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ABSTRACT Staphylococcus aureus is both a commensal and a pathogenic bacterium
for humans. Its ability to induce severe infections is based on a wide range of viru-
lence factors. S. aureus community-acquired pneumonia (SA-CAP) is rare and severe,
and the contribution of certain virulence factors in this disease has been recognized
over the past 2 decades. First, the factors involved in metabolism adaptation are cru-
cial for S. aureus survival in the lower respiratory tract, and toxins and enzymes are
required for it to cross the pulmonary epithelial barrier. S. aureus subsequently faces
host defense mechanisms, including the epithelial barrier, but most importantly the
immune system. Here, again, S. aureus uses myriad virulence factors to successfully
escape from the host’s defenses and takes advantage of them. The impact of S. aur-
eus virulence, combined with the collateral damage caused by an overwhelming
immune response, leads to severe tissue damage and adverse clinical outcomes. In
this review, we summarize step by step all of the S. aureus factors implicated in CAP
and described to date, and we provide an outlook for future research.
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S taphylococcus aureus is detected in 30% of the population, mostly as a nasal com-
mensal, but also in the throat, on the skin, and in the gastrointestinal tract (1). In

addition to these innocuous interactions with the human host, S. aureus has the poten-
tial to develop a wide range of diseases in humans, from mild infections of the skin
and soft tissues to severe and fatal infections, such as bacteremia and pneumonia (2).

S. aureus pneumonia can be divided into two categories, hospital-acquired pneumonia
(very often ventilator-associated pneumonia) pertaining to nosocomial infections (3) and
community-acquired pneumonia (CAP) (4). S. aureus is a major pathogen of hospital-
acquired pneumonia, whereas S. aureus CAP (SA-CAP) represents only 5% of CAP cases
admitted to intensive care units in the United States (5) and 1 to 5.6% in Europe (6, 7).
However, the prevalence of S. aureus in CAP has increased in recent decades, mainly due
to the emergence of new lineages of methicillin-resistant Staphylococcus aureus
(MRSA) that have become highly prevalent in the community, notably in the
United States (8–10). Moreover, despite being infrequent, SA-CAP is a severe dis-
ease; mortality ranges from 20 to 44.5%, and there are significant age-dependent
disparities (6, 9, 11–14). Deciphering the molecular mechanisms involved in host-
pathogen interactions is therefore central to better understand SA-CAP
physiopathology.

The human body, but more specifically the airway and the lungs, have broad
defense mechanisms against pathogen invasion (15–20), at the forefront of which is
the pulmonary epithelium (17, 19, 21–23), followed by professional immune cells (24,
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25). How S. aureus is able to challenge those mechanisms and successfully colonize tis-
sue and replicate is thus a central question. For nearly 3 decades, the role and mecha-
nisms of action of S. aureus toxins, adhesins, proteases, and regulatory proteins have
been extensively investigated and characterized in vitro (26–33). Nonetheless, the path-
ological impact of each of these virulence factors on pulmonary infections in humans
is not fully understood. Historically, clinical evidence of their involvement, or at least
association, in the occurrence and/or outcome of pneumonia has been assessed for a
very limited number of them, namely, the alpha-toxin (Hla) in 1999 (34), the superanti-
genic toxic shock syndrome toxin 1 (TSST-1) in 2000 (35), and Panton-Valentine
leucocidin (PVL) in 2002 (12). Since then, there has been growing evidence of the impli-
cation of these three toxins, as well as other virulence factors, at different steps of
pulmonary infection.

This review follows step by step the mechanisms and virulence factors deployed by
S. aureus during CAP, starting with the adaptation and invasion of the pulmonary tis-
sue, followed by immune escape and the acute inflammatory response induced.
Although pathogenesis is much more complex than this sequential description, this
scheme was chosen for convenience of the review. The virulence factors involved in S.
aureus CAP virulence with in vitro and/or in vivo evidence are summarized in Table 1.
All in vivo data reported in this review were from animal models unless otherwise
specified.

ADAPTATION AND INVASION

Very little is known about the mechanisms by which S. aureus induces lung infec-
tion in the absence of nasal carriage. However, it has been hypothesized that S. aureus
reaches the lower respiratory tract from nasal colonization by air uptake during breath-
ing by the host (1). Thus, nasal colonization by S. aureus and the associated increased
risk of developing further infection has been thoroughly documented in cotton rats
and mice (36, 37), as well as in clinical studies (38, 39), as reviewed by Sakr et al. (40)
and by Kluytmans et al. (41); furthermore, nasal decolonization contributes to a
decrease in deep S. aureus infections (42, 43). However, most studies were conducted
on postoperative infections, therefore limiting our knowledge of the impact of S. aur-
eus carriage on CAP occurrence. Nevertheless, the association between pneumonia
and nasal colonization has been reported in several clinical studies (38, 41) and in two
studies involving mouse models, in which previous nasal colonization increased the se-
verity or the risk of developing pneumonia (37, 44). During nasal colonization, S. aureus
upregulates several virulence factors (45), particularly adhesins such as clumping factor
B (ClfB) (46, 47), wall teichoic acid (WTA) (36), and iron surface determinant A (IsdA),
which is part of the iron acquisition pathway of S. aureus (29, 45). Recently, Yang et al.
demonstrated that a vaccine against clumping factor A (ClfA) and IsdB, another protein
from the iron acquisition pathway, reduces the severity of pneumonia in a mouse
model after nasal injection (48), emphasizing the association of colonization factor
expression with pneumonia. Overall, previous nasal colonization by S. aureus seems to
be the main route of access to the lung. However, the mechanisms involved in the
transition between the upper to the lower respiratory tract remain unclear.

