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A new dysprosium (III) coordination polymer [Dy(Hm-dobdc) (H2O)2]·H2O (Dy-

CP), was hydrothermal synthesized based on 4,6-dioxido-1,3-

benzenedicarboxylate (H4m-dobdc) ligand containing carboxyl and phenolic

hydroxyl groups. The Dy(III) center adopts an octa-coordinated [DyO8]

geometry, which can be described as a twisted square antiprism (D4d

symmetry). Neighboring Dy(III) ions are interconnected by deprotonated

Hm-dobdc3− ligand to form the two-dimensional infinite layers, which are

further linked to generate three-dimensional structure through abundant

hydrogen bonds mediated primarily by coordinated and lattice H2O

molecules. Magnetic studies demonstrates that Dy-CP shows the field-

induced slow relaxation of magnetization and the energy barrier Ueff/kB and

relaxation time τ0 are 35.3 K and 1.31 × 10–6 s, respectively. Following the

vehicular mechanism,Dy-CP displays proton conductivity with σ equal to 7.77 ×

10–8 S cm−1 at 353 K and 30%RH. Moreover, luminescence spectra reveal that

H4m-dobdc can sensitize characteristic luminescence of Dy(III) ion. Herein,

good magnetism, proton conduction, and luminescence are simultaneously

achieved, and thus, Dy-CP is a potential multifunctional coordination polymer

material.
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Introduction

Coordination polymers (CPs) have potential applications in gas storage/

separation, catalysis, magnetism, and proton conduction due to their customizable

compositions and variable structures (Yaghi et al., 2003; Kitagawa et al., 2004; Ferey,

2008; Zhu et al., 2018; Yuan et al., 2020; Cai et al., 2021; Chakraborty et al., 2021). In

particular, CPs can integrate these multiple properties into the same molecular

composite, which is an excellent platform for designing advanced multifunctional
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materials (Wang et al., 2017; Ge et al., 2019b; Ye et al., 2020;

Zhou et al., 2020; Fan et al., 2021). In the field of molecular

magnetism, Ln-CPs are of particular interest, enabling the

production of magnetic materials with diverse properties,

such as single-molecule magnets (SMMs) (Baldovi et al.,

2014; Liu et al., 2016; Zhong et al., 2022). As we know, the

magnetic anisotropy of metal ions plays a very important role

in the construction of SMMs (Woodruff et al., 2013; Zhu et al.,

2021). In this regard, lanthanide Dy(III) ion, may carry

significant anisotropy because of its intrinsically large and

unquenched orbital contribution to the magnetic moment

(Ding et al., 2018; Parmar et al., 2021; Li et al., 2022).

Goodwin and co-workers made a breakthrough in Dy(III)-

based SMMs, reporting compound that exhibits a high

effective energy barrier of 1,760 K (Goodwin et al., 2017).

Therefore, we consider Dy(III) coordination compounds to be

promising candidates for designing high-performance SMMs.

Moreover, the high coordination number and flexible

coordination geometry of Dy(III) ions can produce various

interesting frameworks. Up to now, multifarious Dy-CPs with

slow magnetic relaxation behaviors have been developed (Wu

et al., 2020; Song et al., 2021; Su et al., 2021). Nevertheless, the

inherent magnetisms of Dy(III) ions are very sensitive to

various factors such as coordination geometry, magnetic

interactions, etc., making the performance of Dy(III)-based

SMMs difficult to predict (Pinkowicz et al., 2015; Zhang et al.,

2015; Ge et al., 2020). More new topologies need to be

established to study the magneto-structural correlations in

depth.

Developing multifunctional magnetic CPs is currently a

very attractive research topic, where magnetism can be

integrated with other properties (such as proton conduction,

sensing, or luminescence) to achieve multi-task expression and

expand the application range of materials (Chen et al., 2017;

Bera et al., 2018; Minguez Espallargas and Coronado, 2018).

Among them, proton-conducting materials are potential

replacements for Nafion ionomers in the catalyst layer of

fuel cells, which can produce environmentally friendly

energy (Yamada et al., 2013; Ramaswamy et al., 2014; Meng

et al., 2017; Li et al., 2020). The easily tunable crystal structures

and modifiable pore environment of CPs are ideal crystal

models for designing proton conductors and gaining insight

into proton transfer mechanisms (Su et al., 2020). Studies have

shown that designing and developing complex hydrogen bond

networks is one of the efficient strategies to improve proton

conductivity in CPs, such as introducing functional Brønsted

acid groups (-COOH and -OH) (Biswas et al., 2017; Bera et al.,

2018).

