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Abstract

Neonicotinoids are widely used class of insecticides. Most are seed treatments and during

planting active ingredient may be abraded and lost in fugitive dust. Much of this active ingre-

dient contaminates surface waters, exposing aquatic organism to potential ill effects. This

study examines concentrations of neonicotinoids appearing in tile drains and open ditches

around commercial maize fields around planting time where neonicotinoid seed treatments

had been used. This sample set represents surface water leaving the point of origin, for

which data are sparse. Clothianidin was found more often than thiamethoxam and at higher

concentrations; at a median concentration of 0.35 ng/mL in tile drain water and almost twice

that (0.68 ng/mL) in ditches into which the tiles are draining after applications of 19 g/ha on

seed. This concentration reveals a 40 to 50 fold dilution for neonicotinoid residues between

the points where they leave the field in which they were applied and when they are found in

nearby streams in a similar ecosystem. Our data support that for a no-observed-effect con-

centration of 0.3 ng/mL for thiamethoxam there would be between a 1.6 and 100-fold margin

of safety to mayflies in most streams if fugitive dust on pneumatic planters were properly

mitigated.

Introduction

Neonicotinoids globally are used as insecticidal seed treatments [1–3]. Clothianidin and thia-

methoxam are the neonicotinoids most used today in southwestern Ontario and these are

used as seed treatments commonly on maize, soybean, and canola [4]. Only a small fraction of

the neonicotinoid active ingredient is absorbed by the target crop when applied as a seed treat-

ment [5, 6], with the remainder entering the soil or degrading [7].

Neonicotinoid residues in soils decline rapidly after application by processes of plant

absorption, degradation, sorption to soil particles and leaching [3, 8]. Some argue that their

solubility in water makes them strong candidates for leaching resulting in surface water con-

tamination [9–11]. Others argue that despite their solubility, other chemical properties such as

time dependent sorption make them relatively immobile once in soil [12].
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The coincidence between honey bee mortality, the widespread adoption of neonicotinoid

insecticides as seed coatings, and the potential unintended effects on other non-target organ-

isms has attracted significant attention [13–15]. More recently, neonicotinoid residues have

been found in surface water surrounding agricultural fields [16–22]. Some suggest neonicoti-

noid residues in surface water may affect aquatic invertebrates and ecosystem health [17, 23–

26]. Of these invertebrates, mayflies (Ephemeroptera)[27, 28] and midges (Diptera: Chirono-

midae) [29] are among the most sensitive species and could be used as sensitivity benchmarks

to neonicotinoid-contaminated surface waters. To understand exposure of these sensitive spe-

cies, it is important to determine the pathways by which neonicotinoid residues reach the sur-

face waters in question.

As already noted, many believe that the mobility and leaching potential for neonicotinoid

insecticides in soil solution is the major cause of contamination of surface waters. Agricultural

chemical leaching varies greatly by soil texture, organic matter content, precipitation, formula-

tion, and insecticide application method [30]. Imidacloprid was observed to leach down to a

60-cm depth under field conditions of low organic matter, sandy soil texture, alkaline pH, and

low cation exchange capacity [31]. Commercial formulations of imidacloprid tend to have a

higher leaching potential than analytical grade ingredient [32] which may be due to the pres-

ence of adjuvants. Clothianidin is mobile to highly mobile in the laboratory, but only a minor

amount of leaching was observed in field studies [33]. In two field studies in Germany, only

the degradants of clothianidin were detected in small quantities in the leachate, and parent

material was not detected [33]. When thiamethoxam was applied to 30-cm columns of four

soil textures (loamy sand, sand, loam, silt loam) with water equivalent to 200 mm of precipita-

tion, the recovery rate of thiamethoxam in the leachate for these soil textures were 1.6, 23,

0.6% and below the level of detection, respectively [34]. However, under simulated heavy rain-

fall conditions (equivalent to 65 cm rainfall), 66–79% of the applied thiamethoxam was recov-

ered from leachate in a 25-cm sandy loam soil column [35]. More recently in a laboratory soil

column study, thiamethoxam was detected in leachate after a major rainfall event was simu-

lated at the end of the study, while none was detected in regular smaller rainfall events during

the course of the experiment [11]. The published data suggest that leaching is a likely phenom-

enon in field situations; however, it is unclear whether leaching is a major contributor to sur-

face water contamination.