Adaptation to the lung environment. S. aureus adapts to its new environment
when it reaches the lungs and therefore modifies the expression of various factors in
comparison with the nasal colonization state. Indeed, the lumen of the pulmonary tis-
sue is poor in nutriments and metal ions, particularly iron (49), and is coated with pul-
monary mucus (17, 50) that is composed of mucin (51) and surfactant proteins (18, 52).
The low availability in nutriments reduces the overall energy metabolism of S. aureus
with, notably, an upregulation of glycolysis and a downregulation of gluconeogenesis
(53). Regarding iron uptake, S. aureus uses two main mechanisms, siderophores and
heme acquisition by the Isd system or the heme transport system (Hts) (29, 54). The
regulation of these mechanisms occurs predominantly through the ferric uptake regu-
lator (Fur) (29), which is a central regulator for virulence adaptation and activation

Minireview

May/June 2021 Volume 6 Issue 3 e00059-21 msphere.asm.org 2

https://msphere.asm.org


(55, 56). During lung infection, in the presence of low concentrations of iron, Fur pro-
motes the Isd system (55, 57), as well as certain virulence factors, such as Hla and HlgC
of gamma-hemolysin (57), and biofilm production through the upregulation of the ica
operon (55, 58).

Aggregation and biofilm formation are pertinent mechanisms of bacterial adapta-
tion to the lung environment, and S. aureus aggregates within a very short period of
time (1 h after nasal inoculation), when it first interacts with the pulmonary epithelium
(59). Among the S. aureus factors contributing to aggregation, PhnD, a phosphonate
ABC transporter substrate binding protein, described in S. epidermidis for its contribu-
tion to biofilm (60), stabilizes the aggregate. Its depletion makes S. aureus more vulner-
able to antibiotics and partially reduced lethality in a pneumonia mouse model (59). In
addition to PhnD, in the sequence type 239 (ST239) MRSA lineage from Asia, a novel
gene called sasX was identified as promoting nasal colonization and large bacterial
aggregates (37). Further investigation on sasX has shown that its neutralization by spe-
cific antibodies reduces lung injuries in vivo (61). In addition to providing protection,
this aggregate formation is the first step in the initiation of biofilm production (62).

TABLE 1 Virulence factors implicated in S. aureus virulence during pneumonia with in vitro and/or in vivo evidence

Virulence factor Infection step Role/mechanism(s)b Reference(s)a

agr system Adaptation Virulence regulation 140, 200
Alpha-toxin (Hla) Invasion Pulmonary epithelial disruption 59, 100, 103

Host defense escape Ciliary beat frequency impairment 98, 100, 107
Macrophage digestion avoidance 130

Mayhem in the lung Cytokine production induction 101, 166, 167, 168
Beta-toxin Host defense escape Ciliary beat frequency impairment 108

Epithelial phagolysosome escape 113
Mayhem in the lung Cytokine production induction 163, 166

Biofilm Adaptation S. aureus aggregation and protection 62, 63
ClfA/ClfB Colonization Adhesion factor 47, 48

Host defense escape Macrophage phagocytosis inhibition 129
Cna Colonization Adhesion factor 201, 202
Complement-binding protein (Ecb) Host defense escape Complement inhibition 155
Delta-toxin (Hld) Host defense escape Epithelial phagolysosome escape 113
Enterotoxins B and C (SEB and SEC) Mayhem in the lung Abnormal T-lymphocyte activation 170, 171
Fibrinogen-binding protein (Efb) Host defense escape Complement inhibition 155
Fibrinogen-binding protein (Fnbp) Colonization Adhesion factor 65

Adaptation Biofilm component 65, 68
Fur and iron acquisition Adaptation Metabolism adaption 57
IgG binding protein (Sbi) Host defense escape Complement inhibition 152, 153
IsdB Adaptation Adaptation to iron deprivation 29, 48
Nuc Host defense escape NET DNA degradation 146, 147, 148
Panton-Valentine leucocidin (PVL) Host defense escape Macrophage and neutrophil lysis 119, 122, 123, 138

Mayhem in the lung Cytokine production induction 12, 120, 163
Phenol-soluble modulin a (PSMa) Adaptation Biofilm dispersion 86

Host defense escape Epithelial and macrophage phagolysosome escape 114
Mayhem in the lung Necroptosis induction 177
Host defense escape Neutrophil lysis 141, 142

Phevalin Host defense escape Epithelial phagolysosome escape 115
PhnD Adaptation S. aureus aggregation 59
Staphylococcal protein A (Spa) Invasion Pulmonary epithelial disruption 70, 97