Based on the above considerations, we envisioned that

combining Dy(III) ion with carboxyl- and hydroxyl-rich

organic ligand would be a sensible strategy to engineer

SMM behavior with proton conduction into functional CPs.

We chose the aromatic ligand 4,6-dioxido-1,3-

benzenedicarboxylate (H4m-dobdc), and to our knowledge,

Dy(III) complexes based on this ligand have been not been

reported (Kapelewski et al., 2018; Barnett et al., 2019).

Carboxyl and phenolic hydroxyl groups have high affinity

with Dy(III) ion and diverse coordination modes, and more

importantly, they can also act as efficient hydrogen bond

acceptors/donors, forming infinite hydrogen bond networks

to facilitate proton transport (Li et al., 2017; Wang et al., 2021;

Bhadra et al., 2022). Herein, a two-dimensional (2D) CP

[Dy(Hm-dobdc) (H2O)2]·H2O (Dy-CP), was hydrothermal

synthesized through the interaction of Dy(III) ion and

judiciously selected organic ligands, and its field-induced

slow relaxation behavior and proton conduction properties

were demonstrated.

Experimental sections

Synthesis of [Dy(Hm-dobdc) (H2O)2]·H2O
(Dy-CP)

The reactants H4m-dobdc (0.0297 g, 0.15 mmol),

Dy(NO3)3·6H2O (0.0918 g, 0.2 mmol), and 10 ml H2O were

placed in a 15 ml Teflon cup. The mixture was heated to

140°C for 3 days. After cooling, the light brown block crystals

of Dy-CP were obtained with a yield of 24% (based on

H4m-dobdc). Anal. Calcd (%): C, 23.34; H, 2.20%. Found: C,

23.18; H, 2.14%. IR (cm−1, KBr): 3,859.56(s), 3,468.01(w),

3,217.27(w), 2,657.91(w), 1,853.59(w), 1,811.16(w), 1,780.3(w),

1,720.5(s), 1,705.07(s), 1,643.35(s), 1,566.2(m), 1,519.91(w),

1,465.9(m), 1,400.32(s), 1,346.31(m), 1,301.95(m), 1,226.73(w),

1,195.87(s), 1,083.99(w), 956.69(w), 893.04(m), 844.82(m),

819.75(w), 783.1(w), 754.17(w), 723.31(m), 700.16(m),

677.01(w), 653.87(m), 619.15(m), 578.64(w), 526.57(w),

472.56(m), 430.13(w).

Result and disscussion

Description of crystal structure

The brown-orange block crystals of [Dy(Hm-dobdc)

(H2O)2]·H2O (Dy-CP) were obtained by the reaction of

H4m-dobdc and Dy(NO3)3·6H2O at 140°C. Single-crystal

analysis shows that Dy-CP crystallizes in the monoclinic

space group P21/n, and the crystallographic data are

summarized in Supplementary Table S1. Its asymmetric

unit involves one Dy(III) ion, one Hm-dobdc3− ligand, two

coordinated H2O molecules, and one uncoordinated H2O

molecule (Figure 1A). The Dy1 center adopts an octa-

coordinated [DyO8] geometry with four Ocarboxylate atoms

(O1, O2, O5, and O6) from three Hm-dobdc3− ligands, the

another Ocarboxylate atom (O1) and one Ophenoxide atom (O3)

Frontiers in Chemistry frontiersin.org02

Chen et al. 10.3389/fchem.2022.974914

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.974914


from one Hm-dobdc3− ligand, and two Owater atom (O7 and

O8) from two coordinated H2O (Figure 1B and

Supplementary Figure S1). Dy−O bond lengths are in the

range of 2.287 (3) Å to 2.495 (3) Å, similar to those reported

for Dy(III) compounds with oxygen donors (Supplementary

Table S2) (Song et al., 2021). Shape analysis revealed that the

exact geometry of Dy1 ion can be assigned to a twisted square

antiprism (D4d symmetry) with a SAPR-8 factor of 1.244

(Supplementary Table S3) (Ge et al., 2017). As shown in

Figure 1B, the Dy1 ion is unevenly distributed between two

square planes. The distance of Dy1 ion from the center of the

top plane (O1, O3, O6 and O8) is 1.225 Å, which is closer than

the distance (1.415 Å) to the center of the bottom plane (O1,

O2, O5 and O7). The dihedral angle between these two planes

is 5.157°, and the bending angle α defined as center-Dy1-

center is 171.45°.