Macropores, such as surface cracks, earthworm burrows or root channels, can also connect

tile drains to the surface, increasing the potential for tile water contamination through prefer-

ential flow [36, 37]. In southwestern Ontario, most agricultural fields have subsurface tile

drainage systems installed to increase the opportunity to produce sustained high yields with a

variety of crops. Subsurface drainage is typically placed at a depth of 60–120 cm with 20–50 m

spacing [38].The subsurface tile drainage system may increase the development of soil macro-

pores systems which increase the possibility of applied nutrients and pesticides to reach tile

drains by preferential flow [38].

If leaching is the main source of contamination of flowing surface water from neonicoti-

noid seed-treatment application, it would follow that in general, neonicotinoid concentrations

in drainage tile effluent would be higher than in ditches into which they drain. In the first

report of neonicotinoid concentrations at field edges in moving water coming from tile drain-

age, Chrétien et al [21] showed that thiamethoxam concentrations were four times higher in

surface run-off water than in tile effluent, suggesting that the majority of thiamethoxam was

coming from the soil surface. They did not measure thiamethoxam concentrations in the

ditches into which the tiles emptied.

In a study of commercial fields planted with neonicotinoid-treated corn seed in southwest-

ern Ontario in 2013, we measured neonicotinoid concentrations in water samples flowing out
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of tile drains and in water collected from ditches into which the tiles were draining. One third

of these data were reported earlier [19] as part of a larger data set focussed on standing water

(puddles) within and around seed-treated fields as sources of exposure to foraging honey bees.

We had collected a large number of additional running ditch and tile water samples at the

same time which have subsequently been analyzed; and these data have not been reported else-

where. We needed to publish these new data in response to the growing interest in sources of

exposure of aquatic invertebrates to neonicotinoid residues in surface water originating from

agricultural fields[9]. These new data compliment those recently reported by Struger et al. [39]

for streams in the same region as our study and during a similar time period, allowing a calcu-

lation of a dilution factor between source and stream not possible before.

We hypothesized that neonicotinoid concentrations in ditches would be higher than those

found in tile effluent, suggesting that sources of neonicotinoid contamination other than

leaching from treated seed contributed to surface water contamination. Pneumatic planters,

adopted widely in North America for their seed placement precision and efficiency, have been

identified as a source of dispersion of abraded seed coating during planting [40] that can con-

taminate air, vegetation, surface soil and water in surrounding fields, which we believe is an

important source of surface water contamination. Our objective was to investigate the quan-

tity, distribution and temporal dynamics of clothianidin and thiamethoxam in tile and ditch

water connected with drainage systems related to corn production fields. We propose that mit-

igating fugitive dust during planting of corn seed treated with pesticides, including neonicoti-

noids, would make a significant contribution to reducing contamination of surface water from

seed treatment pesticides.

Materials and methods

Study fields and water sample collection

As part of a larger study [19] on honey bee exposure to residues related to neonicotinoid-

treated corn seeds in corn fields, nine locations across Essex, Chatham-Kent, Lambton, Mid-

dlesex and Elgin Counties in southwestern Ontario were selected for study in 2013. Each loca-

tion contributed two commercial corn fields. Both fields at each location were planted using

the same seed source, the same planting equipment and the same operator. The only difference

between the two fields was that one had seed lubricated by adding talc, which is known to be

abrasive and leads to more fugitive contaminated dust [15], and the other had seed lubricated

using a Bayer Fluency Agent [41] (Bayer CropScience, Calgary, AB). Water collection methods

were reported in Schaafsma et al.[19]. Briefly, study fields were surveyed weekly from 29 April

to 28 June 2013 for potential water sampling sites. Water samples were categorized as puddles