Host defense escape Ig binding 157
Abnormal B lymphocyte activation and death 157, 158, 159

Mayhem in the lung Cytokine production induction 70, 160
Necroptosis induction 177

SElX Host defense escape Neutrophil phagocytosis inhibition 143, 144
Mayhem in the lung Abnormal T-lymphocyte T activation 143

Serine protease SplA Invasion Mucine degradation 96
Staphopain A (ScpA) Host defense escape Surfactant protein A (SP-A) degradation 105
TSST-1 Mayhem in the lung Cytokine production induction 35

Abnormal T-lymphocyte T activation 170, 171
aReferences for virulence factors implicated in pneumonia infection with animal models are highlighted in bold. References highlighted in italics present clinical evidence.
bNET, neutrophil extracellular trap(s).
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Biofilm allows both the protection and replication of S. aureus (33, 62, 63). Its composi-
tion depends on the maturation state, the environment, and the bacterium’s genetic
background (64). However, several components are conserved, such as extracellular
DNA, the microbial surface components recognizing adhesive matrix molecules
(MSCRAMMs), and aggregation factors, as well as virulence factors that are mostly
expressed in the last steps of the biofilm. Among the MSCRAMMs, most of them are al-
ready expressed during nasal colonization; these include fibrinogen-binding proteins
(FnBPs), SdrC, and ClfB (26, 65–68). Among the other virulence factors potentially
involved are protein A (Spa) (69, 70), either cell wall anchored or released into the
extracellular milieu (71), as well as the CHIPS and SCIN proteins (72), both implicated in
immune evasion (73, 74). Other compounds involved in biofilm formation were thor-
oughly described in a review by Paharik et al. (62).

Biofilm enhances resistance to phagocytosis and antimicrobial molecules (e.g., anti-
biotics), while also allowing S. aureus replication, leading to an increase in bacterial
density and regulatory activity switching. At the beginning of lung colonization, only a
few bacterial cells reach the lung epithelium, resulting in a low bacterial density and
thus in an inactive quorum sensing (QS) regulatory system (agr) that leads to the low
expression of its effector, RNAIII. In the absence of RNAIII, the transcriptional regulatory
factor Rot represses the expression of several S. aureus virulence factors, including Hla,
the PVL, and LukDE (75–77). This repression prevents a strong immune reaction in
the early steps of the infection. Furthermore, Rot induces biofilm formation (78) and
the expression of surface proteins (75, 79, 80) such as Spa, ClfB, and SdrC (66, 67). In
the second step of colonization, biofilm formation allows S. aureus to replicate and to
gradually increase its bacterial density, promoting the agr QS system. During its repli-
cation, S. aureus produces an accumulating amount of an autoinducing peptide (AIP),
encoded by agrD of the agrACDB operon. Upon maturation and secretion via AgrB,
AgrD AIP occurs in the form of a tailed thiolactone ring with autoinducing activity on
the membrane protein, AgrC, belonging to a two-component regulatory system (TCS).
The accumulation of AIP during exponential growth induces the autophosphorylation
of AgrC in its cytoplasmic domain, leading to the activation of AgrA (the effector of the
TCS), which in turn activates the agrACDB operon promoter in an autocatalytic circuit,
as well as the divergent promoter P3 producing RNAIII (81, 82). RNAIII represses numer-
ous cell wall-associated proteins and the global regulator Rot by an antisense RNase III-
dependent mechanism (31, 83). Consequently, S. aureus expresses numerous virulence
factors, such as PVL and Hla toxins (84, 85) and phenol-soluble modulins (PSM) (86, 87),
which allow biofilm dispersion.

However, the agr system is not the only regulatory system involved in S. aureus viru-
lence factor expression; SaeRS, a TCS which, unlike agr, is mainly activated by neutro-
phil signals (88, 89), also promotes the expression of toxins such as superantigens,
hemolysins, and proteases (79, 88). In addition, a cytoplasmic regulator, SarA, activated
during periods of metabolic stress or in the stationary growth phase, modulates viru-
lence factor expression along with agr and SaeRS and upregulates the agr system (76,
90). Thus, S. aureus inaugurates lung colonization under the Rot regulation climax and
later on, following bacterial replication, switches to a more aggressive state upon quo-
rum sensing dependent activation of the agr system and SarA. This virulence state is
exacerbated by the induction of the SaeRS system by the innate immune response
(91). Specific mutations/variants of these regulatory systems, in particular for the agr
system, have been related to more or less virulent strains in the context of pneumonia
(92, 93).

This accurate adaption of S. aureus progressively enables it to reach, colonize, and
then invade the pulmonary tissue, from the mucus to the extracellular matrix (ECM).

