHS

30 0.94 (0.41, 2.15) 1.95 (0.56, 6.82) 2.58 (0.61, 10.9)
40 1.01 (0.54, 1.86) 1.60 (0.69, 3.73) 1.90 (0.74, 4.91)
50 1.08 (0.72, 1.63) 1.45 (0.84, 2.50) 1.85 (0.82, 4.17)
60 1.16 (0.90, 1.49) 1.59 (0.98, 2.58) 2.16 (0.86, 5.43)
70 1.25 (0.97, 1.61) 2.14 (1.00, 4.57) 1.87 (0.91, 3.86)
80 1.34 (0.89, 2.03) 3.17 (0.94, 10.7) 1.14 (0.08, 15.6)

Abbreviations: HPFS, Health Professionals Follow-up Study; LINE-1, long interspersed nucleotide element-1;
NHS, Nurses’ Health Study.

4. Discussion

In this paper, we have presented a Cox proportional hazards regression model method
to fully utilize a continuous biomarker measure for disease subtyping. This statistical
method can examine subtype heterogeneity of diseases in the exposure–disease associa-
tion with more comprehensive and versatile utilization of continuous marker measure-
ments. The ability of this method to potentially reveal more complicated patterns in
subtype heterogeneity can help us gain deeper insights into etiologies in molecular epi-
demiological research and provide further evidence in the development of personalized
precision medicine.

Statistical methods for investigating disease subtype heterogeneity for categorical and
ordinal subtypes have been studied previously under several common study designs [9].
However, a concern may be raised about defining discrete subtypes based on categorization
of biomarker values when there is little or no evidence supporting biomarker cut-point
values that are often arbitrarily determined. In addition, the categorization of a continuous
measure of a biomarker can lead to loss of information from the biological and statistical
perspectives. The proposed method is less prone to these problems and has the potential
to reveal more detailed and granular subtype heterogeneity than established approaches
using categorical and ordinal subtypes.

Many biological phenomena and related biomarkers (including expressions of genes
and proteins) are continuous in nature [6]. LINE-1 methylation level (i.e., the percentage of
the amount of C nucleotides divided by the sum of the amounts of C and T nucleotides at
CpG sites), which we used in the illustrative example, is a surrogate marker for genome-
wide DNA methylation and widely distributed in colorectal cancer tissue from 20 to
90% [22,23]. Currently, it remains unclear how to set the best cut-points for defining sub-
types based on quantitative LINE-1 methylation levels. Accordingly, the proposed method
can be applied to this biomarker without using arbitrarily cut-points. Another example for
continuous tissue biomarkers is immune cell infiltrates in tumor tissue. Ample evidence
supports the biological importance of the immune system in cancer [24–27]. Tumors exhibit
considerably heterogeneous phenotypes according to types and quantities of immune cell
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infiltrates in tumor tissue [28,29], and higher immune cell infiltrates in cancer have often
been associated with better cancer survival [26,30–32]. Related to immune cells, microbial
species are often quantitatively measured in biospecimens including tumor and normal
tissue in population studies [33,34]. Readouts of quantitative microbial assays are continu-
ous in nature without prior knowledge on any biological cut-points (or threshold effect).
Categorizations of such variables are often used [35–38]. However, simple categorizations
may lose biological information. It is evident that standardized definitions of tumor sub-
types based on immune cell infiltrates or tissue microbiota have not been developed. There
is a clear need to analyze tumor biomarker data in a way that exploits the underlying
continuous nature of the biomarker.

The real-world application of this method in the two large prospective cohort studies
has demonstrated its capability to depict the trend of the exposure effect across continuous
molecular marker levels in contrast to use of solely categorical subtypes [10]. Further, this
method allows for the flexible modeling of the heterogeneous effect of exposure on the
disease of interest across biomarker levels, using models ranging from linear functions, to
functions of any hypothesized form, to a case-by-case understanding of the disease.

A user-friendly R program that implements this method is publicly available (https:
//www.hsph.harvard.edu/molin-wang/software/, accessed on 31 March 2022). This R
function fits a Cox regression model for either incidence analysis or post-diagnosis survival
analysis, where the model can include one or more exposure variables, a set of confounders
(optional), and one or more stratification variables (optional). Left truncation and time-
varying covariates, which are common in cohort data analyses, can be handled by putting
the data in counting process form [39] before applying our R function. In the counting
process data structure, a new data record is created for each questionnaire cycle at which
a participant was at risk, with covariates set to their values at the time the questionnaire
was returned. Furthermore, in addition to AIC and BIC, the cross validation approach [40]
could also be used to choose the number of knots in the restricted cubic spline approach.
The proposed method can be easily applied to studies of various diseases and risk factors
and is accessible to researchers with limited experience with time-to-event data analysis.

In this article, we follow the nomenclature guideline for gene products using the
Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC) standards,
recommended by the expert panel [41].

5. Conclusions

To summarize, we have presented a Cox proportional hazards regression model for
analyzing heterogeneous exposure–disease associations across disease subtypes defined
by continuous biomarker measures. This method is helpful in decreasing bias caused
by arbitrary subtype categorization and in increasing statistical power, as well as flexi-
bility of assumptions about the pattern of pathologic heterogeneity. The utilization of
continuous marker data without categorization for investigating subtype heterogeneity
will advance our understanding of etiological heterogeneity and possibly contribute to
precision medicine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14071811/s1, Table S1: Simulation Results for K = 3; 10% censoring rate; 1000 simulation
replicates, Table S2: Age-Standardized Characteristics for Study Participants in the NHS (1980–2012)
and the HPFS (1986–2012), Table S3: Model Testing for the Association of Alcohol Intake (≤15 g/day
Versus 0 g/day) with Colorectal Cancer Incidence, Based on Main Model in Three Functions and Three
Settings, Table S4: Hazard Ratio for Alcohol Intake (≤15 g/day Versus 0 g/day) Modeled as Three
Functions of LINE-1 Marker Value in Three Cohort Settings, Based on the Main Model. Figure S1:
Heterogeneous Effect of Cumulative Categorical Alcohol Intake (≤15 g/day Versus <0 g/day) on
Continuous Subtypes of Colorectal Cancer; the 3 × 3 plot panel illustrates the combination of three
choices of the knot number in g(φ,Z) and three cohort settings.

https://www.hsph.harvard.edu/molin-wang/software/
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