of standing water within the perimeter of the field and “outside” of the study fields (results

reported in Schaafsma et al. [19], and ditches or field drainage outlets (the subject of this

paper). Fields and their surroundings were visited at weekly intervals and we sampled oppor-

tunistically each time ie, if there was water in a ditch we sampled it and if tiles were running

we did as well. Not all instances had ditches and tiles in the same field, nor were all tiles always

running at the time of sampling. Approximately 100 ml of water was collected for each sample

in a new 100-ml amber HDPE bottle. Samples were placed immediately into a dark picnic

cooler containing freezer packs for transport back to the laboratory, followed by immediate

dark and frozen storage (-20˚C) until analysis.

Chemical analysis

Sample extraction and neonicotinoid residues were determined using the liquid chromatogra-

phy coupled with tandem mass spectrometry (LC-MS/MS) method previously reported [19],

Neonicotonoid insecticide residues in drainage ditch and tile water
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except extracts were dried down with a Rapidvap Vertex Dry Evaporator (Labconco Corpora-

tion, Kansas City, MO) set at 40˚C with a gentle nitrogen stream. Levels of detection and quan-

tification (LOD and LOQ, respectively) were calculated as the mean peak height that could be

detected using the mean height of the noise signal plus 3 and 10 × the standard deviation,

respectively, around the analyte retention time and results are reported in S1 Table. Recovery

tests were performed in triplicate by spiking a homogenized sample of 5 ml of blank water

samples with the appropriate volume of analytical standards at 0.5 ng/ml. Spiked samples were

allowed to equilibrate for 3 d at 40˚C in darkness followed by our standard extraction proce-

dure and analysis [19]. Determinations were made by injecting a 50-μL aliquot of extract into

a 150-mm Gemini C18 reverse phase column (Phenomenex, Torrance, CA) with an Agilent

1100 Series high performance liquid chromatography (HPLC) (Agilent Technologies, Santa

Clara, CA, USA). Eluates from the HPLC were introduced to an Ionics EP 10+ modified API

365 triple quadruple mass spectrometer (AB SCIEX, Concord, ON) system equipped with an

electrospray ionization source (ESI). The source gas temperature was set to 550˚C, nitrogen

curtain gas 80 psi, nebulizer gas 8, collision gas 2, and ionization voltage 5000 V. Each com-

pound was analysed in positive ion polarity mode using a multiple reaction monitoring proce-

dure. MS/MS was operated in multiple-reaction-monitoring (MRM) mode in positive

polarity. All analytes were monitored for the precursor ion and one qualifier and one quanti-

fier transition. The transition with the greater peak height and area was used for quantification.

S1 Table summarizes the optimized MS/MS parameters for each compound included in this

study. Clothianidin, thiamethoxam, imidacloprid, and acetamiprid were determined using

their respective deuterium-labeled internal standard to wit clothianidin-d3, thiamethoxan-d3,

imidacloprid-d4, acetamiprid-d3, respectively (Sigma-Aldrich, St. Louis, MO, USA; Pestanal

class, purity�99.5%). Because no commercially available internal standards were available for

thiacloprid, dinotefuran and nitenpyram, the external calibration procedure was used by pre-

paring matrix-matched calibration curves at 9 concentrations from 0.06 to 4.00 ng/mL and

injected directly in the LC-ESI (+)-MS/MS system.

Statistical methods

Simple descriptive statistics such as raw means, medians, maximums, standard error, and per-

centage of samples with compound detected were calculated for all compounds tested in

Microsoft Excel. Generalized linear mixed model analysis was conducted for the fixed effects

of water source, week of sampling, and, seed lubricant, and their interactions on the concentra-

tion of clothianidin in water using PROC GLIMMIX in SAS 9.4 (SAS Institute Inc., Cary, NC)

[42]. Field location was considered a random effect. s. PROC UNIVARIATE and the Shapiro–

Wilk statistic were used to test residuals for normal distribution, and studentized residuals

were calculated to test for outliers using Lund’s test [43]. As a consequence, data were normal-

ized using the lognormal distribution and identity link function. Only one outlier was removed

from the sampling data. Least squares means were estimated using the inverse link option and

pairwise comparisons were made using Tukey–Kramer tests to limit experiment-wise error

rates (α = 0.05) [43].