Invasion. To colonize the tissue, S. aureus first passes through the mucus and then
through the tight junctions (TJs) of lung epithelial cells (Fig. 1A). The mucus is pro-
duced by the goblet cells to protect the epithelium by trapping microorganisms and is
therefore the first host rampart. It is composed of water, ions, lipids, surfactant proteins
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FIG 1 (A) S. aureus epithelial barrier invasion. S. aureus first crosses the mucus, which is made of mucine and surfactant protein A (SP-A). Both host
proteins are degraded by serine protease SlpA and staphopain A (ScpA), respectively. S. aureus rapidly aggregates and cleaves staphylococcal protein A
(Spa) from the cell wall. The aggregation leads to biofilm formation and quorum sensing agr regulation activation. Spa simultaneously interacts with the
TNFR1 and EGFR host receptors on the pulmonary epithelial cells, initiating the disruption of the epithelial barrier. Upon reaching a bacterial density
threshold, the biofilm is dissipated and the bacteria produce invasins, including the alpha-toxin (Hla). Hla pursues Spa pulmonary epithelium disruption
through (i) disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) hijacking that induces tight junction (TJ) degradation and (ii) pore
formation, which lyses the epithelial cells. In addition, pore formation causes ATP and Ca21 leaks that impede the ciliary beat frequency required for
effective mucus clearance. Finally, epithelial cells are able to endocytose S. aureus, which can survive within the phagolysosome and escapes from it to
induce the cell death. (B) S. aureus mechanisms to escape the host immune system, leading to harmful immune response. 1. Complement proteins can be
trapped by Spa, Sbi, Ecd, and Efb, inhibiting S. aureus opsonization. 2. S. aureus can survive, replicate, and kill macrophages after its phagocytosis, thanks to

(Continued on next page)
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(18, 94), and highly glycosylated proteins such as mucins (95). To get through the mu-
cus, S. aureus targets its major component, mucin, using the serine protease SplA,
which cleaves mucin-16 from the human pulmonary cell line (Fig. 1A). A mutant with
splA deleted displayed reduced lung invasion in vivo (96). Subsequently, Spa and Hla
initiate the disruption of the epithelial barrier (Fig. 1A). Spa destabilizes the epithelial
barrier through its interaction with the EGFR and TNFR1 receptors on the cell surface
(70). Spa interaction induces the activation of the RhoA/ROCK/myosin light chain
(MLC) eukaryotic cell pathway, which results in the disruption of TJ of the epithelium
(97). Hla also plays an important role in tissue invasion, since it can participate in pul-
monary epithelium disruption and destruction. Hla is a pore-forming toxin (PFT) (98)
that targets the disintegrin and metalloproteinase domain-containing protein 10
(ADAM10) (99), which is expressed at the epithelium surface. The interaction between
ADAM10 and Hla leads to numerous molecular reactions, starting with the oligomeriza-
tion of Hla proteins to form an heptameric b-barrel pore in the membrane (98). Pore
formation leads to the release of ions, notably Ca21, which allows not only TJ disrup-
tion (59, 100) but also cell lysis (Fig. 1A) (59, 99, 101, 102). Moreover, the recruitment of
ADAM10 by Hla hijacks its function; therefore, ADAM10 participates in TJ degradation
by cleaving it through its enzymatic activity (Fig. 1A) (103). Overall, Hla and Spa are
essential S. aureus weapons when infecting the host lung, since they allow S. aureus to
pass from the lung lumen to the ECM (Fig. 1A). Although the agr system is activated,
repressing MSCRAMM expression, the remaining MSCRAMMs at the surface of S. aureus
allow strong interaction between S. aureus and the ECM (104).

In summary, S. aureus adapts to its new environment by regulating specific meta-
bolic and virulence pathways. Subsequently, during its passage from the mucus of the
lumen to the ECM, S. aureus evades numerous host defense mechanisms provided by
the epithelium and the host immune system.

HOST DEFENSE ESCAPE

The lungs are confronted by numerous microorganisms, from the commensal pop-
ulation to invaders. Different cells and defense mechanisms are deployed by the host
to prevent invasion from pathogenic microbes. The pulmonary epithelium, along with
its mucus layer, forms the first rampart, followed by the immune system, and S. aureus
has developed toxins and enzymes to escape these defense mechanisms.

Pulmonary epithelium.Within the mucus, the surfactant components are proteins
with antimicrobial activities that initiate the killing of entrapped microorganisms (52)
before their physical expulsion by the mucociliary escalator (19, 94). S. aureus simulta-
neously targets mucins with SplA (Fig. 1A) and surfactants with staphopain A (ScpA), a
hydrolyzing enzyme that degrades surfactant protein A (SP-A, not to be confounded
with Spa [staphylococcal protein A]) (Fig. 1A) (105), an airway immune defense effector
(52). The deterioration of SP-A enables S. aureus to aggregate and adhere to the pul-
monary epithelium (105).