One Hm-dobdc3− ligand is coordinated to four Dy1 ions

via one deprotonated phenolic hydroxyl group and two

deprotonated carboxyl groups. Of the two carboxyl groups,

one is ligated in a μ2-η
2:η1 chelating mode and the other in a

μ2-η
1:η1 mode (Figure 1D). After coordination, the Hm-

dobdc3− is not planar viewed from the side. The multiple

coordination sites and variable coordination configuration of

Hm-dobdc3− play a key role in constructing Dy-CP. The

adjacent Dy1 ions are linked together by one μ2-η
1:η1

carboxylate group and one μ2-O1 atom from Hm-dobdc3−

to generate the one-dimensional metal chain along

the crystallographic b-axis (Figures 1C–E). The nearest

Dy···Dy separation is 4.423 Å and Dy1-O1-Dy1 angle is

132.85°. Each chain is linked by the polytopic Hm-dobdc3−

ligand (Dy···Dy = 8.175 Å) generating the 2D infinite layer

(Figures 1E,F).

In the stacking motif, these 2D layers are stacked along the

crystallographic a-axis in an–AAA–fashion, generating small-

sized pores (Figure 2A). Furthermore, uncoordinated

phenolic hydroxyl group is oriented towards the interior of

the pore to create a targeted hydrophilic environment in

FIGURE 1
(A) The labeled asymmetric unit of Dy-CP (B) coordination sphere of Dy1 center (C) connection between adjacent metal centers (D) top view
and side view of coordinationmode of Hm-dobdc3− linker (E) 2D structure ofDy-CP in the bc plane (F) side view of the 2D layer. Uncoordinated H2O
molecules are removed for clarity.

FIGURE 2
(A) The stacking motif of Dy-CP along the crystallographic
a-axis. Yellow balls represent the O atoms of lattice H2O
molecules (B) 3D framework driven by the O−H···O hydrogen
bonds (yellow dashed lines) (C) an enlarged view of the
hydrogen bonds formed between lattice H2O molecule,
coordinated H2O molecule and Hm-dobdc3− ligands. Some
unrelated atoms are omitted for clarity.
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which the uncoordinated H2O molecules reside. Abundant

O−H···O hydrogen bonds are formed between the lattice H2O

molecule, coordinated H2O molecule and the Hm-dobdc3−

ligand (Supplementary Table S4) (Wang et al., 2009). One

coordinated H2O molecule (O8) and one lattice H2O molecule

(O9) and their symmetry-related counterparts yield a

centrosymmetric cyclic H2O tetramer (Supplementary

Figure S2). In the tetramer, the O8 water monomer is the

hydrogen bond donor and the O9 atom acts as the

acceptor. The average distance of O···O is only 2.727 Å.

This hydrogen-bonding network is beneficial for

stabilizing H2O molecules (Sasaki et al., 2018). The

tetramers link the adjacent layers to generate a 3D

framework (Figures 2B,C). The hydrophilicity and multiple

hydrogen bonds facilitate the exploration of proton

conduction (Meng et al., 2017).

FT-IR spectra, purity and structural
stability

The FTIR spectra of H4m-dobdc and Dy-CP are shown in

Supplementary Figure S3. Both samples contain a broad -OH

stretching vibration absorption band around 3,200 cm−1.

Compared with the free ligand, the shift of the

characteristic peaks for the symmetric and asymmetric

stretching of the carboxyl groups in Dy-CP suggests that

H4m-dobdc reacts with Dy(III) site. The enhanced

absorption band in the 3,300–3,700 cm−1 region in Dy-CP

indicates the presence of H2O molecules directly coordinating

to the Dy(III) sites and/or generating hydrogen bonds (Vitillo

and Ricchiardi, 2017). Thermogravimetric analysis (TGA)