Results and discussion

Recovery values ranged from 43.1 ± 3.0% for thiacloprid to 96.3 ± 7.2% for acetamiprid, with

an average of 77.7 ± 4% (S1 Table). All values below LOD, before being corrected for recovery

rate, were considered negative detections.

Clothianidin was the most common neonicotinoid detected in water leaving the study fields

(Table 1). It was found in 88% of tile drain water samples and 95% of ditch samples (Table 1).

Neonicotonoid insecticide residues in drainage ditch and tile water
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Clothianidin was used as a seed treatment in more of the study fields than thiamethoxam. Fur-

thermore, thiamethoxam breaks down into clothianidin [44], so it was not surprising that thia-

methoxam was found less frequently. Imidacloprid was the third most commonly detected

neonicotinoid insecticide, even though it occurred at concentrations near the LOD. The aver-

age concentration of several other neonicotinoid insecticides including imidacloprid, thiaclo-

prid, acetamiprid, dinotefuran, and nitenpyram were at or below 0.02 ng mL-1 (Fig 1), which

were considered as relatively minor and not subjected to further analysis in the present study.

Imidacloprid was not used on any of the subject fields but may have been used in the region

surrounding the study fields as a foliar spray for several crops, for flea control or for home and

garden use [45]. Thiacloprid is registered for use on pome fruits as a foliar spray [45] and there

were apple orchards near two of the study fields. Acetamiprid is used as a foliar spray on fruit

and vegetable crops [45] and three sites were in close proximity to fruit and field vegetable pro-

duction where acetamiprid may have been used. Dinotefuran is not registered for use in Can-

ada [45], so it’s detection in 2 and 3% of tile drain and ditch samples was unexpected.

Nitenpyram was not detected in this study, and is not an agricultural pesticide [45] but is

widely used as a veterinary medicine for flea control in dogs and cats. That several neonicoti-

noid insecticides other than those applied to the study fields were detected in surface water

indicates that these compounds are quite mobile and can move from nearby fields. We postu-

late that this movement is most likely from drift after pesticide application, with residues land-

ing on soil surfaces reaching tile water mainly by preferential flow [46] of run-off or drift

residues landing in ditches.

Chretien et al [21] showed a median concentration of 0.44 ng/mL thiamethoxam in tile

water after an application rate of 116 g/ha on seed. Our results for clothianidin (Table 1) are

slightly higher with a median concentration of 0.35 ng/mL in tile drain water and almost twice

that (0.68 ng/mL) in ditches into which the tiles are draining with application rates of around

19 g/ha. Struger et al [39] reported on concentrations of neonicotinoids found in four water-

sheds (Bear Creek, Sydenham River, Nissouri Creek, Thames River) representing regions

where our study was conducted within approximately the same time period (2012 to 2014).

Across this region, the maximum concentration of clothianidin found in streams was 0.182

ng/mL and the mean concentration across these locations was 0.0225 ng/mL [39]. Comparing

these values with the concentration of clothianidin observed in ditch water draining our study

fields (maximum 7.2 ng/mL and mean 1.11 ng/mL) (Table 1), we calculated a dilution factor

Table 1. Concentration of neonicotinoid insecticides in water leaving tile drains and in drainage ditches on the edges of 18 commercial corn fields where neonicoti-

noid insecticides had been applied as a seed treatment, and the field had a history of neonicotinoid seed treatment use on either wheat or soybeans in previous

years. Water samples were collected in southwestern Ontario, Canada, 2013.