The ciliary beat of the pulmonary epithelial cells allows the clearance of mucus-em-
bedded microorganisms. To avoid its elimination, S. aureus inhibits the mucociliary es-
calator in several ways. Pore formation by the oligomerization of Hla in the membrane
of epithelial cells allows the release of ions, notably Ca21 (98, 100), and the leak of ATP
in the extracellular medium (106), both of which can modify the ciliary beat frequency

FIG 1 Legend (Continued)
Hla and PSMa. 3. Bicomponent leucocidin PVL, but also LukDE, LukAB, and HlgCB, can induce pore formation in neutrophil and macrophage membranes,
leading to cell death. 4. S. aureus phagocytosis is prevented by biofilms and ClfA for macrophages and by biofilms and SElX for neutrophils. 5. The
nuclease Nuc can degrade neutrophil NET DNA to avoid trapping. 6. SCIN, CHIPS, Spa, and Sbi are proteins capable of inhibiting neutrophil recruitment. By
aggregating platelets and neutrophils, Hla can also impede neutrophil recruitment at the infection location. 7. Both lymphocytes are targeted—B cells by
Spa and T cells by TSST-1, SEB, and SEC. The interactions between the toxins and the lymphocytes dysregulates lymphocyte activation and replication. Spa
can also interact with Ig, preventing its interaction with the bacteria. All of these mechanisms increase the immune response, generating acute
inflammation that damages the pulmonary tissue, in addition to S. aureus damage. PSM, phenol-soluble modulin(s); NET, neutrophil extracellular trap(s).
Figure created with BioRender.com.
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(Fig. 1A) (107). In addition, the synergistic action of the beta-toxin with Hla between
8 and 12 h after their contact with the epithelial cells drastically decreases the ciliary
beat required for effective mucus clearance (34, 108).

Finally, although the pulmonary epithelial cells are nonspecialized phagocytes, they
can capture S. aureus. It is as yet unclear whether the epithelial cells actively phagocy-
tose S. aureus, if it is S. aureus that invades the epithelial cell, or if it is a combination of
both. Indeed, epithelial cells can internalize bacteria (109–111), a mechanism mediated
in part by the efflux pump Tet38 of S. aureus (Fig. 1A) (111, 112). S. aureus is able to
enter pulmonary epithelial cells through the interaction between the Tet38 efflux
pump and CD36 eukaryotic cell membrane protein in A549 cells (lung epithelial cell
line) (112). Following internalization, S. aureus rapidly escapes from the phagolysosome
(2 h) and induces cell death via several effectors, namely PSMa, PSMb , Hld, beta-toxin
(111, 113, 114), and a nonribosomal peptide (phevalin) previously identified in
Streptomyces (115, 116) and which is required for full virulence in vivo (115).

Altogether, S. aureus possesses several toxins and enzymes that allow the bacteria
to penetrate through the mucus and the epithelial barrier. Although the pulmonary
epithelium is a major line of defense, the host also possesses other cells and mecha-
nisms to protect itself, notably the immune response. However, even these defenses
can be defeated by S. aureus.

Macrophages. Alveolar macrophages are the resident macrophages of the pulmo-
nary tissue and the second line of defense when pathogens succeed in reaching and
crossing the epithelium (20). Their major function is to phagocytose the pathogens or
their debris, a function that is impaired by S. aureus through three major mechanisms.

The first mechanism that allows S. aureus to avoid macrophage phagocytosis is to
destroy the macrophages using pore-forming toxins (PFT), also known as leucocidins.
Leucocidins target specific cells through specific receptors at their membrane surfaces
to induce pore formation, followed by cell death (Fig. 1B) (32). Five leucocidins, namely,
LukAB (LukGH) (117), LukDE (118), HlgAB, HlgCB, and PVL (119, 120), target macro-
phages after their interactions with their receptors, namely, CD11b for LukAB, CCR5,
and CXCR1/2 receptors for LukDE (118, 121), CCR2 and CXCR1/2 for HlgAB, C5aR1/R2
for HlgCB, and C5aR1/R2 and CD45 for the PVL (119, 122, 123). Except for the PVL,
whose impact on pneumonia severity has been highlighted by several studies, includ-
ing clinical ones (12, 14, 124–128), the roles of LukAB, LukDE, and HlgAB/CB have not
yet been elucidated.

The second way for S. aureus to a avoid phagocytosis is by protecting itself by hid-
ing and forming agglomerates inside the biofilm (Fig. 1B) (63). In this context, ClfA,
which is expressed during biofilm formation, as mentioned in the “Adaptation to the
lung environment” paragraph, impairs macrophage phagocytosis (129). Although there
is no direct evidence of ClfA involvement with alveolar macrophages, Yang et al.
reported that immunity against ClfA reduces pneumonia severity in mice (48).

Finally, the third mechanism to counter phagocytosis is the capacity of S. aureus to
survive within macrophages. The activation of the NLRP3 inflammasome by Hla leads
to the recruitment of mitochondria away from the phagosome, thus preventing the
digestion of the bacteria inside the phagolysosome (Fig. 1B) (130). In addition, two
studies have reported the ability of S. aureus to survive, replicate, and finally kill macro-
phages (131), in particular due to PSMa (114).

Neutrophils. Neutrophils are professional antimicrobial cells that use phagocytosis,
degranulation, antimicrobial proteins, and neutrophil extracellular traps (NET) to clear
pathogens from infected tissues (20, 24). As a result, human neutrophils are one of the
main targets of S. aureus toxins (132, 133).