curve reveals that the lattice H2O molecule can be stored in

the pore of Dy-CP at room temperature and higher, with

release occurring around 90–192°C (weight loss of 4.40%,

calculated 4.37%, Supplementary Figure S4). Moreover,

maintaining better stability in aqueous solution is a

prerequisite for CPs to be used as proton-conducting

materials (Yuan et al., 2018; Su et al., 2020; Yang et al.,

2021). Powder X-ray diffraction (PXRD) measurement

confirms the absence of any other phases in Dy-CP, with

the experimental diffraction peak positions consistent with

that simulated using crystal data (Figure 3). The synthesized

samples were immersed in water and boiling water for several

days. PXRD profiles of all water-soaked samples are in good

agreement with the pristine one, indicating the retained

crystallinity of Dy-CP in water (Figure 3). The good

stability in water will provide new opportunity for proton

conduction.

Magnetic properties

The direct-current (DC) magnetic susceptibilities

experiments were carried out on polycrystalline samples of

Dy-CP in an applied field of 1 kOe between 2 and 300 K

(Figure 4). The χMT value at 300 K is 14.56 cm3 K mol−1,

which is a little higher than the theoretical value for a free

Dy(III) ion (14.17 cm3 K mol−1; g = 4/3, J = 15/2) (Cui et al.,

2021). With a lowering of the temperature from 300 to 10 K, the

FIGURE 3
PXRD patterns of synthesized Dy-CP (5–50°) sample and
those were treated with water for several days.

FIGURE 4
Temperature-dependent χMT forDy-CP. The insets represent
M-H and M-H T−1 plots.
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χMT value decreases gradually, and then drops rapidly to the

minima of 7.84 cm3 K mol−1 at 2 K, which may be caused by the

antiferromagnetic interactions between adjacent Dy(III) ions

and/or the progressive depopulation of the excited Stark

sublevels of Dy(III) ions (Wu et al., 2020). Considering the

slightly longer Dy···Dy distance compared to the literature

reports, antiferromagnetic interaction maybe not dominate

in Dy-CP.

The field-dependent magnetization (M) ofDy-CP was also

collected in the field (H) range of 0–70 kOe at 2.0, 3.0 and

5.0 K, respectively (Figure 4 inset). The M value of Dy-CP

increases slowly as H increases, and a maximum of 5.84 Nβ is

reached at 70 kOe and 2.0 K. The nonsaturation of M and the

non-superimposed isothermal magnetization curves (M vs. H

T−1) suggest the presence of low-lying excited states and/or

significant magnetic anisotropy in Dy-CP (Ge et al., 2019a;

Cui et al., 2021).

Considering the magnetic anisotropy of Dy(III) ion, the

alternating-current (ac) magnetic susceptibilities of Dy-CP were

measured to explore the dynamic magnetic behavior. Under zero dc

field, the out-of-phase (χ″) signals keep silent at high frequency of

707 Hz (Supplementary Figure S5). When an additional 1.5 kOe dc

field is applied, the good-shaped peaks can be easily observed in the

χ″ vs. T graph (Figure 5). The peak position of the χ"(T) signal shifts

gradually to the high temperature component as the frequency

increases, showing the obvious slow magnetic relaxation expected

for SMMs (Chen et al., 2016). At 999 Hz, the maximum value of

χ"(T) appears around 5.5 K. The relaxation time τ was extracted

from the peaks of χ″ signals in Figure 5A. At the high temperature, τ

is linearly dependent on T−1, which can be fitted using Arrhenius law

to afford the thermal energy barrier (Ueff/kB) and the pre-

exponential factor (τ0) are 30.3 K and 6.82 × 10–7 s, respectively

(Figure 6), confirming a field-induced SMM performance

(10–6–10–11 s) (Bera et al., 2018; Bera et al., 2019). At the lower

temperature, the relationship between ln τ and T−1 deviates from the

linearity of Arrhenius law, suggesting the intervention of other

possible relaxation processes.

For further investigation of the magnetic dynamics, the frequency-

dependentac susceptibilitieswerealsocollected.χ"(F)peakscanbeobserved

clearly in the high frequency region, as shown in Supplementary Figure S6.