Neonicotinoid (ng/mL) Tile drains (n = 50) Ditches (n = 119)

(%)1 Mean SE2 Median Max3 (%)1 Mean SE2 Median Max3

clothianidin (88) 0.88 0.18 0.35 6.95 (95) 1.11 0.31 0.68 7.2

thiamethoxam (58) 0.24 0.07 0.04 2.63 (50) 0.23 0.05 0.00 3.82

imidacloprid (12) 0.01 0.00 0.00 0.21 (13) 0.03 0.02 0.00 2.94

thiacloprid (2) 0.00 0.00 0.00 0.04 (2) 0.00 0.00 0.00 0.08

acetamiprid (8) 0.03 0.03 0.01 1.53 (5) 0.00 0.00 0.00 0.03

dinotefuran (2) 0.00 0.00 0.00 0.04 (3) 0.00 0.00 0.00 0.03

nitenpyram (0) 0.00 0.00 0.00 0.02 (0) 0.00 0.00 0.00 0.03

1percentage of positive samples (>LOD)
2standard error of untransformed data
3maximun value

https://doi.org/10.1371/journal.pone.0214787.t001
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of approximately 40- and 50-fold for maximum and mean concentrations, respectfully. To our

knowledge, this is the first time a dilution factor between source surface (ditch) and stream

water has been reported for neonicotinoid insecticides applied as seed treatments in field

crops, and will be helpful to predict the impact of efforts to mitigate fugitive planter dust on

exposure to aquatic organisms in streams.

For clothianidin, we detected an interaction (p = 0.0462) between the source of water sam-

ple (ditch vs. tile drain) and the week of sampling (days after planting) (Table 2). For the first 5

weeks after planting, concentrations tended to be higher in ditches than in tile drains (Fig 1),

whereas in weeks 7 and 8, concentrations in tile drains began to rise and were similar to those

in ditches. Rainfall amounts in the study region were generally at or below normal in May

(Table 3) which corresponds to planting time and higher than normal in June and July, which

corresponds to 4 to 8 wk after planting. Higher concentrations of clothianidin were observed

in ditches rather than drains in the period between planting and 5 weeks after planting (Fig 1),

suggesting that contaminated fugitive dust and surface run-off contributed more to ditch

Fig 1. Mean concentrations of total (clothianidin plus thiamethoxam) neonicotinoid residues in ditch and drain water from maize (corn) fields that had been

planted with neonicotinoid-treated seeds, southwestern Ontario, 2013, Bars are SE mean. Means with asterisk are significantly (P = 0.05) different by Tukey-Kramer

test from the lowest (indicated with ^) mean value.

https://doi.org/10.1371/journal.pone.0214787.g001
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water contamination than tile effluent. These data suggest that in a year when the spring is dry

tile effluent may be more important later in the season with high levels of rainfall (Fig 1). In

soil column studies [11], thiamethoxam leaching was minimal for the first 30 d of the experi-

ment which included applications of 0.9 cm of water every 3 d in columns that started at field

capacity. It then took 9 cm of simulated precipitation at the end of the study for 75 ng/mL of

thiamethoxam to leach out of the 20-cm column of sandy soil.

We suggest there are three sources of surface soil contamination of agricultural fields by

neonicotinoid insecticides in order of importance: 1) fugitive dust residues settling after plant-

ing [47], 2) fugitive dust coming from other fields [48], and 3) residues from previous applica-

tions or seed reaching the soil surface through upward capillary flow [49]. Neonicotinoid

concentrations in ditches were generally higher than those in tile drains, especially early in the

sampling period (Fig 1), suggesting that soil surface residues reached the ditches primarily

through wind and/or water erosion, and less by leaching through drains. We [47, 50] showed

that talc and soil dust abraded up to 12.6% of the active ingredient from seed during pneumatic

planting of corn seeds which was released into the atmosphere by the exhaust. We believe that

the major source of ditch water contamination is direct contamination by fugitive dust as drift

during planting, re-distribution of surface residues during wind erosion, and preferential flow

of soil surface residues through surface run-off. It would follow that mitigating fugitive dust

during planting would have a significant impact on neonicotinoid residues reaching ditches

and streams. Using the Bayer Fluency Agent [41] to mitigate fugitive dust, appeared to have no

impact (Table 3) on the residues reaching ditch water. Effects may have been diluted by plant-

ing activities in neighbouring fields over which we had no control.