First, as neutrophils are nonresident immune cells, S. aureus can impair neutrophil
recruitment by the expression of CHIPS and SCIN factors, which are chemotaxis inhibi-
tors (Fig. 1B) (24, 73, 74) and which are part of an “immune evasion cluster” present in
human strains but generally not in bovine strains (134). Staphopain A can also inhibit
the chemotaxis of neutrophils and their activation (Fig. 1B) (135); however, the role of
these three proteins in the course of pneumonia in human remains to be confirmed.
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Another possible mechanism preventing the proper localization of neutrophils at their
target site is the aggregation of both platelets and neutrophils induced by Hla, thus
disturbing their recruitment, a mechanism that may occur in the lung (Fig. 1B) (136).

Second, S. aureus is able to kill neutrophils, largely by the activity of PFT. The role
of PVL is predominant in neutrophil lysis (137), notably demonstrated in rabbits and
humanized mouse models of pneumonia (Fig. 1B) (124, 125, 138). The bicomponent
leucocidins like HlgCB, which targets the same receptors as PVL, LukDE, and LukAB,
have not been experimentally demonstrated as key players in S. aureus pneumonia
so far. Conversely, the degradation products of PSM-lysed neutrophils (139) are re-
sponsible for lung injuries in mice (140). Moreover, PSMs can kill neutrophils upon
S. aureus phagocytosis (141), and PSMa3 synergizes with PVL to kill neutrophils
(Fig. 1B) (142).

Another way to inhibit the function of neutrophils is to block their phagocytosis.
Superantigen exoprotein (SAg) is a group of toxins that includes the toxic shock syn-
drome toxin 1 (TSST-1) and 18 staphylococcal enterotoxins (SE). These are responsible
for polyclonal T-cell receptor (TCR) activation, leading to massive T-cell expansion and
cytokine secretion. In 2011, a staphylococcal enterotoxin-like protein, SElX, encoded in
the core genome, was identified as being implicated in S. aureus virulence in a rabbit
model of pneumonia (143). Recently, one of its mechanisms was characterized; unlike
the other SAg, this mechanism does not involve interaction with T cells, but it inhibits
neutrophil phagocytosis (Fig. 1B) (144), leading to increased mortality in a pneumonia
rabbit model.

Finally, NET are a well-organized and structured combination of DNA and cytosolic
proteins that entrap pathogens in order to kill them and prevent their dissemination
(145). DNA is one of the major components of NET; therefore, the secretion of Nuc, a
nuclease produced by S. aureus, is very relevant means of escaping from NET (Fig. 1B)
(146). In a murine pulmonary infection model, secretion of Nuc in the lung decreased
S. aureus clearance and increased mortality (147). S. aureus is also able to counteract
NET by other mechanisms, such as the conversion of NET into deoxyadenosine, which
induces immune cell death (148). However, this mechanism was explored in kidney ab-
scess in a mouse model and not in pneumonia.

Opsonization and humoral response. Phagocytosis by specialized cells such as
macrophages and neutrophils can be induced by the recognition of bacterial cell walls
or opsonins, such as complement proteins or antibodies (mostly IgG) (149, 150), that
target both cell wall-associated proteins and exotoxins (151). In addition to its direct
action on phagocytic cells, S. aureus targets the complement or antibody-mediated op-
sonization pathways.

S. aureus secretes proteins that inhibit complement proteins, such as Sbi, which
complexes complement proteins (152, 153), and Ecb (also known as Ehp), which inhib-
its the convertase activity of the C3 complement protein, as does Efb through its C ter-
minus (154). Deletion mutants of Ecb and Efb proteins are reported to provoke
reduced mortality in vivo (Fig. 1B) (155). Other proteins, such as SCIN and CHIPS, which
inhibit neutrophil chemotaxis through the complement, and Spa, have been reported
to impede the complement; nonetheless, their involvement in pneumonia through
complement inhibition has yet to be proved (156).

Spa is important in S. aureus virulence in the context of pneumonia, as mentioned pre-
viously, and, in addition to epithelium disruption, Spa impedes the humoral response. It is
cleaved and released in to the extracellular environment (71) and is able to bind Ig and
prevent interaction with the target epitope (157). Furthermore, it interferes in lymphocyte
B activation and proliferation, leading to (i) the reduction of phagocytosis of S. aureus
(157), (ii) antibody production impediment (158), and (iii) disordered activation, finally lead-
ing to the death of the B cells (Fig. 1B) (159). These mechanisms have not yet been studied
in the context of pneumonia; however, due to the significant interaction between Spa and
the variable heavy 3 (VH3)-type B cell receptors, these phenomena would very likely occur
in the lungs.
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Overall, S. aureus has developed a wide range of proteins to inhibit and escape host
defenses, including the immune system. Nevertheless, the presence of S. aureus, and
the lysis and dysregulation of epithelial and immune cells, lead to an acute inflamma-
tory response. This acute inflammation can still be an advantage for S. aureus, by
contributing to overall tissue damage.