Slightly higher χ" values in the low frequency region, especially at lower

temperatures, suggest that other relaxation processes may exist (Gonzalez

et al., 2021). Its Cole−Cole diagrams exhibit semicircular shape in the high

frequency and irregular shape in the low frequency regions. Fitting the data

between 2.3 and 5.5K by the extended Debye functions (Gao et al., 2018)

gives α value ranging from0.05 to 0.16 for the relaxation in high frequency

region (Supplementary Figure S7). Unfortunately, the fit for the low

frequency region is unsuccessful due to limited frequency and/or

temperature. The fit of τ takes into account the multiple relaxation

processes reveals that the relaxation occurs via the temperature-

dependent Orbach (τ0
−1exp (-Ueff/kBT)), Raman (CTn), and direct

(AH2T) mechanisms (Figure 6 short dashed line). Parameters A =

FIGURE 5
Temperature-dependent χ′ (left) and χ″ (right) ac susceptibilities for Dy-CP measured in 1.5 kOe dc field.

FIGURE 6
ln τ vs. T−1 plot for Dy-CP and the Arrhenius law τ−1 = τ0

−1 exp
(-Ueff/kBT) (solid) and Equation τ−1 = AH2T + CTn + τ0

−1exp (-Ueff/
kBT) (dashed) fitting lines.
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1.93 × 10–5 s−2 Oe−2, n= 5.27,C = 0.50 s−1 K−5.27,Ueff/kB = 35.3 K, and τ0 =

1.31 × 10–6 s were obtained, which are consistent with the expectations of

Kramer ion Dy(III)-based SMMs (Ge et al., 2017).

Proton conduction

The presence of an intricate network of hydrogen bonds in Dy-

CP suggests the efficient proton transfer pathways. Subsequent ac

impedance of the compact pellet was measured under controlled

experimental condition, and the proton conductivities (σ) were

calculated by fitting the Nyquist plots. At 303 K and 30% relative

humidity (RH), the Nyquist plot displays a partial semicircle in the

high frequency component and a small oblique tail in the low

frequency component, which is the fingerprint of proton transport

behavior (Elahi et al., 2019). The related σ is 4.37 × 10–10 S cm−1

(Figure 7). Further studies found that the proton conductivity ofDy-

CP is temperature dependent. As temperature increases, the size of

the semicircle appears to decrease significantly, corresponding to the

enhanced conductivity. At 353 K, σ reaches 7.77 × 10–8 S cm−1. This

trend in conductivity can be explained by several plausible reasons, (i)

the pKw values of the coordinated and lattice H2O molecules

decrease, favoring the release of proton; (ii) the stable existence of

lattice H2O molecules at elevated temperature, facilitating the

preservation of strong hydrogen bonds and (iii) thermally assisted

proton hopping on hydrogen-bonding array containing H2O

molecules (Tang et al., 2014; Bera et al., 2018). According to the

linear fit of Arrhenius law σT= σ0 exp (Ea/kBT), the activation energy
Ea = 0.93 eV is estimated (Supplementary Figure S8). Value more

than 0.4 eV indicates that a vehicular mechanism operates for proton

conduction inDy-CP (Su et al., 2020). Additionally, the structural of

Dy-CP was integrated after the impedance measurement, as PXRD

pattern demonstrated (Supplementary Figure S9).

Luminescence property

The solid-state luminescence property of Dy-CP was measured

at room temperature. When excited at 329 nm,Dy-CP exhibits two

emission peaks at 481 and 475 nm, corresponding to hypersensitive
4F9/2–

6H15/2 and 4F9/2–
6H13/2 transitions of Dy(III) ion

(Supplementary Figure S10). Notably, the disappearance of the

broadband emission of the ligand implies an effective energy

transfer from the ligand to the metal, and H4m-dobdc ligand

brings an efficient antenna effect (Zhong et al., 2020).

Conclusion

In summary, a two-dimensional coordination polymer

[Dy(Hm-dobdc) (H2O)2]·H2O (Dy-CP) containing abundant

hydrogen bonds has been successfully prepared and

structurally characterized. Magnetic investigation demonstrates

that Dy-CP exhibits the field-induced SMM property with the

energy barrier equal to 35.3 K. The impedance analysis ofDy-CP

displays proton conductivity (7.77 × 10–8 S cm−1 at 353 K) at 30%

RH. Furthermore, luminescence spectra reveal that H4m-dobdc

can sensitize characteristic luminescence of Dy(III) ion at

481 and 475 nm. This phenomenon suggests that introducing

Dy(III) ion and functional carboxyl and phenolic hydroxyl

groups is beneficial for the development of multifunctional

coordination polymers possessing luminescence, proton

conduction, and magnetism.
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