Planter modifications reduced fugitive clothianidin residues by 98% during planting [50].

Following our argument, a 90% reduction in dust through mitigation would lead to 90%

Table 3. Total monthly precipitation (mm) with 30-year normal in parentheses at Environment Canada automated weather stations located near study fields from

March to July 2013, southwestern, ON.

Precipitation Harrow Sarnia Ridgetown St. Thomas London

March 12.6 (70.0) 11.5 (57.5) 70.3 (59.9) 33.2 (65.7) 39.9 (71.5)

April 106.2 (83.0) 160.4 (71.5) 59.5 (79.7) 118.7 (83.4) 138.2 (83.4)

May 56.7 (89.3) 86.9 (79.7) 82.6 (79.7) 27.2 (87.3) 105.3 (89.8)

June 161.6 (86.1) 131.0 (83.1) 51.5 (77.9) 76.3 (92.4) 117.2 (91.7)

July 213.5 (89.2) 159.9 (78.5) 92.6 (85.4) 86.7 (83.0) 88.7 (82.7)

Coordinates

North 42˚02’00 42˚59’58 42˚27’00 42˚46’06 43˚02’00

West 82˚54’00 82˚18’32 81˚53’00 81˚12’18 81˚09’00

https://doi.org/10.1371/journal.pone.0214787.t003

Table 2. Generalized linear mixed model analysis of main and interactive fixed effects of water source (tile drain or drainage ditch), sampling week (weeks after

planting), and seed lubricant (talc or Bayer Fluency Agent) with field location as a random effect, on clothianidin concentration in water samples taken from the

edge of agricultural fields planted with neonicotinoid-treated corn seed (clothiandin or thiamethoxam) in southwestern, Ontario, Canada, 2013.

Fixed effect� Num DF Den DF F Value Pr>F

Water source 1 132 4.12 0.0444

Seed lubricant 1 132 2.4 0.1237

Water source× seed lubricant 1 132 3.51 0.0631

Sampling week 8 132 2.38 0.0197

Water source × sampling week 8 132 2.04 0.0462

�type III test of reduced model

https://doi.org/10.1371/journal.pone.0214787.t002
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reduction in ditch water contamination, diluting the maximum and mean concentration of

clothianidin in ditch water from 7.2 and 1.11 ng/mL to 0.72 and 0.11 ng/mL. Diluting this

again by 40-fold would result in concentrations in the order of 0.018 maximum and 0.003

mean ng/mL in stream water.

Mayflies are more sensitive to neonicotinoid insecticides than most other species [27, 28].

They were shown to have a chronic no-observed-effect-concentration (NOEC) of 0.3 ng/mL for

thiamethoxam [27]. Assuming the toxicities of clothianidin and thiamethoxam to mayflies are

broadly similar, these data support a 1.6 and 100-fold margin of safety to mayflies in most

streams if fugitive dust on pneumatic planters were properly mitigated. In North America, insuf-

ficient action has been taken to mitigate fugitive dust from pneumatic planters to reduce con-

tamination of surface water by neonicotinoid insecticides or any other pesticide applied to seeds.

Conclusions

There is approximately a 40- to 50-fold dilution of neonicotinoid insecticide residues in sur-

face waters found in streams compared with what is found in ditches draining the fields where

seed treatments have been applied. While this study does not prove it, the data do suggest that

most of the residues in ditch water appear to come from direct contamination by fugitive dust

during planting, or indirectly as the settled dust is redistributed by wind or water erosion. We

believe there is much less contamination of ditch water coming via leaching from planted,

treated seed. We have shown that most of the escaping contaminated dust, also the primary

source of contaminated water, can be eliminated by modifying pneumatic planters. We argue

that these modifications to planters must be investigated, and doing so will greatly reduce the

risk of exposure of aquatic non-targets to not only neonicotinoid insecticide seed treatments,

but any pesticide applied to seed. Unfortunately there is currently little to no evidence that the

industry or grain producers have adopted these modifications.
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