MAYHEM IN THE LUNG
Cytokine production. The acute inflammatory response first results in the accu-

mulation of cytokines produced by the lung epithelial cells (Fig. 1B). More specifically,
during S. aureus infection, the interaction between S. aureus and the Toll-like recep-
tor 2 (TLR2) of the epithelial cell induces the NF-κB pathway, and the production of
proinflammatory cytokines and tumor necrosis factor (TNF) (156). Furthermore, via its
interaction with TNFR1 (70, 160), Spa primes the secretion of interleukin-8 (IL-8) and
of IL-16, an immune cell chemoattractant (161), which is responsible for lung damage
in vivo (160). This phenomenon is amplified by the activation of EGFR, which
increases the availability of TNFR1 at the cell surface (162). Moreover, the interaction
between Hla and ADAM10 induces the secretion of IL-1b by the epithelium; the
knockout of ADAM10 in mice protects against lethal S. aureus pneumonia through
the reduction of IL-1b production (101). The PVL toxin also leads to IL-1b production
by macrophages, acting in a paracrine manner to trigger IL-8 secretion by the
epithelial cells (163). Finally, TSST-1 also induces the production of TNF and IL-8 by
the pulmonary epithelium and thus promotes inflammation (35). Taken together, the
epithelium initiates a strong cytokinic response in order to mobilize the immune
system.

The pulmonary epithelial cells produce cytokines when in contact with S. aureus
toxins, as do the immune cells via the NLRP3 inflammasome pathway (Fig. 1B). The
inflammasome is an intracytoplasmic multiprotein complex activated by cell stresses
or infections and is responsible for the release of proinflammatory cytokines, including
IL-1b (164, 165). Beta-toxin, gamma-hemolysin (25, 163, 166), PVL (25, 120, 163), and
Hla (166–168) trigger the NLRP3 inflammasome in macrophages, monocytes, and neu-
trophils, resulting in proinflammatory IL-1b and IL-18 secretion that is responsible for
necrotic injuries and severe pneumonia in vivo (167). The inhibition of the inflamma-
some in the pneumonia mouse model results in a decrease of cytokines in the pulmo-
nary tissue and therefore in decreased lung injuries (169). In addition to inflammasome
activation in immune cells, most of these toxins, such as PVL and gamma-hemolysin,
can lyse macrophages and neutrophils (119, 122), leading to an involuntary release of
cytokines and exacerbating local inflammation.

Lymphocyte response dysregulation. In addition to this cytokine storm, S. aureus
impacts several other immune mechanisms, including the activation of lymphocytes
(Fig. 1B). As mentioned above, SAg TSST-1, along with the enterotoxins SEB, SEC, and
SElX, induces nonspecific T-lymphocyte activation and proliferation and, as a result,
increases lung damage (143, 170). This polyclonal activation of T cells participates in
the cytokinic storm, as T cells promote inflammation through cytokine release. These
deleterious effects are circumvented by antibodies against TSST-1, SEB, and SEC in rab-
bit models (171). In addition, Parker et al. have demonstrated that this T-cell activation
contributes to S. aureus pathogenicity by increasing lung damage (172). Therefore, the
inhibition of abnormal T-cell activation might be a therapeutic option for future
development.

B lymphocytes, implicated in antibody responses, are also targeted, especially by
Spa. The latter first monopolizes the immunoglobin response by promoting anti-Spa
immunoglobins produced by plasma cells and B cells, instead of immunoglobins
against other secreted toxins, such as Hla or PVL (158). Second, Spa, by its ability to
interact with B cell receptors, reduces their proliferation, but it predominantly induces
B cells apoptosis after 36 to 48 h via the caspase pathway (159) via Spa shedding from
the bacterial surface (71). As immunotherapies provide good evidence of efficacy to
reduce the risk of occurrence and severity of S. aureus pneumonia in animals (173), and
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also in humans (174), the impedance of B cells by S. aureus may contribute to the per-
sistence of infection.

Thus, both types of lymphocyte are impaired by S. aureus, with, on the one hand,
an increase of inflammation by the T lymphocytes and, on the other hand, an ineffi-
cient humoral response dependent on B lymphocytes, allowing persistent S. aureus
infection.

Necroptosis induction and efferocytosis inhibition. Necroptosis is a cellular sui-
cide mechanism used by microorganism-infected cells to prevent the replication and
spread of the intruder (175). It leads to the activation of a proinflammatory pathway
(IL-6, TNF, IL-1a, and IL-1b) that recruits phagocytes to clear debris after cell death and
phagocytose dying cells (efferocytosis). The latter mechanism is important for the reso-
lution of inflammation and tissue integrity restoration (176).

S. aureus is able to impact both mechanisms. First, it increases necroptosis, lead-
ing to acute cytokine release through secretion of toxins. Indeed, Hla, LukAB, and
PSM participate in necroptosis mechanism induction by activating RIP1/RIP3/MLKL
signaling in macrophages. Necroptosis impairment or inhibition of these toxins in
the pneumonia mouse model decreases S. aureus virulence and improves its clear-
ance (177). Regarding efferocytosis, to date only Hla has been reported as an inhibi-
tor; by interacting with alveolar macrophages, it reduces their ability to phagocytose
dying neutrophils (178). In 2014, Greenlee et al. demonstrated that when phagocy-
tosed by neutrophils, S. aureus survives in the phagolysosome and decreases the
efferocytosis of neutrophils by macrophages. In addition, S. aureus increases the pro-
duction of cytokines by macrophages, exacerbating inflammation in the tissue (179).
However, the pathophysiological impact of this phenomenon has not yet been
assessed in any disease models, and more studies are required to further understand
the manipulation of these mechanisms by S. aureus.

Other cell death mechanisms are also impeded or diverted and were recently
reviewed by Grousd et al. (180).

Taken together, S. aureus pneumonia can lead to severe outcomes due to the tissue
necrosis induced by S. aureus itself, but also to immune-driven inflammation. The
reduction of this inflammation is one way to prevent lung tissue damage. This has
been demonstrated in pneumonia mouse models, in which cytokine production was
hindered by the inhibition of NF-κB signaling (181), NLRP3 inflammasome inhibition
(169), and IL-1R signaling (182). Another way is to inhibit S. aureus toxins, notably by
using passive immunotherapy approaches, such as neutralization with antibodies tar-
geting Hla, PVL, HlgACB, and LukDE. This strategy has been demonstrated to be effec-
tive to protect animal models from S. aureus pneumonia (126, 127).

DISCUSSION AND PERSPECTIVES

S. aureus CAP are rare but severe infections with a high rate of lethality (9, 13). We
describe here an arsenal of virulence factors produced by S. aureus that are implicated
in its adhesion and adaptation to, as well as invasion of, the lung epithelium. The adap-
tation includes profound metabolic changes of the bacterium, notably in response to
iron and nutrient limitations (53). However, most studies have assessed the impact of a
given virulence factor using isogenic mutants or specific inhibitors, and therefore by
comparing the presence/absence of the protein studied. These approaches omitted
the notion of protein abundance. Indeed, most virulence factors belong to the bacte-
rial core genome, and thus in vivo their impact on the host should reasonably depend
on their level of expression. Only a few studies focusing on S. aureus pneumonia have
investigated this parameter. Nevertheless, they offer new perspectives in the investiga-
tion of S. aureus virulence. For instance, in 2013, a link was established between mortal-
ity in the rabbit pneumonia model and Hla and PVL concentrations in lung samples
(183). In humans, a severe outcome in ventilator-associated pneumonia was associated
with higher Hla production in vitro (184). Quantitative approaches assessing the full
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spectrum of S. aureus virulence factors remain essential to fully understand the multi-
factorial nature of bacterial pathogenesis.

An additional aspect that is often discussed but difficult to explore is research
using human samples and associated clinical data. As described in this review, sev-
eral experimental models (cell culture and animal models) have been used to study
interactions between S. aureus and the lung environment. Although animal models
tend to mimic the highly complex human physiopathology during pneumonia as
well as possible, they remain simplistic, with obvious biases such as species-specific
receptor polymorphisms, leading to great variations in susceptibility to a given toxin
depending on the animal species (32). This phenomenon has been perfectly deci-
phered for PVL, for which, surprisingly, our closest relative (nonhuman primate) was
mostly resistant to the toxin (185). Therefore, caution is necessary when drawing
conclusion for human based on cellular or animal models describing S. aureus infec-
tion mechanisms.

One aspect not explored in this review is the complexity of the lung microbiota,
which may impact both the transition from colonization to invasive infection and S.
aureus virulence. These aspects were more explored in other settings, such as cystic
fibrosis patients or hospital-acquired pneumonia, but are poorly defined in the con-
text of CAP (186, 187). Finally, we did not develop the impact of other clinical condi-
tions on CAP occurrence or severity, such as host comorbidity factors and the role of
previous viral infection damaging the pulmonary epithelium. For example, several
clinical and experimental studies have reported a consistent link between previous
influenza infections and the severity of SA-CAP (44, 188–197). Influenza infections
induce a switch in S. aureus to a more virulent status (44), and the virus damages the
host epithelium (188, 191, 194) but also promotes S. aureus intrusion and adhesion
to the pulmonary tissue (189, 192, 195). Another means for S. aureus to reach the
lung is via the hematogenous route in the course of bacteremia. Clinical observa-
tions suggest that in the case of pneumonia initiated by the air route of infection
only one lobe can be infected, whereas multilobar infections can be observed upon
bacteremia. However, there is no experimental evidence suggesting that specific vir-
ulence factors are associated with one or the other route of infection; yet, it is of in-
terest to note that Hla was shown to impact the severity of pneumonia by the hema-
togenous route in rabbit. Conversely, epidermal differentiation inhibitor B (EdinB),
initially described as a potential virulence factor in skin infection by impairing the
maturation of keratinocytes, was shown to increase S. aureus translocation to
the blood in the course of pneumonia in mice (198, 199); however, this remains to
be fully investigated.

S. aureus is able to cause severe infections, notably in the lung, through the produc-
tion of an array of toxins and proteins. These virulence factors are highly efficient in coun-
teracting the host’s defense, including the immune system, which is even used to the
advantage of S. aureus. With the emergence of new strains that possess newly discovered
genes or accessory genes encoding toxins, such as the MRSA USA300 clones or the ST239
lineage that are implicated in CA pneumonia infection, better understanding of S. aureus
virulence mechanisms is required to develop new therapeutic strategies.

In conclusion, the present review illustrates how it is the association of several viru-
lence factors at specific infection steps, and the host response to these factors, that
leads to severe staphylococcal pneumonia.
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