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BACKGROUND: Data sharing accelerates scientific progress but sharing 
individual-level data while preserving patient privacy presents a barrier.

METHODS AND RESULTS: Using pairs of deep neural networks, 
we generated simulated, synthetic participants that closely resemble 
participants of the SPRINT trial (Systolic Blood Pressure Trial). We showed 
that such paired networks can be trained with differential privacy, a 
formal privacy framework that limits the likelihood that queries of the 
synthetic participants’ data could identify a real a participant in the trial. 
Machine learning predictors built on the synthetic population generalize 
to the original data set. This finding suggests that the synthetic data can 
be shared with others, enabling them to perform hypothesis-generating 
analyses as though they had the original trial data.

CONCLUSIONS: Deep neural networks that generate synthetic 
participants facilitate secondary analyses and reproducible investigation 
of clinical data sets by enhancing data sharing while preserving 
participant privacy.
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Sharing individual-level data from clinical studies re-
mains challenging. The status quo often requires 
scientists to establish a formal collaboration and 

execute extensive data usage agreements before shar-
ing such data. These requirements slow or even prevent 
data sharing between researchers in all but the closest 
collaborations. Individual-level data is critical for certain 
secondary data analyses (eg, propensity score matching 
techniques) and subgroup analyses.1

Even for efforts specifically designed to highlight the 
value of sharing data, investigators have been required 
to execute data use agreements. The New England 
Journal of Medicine recently held the SPRINT (Systolic 
Blood Pressure Trial) Data Analysis Challenge to exam-
ine possible benefits of clinical trial data sharing.2,3 The 
SPRINT clinical trial examined the efficacy of intensive 
lowering of systolic blood pressure (<120 mm Hg) 
compared with treatment to a standard systolic blood 
pressure goal (<140 mm Hg). Intensive blood pressure 
lowering resulted in fewer cardiovascular events, and 
the trial was stopped early for benefit. Reanalysis of 
the challenge data led to the development of personal-
ized treatment scores4 and decision support systems,5 
in addition to a more specific analysis of blood pres-
sure management in participants with chronic kidney 
disease.6 The goal of these agreements is to maintain 
participant privacy by prohibiting reidentification or 
unauthorized disclosure.

We sought to find a way to share data for initial and 
exploratory analyzes that does not require this data use 
agreement process. To do this, we developed a techni-
cal solution for generating synthetic participants that 
were similar enough to the original trial data that both 
standard statistical and machine learning analyses yield 
effectively the same answers. Other methods aimed 
at performing this task generally fall into 2 groups: (1) 
sampling methods with a quantifiable privacy risk,7 or 
(2) generative adversarial networks (GANs),8 which are 
neural networks that can generate realistic data from 
complex distributions. In a GAN, 2 neural networks are 
trained against each other: one is trained to discrimi-
nate between real and synthetic data (the discrimina-
tor), and the other is trained to generate synthetic data 
(the generator). GANs have become a class of widely 
used machine learning methods and have recently 
been used in biology and medicine9 and have been 
used to generate biomedical data.10,11 However, using 
traditional GANs for this task provides no guarantee on 
what the synthetic data reveal about true participants. 
It is possible that the generator neural network could 
learn to create synthetic data that reveals actual par-
ticipant data. One way to avoid this scenario, in which 
a participant’s sensitive information could be revealed, 
is to use differential privacy. Differential privacy allows 
the release of aggregate statistical information about 
a population without compromising the privacy of any 

individual in the population. In particular, differential 
privacy promises to protect individual subjects from any 
additional harm that they might face due to their data 
being in a study that they would not have faced had 
they opted out of the study.

As a concrete example, suppose that a 40-year-old 
man John holds a health insurance policy. His premium 
is set at $3000 based on average healthcare reimburse-
ments for his age and gender. A portion of his premium 
is due to the possibility of a stroke, say $9 if men his 
age have a 0.03% chance of a stroke costing $30 000. 
John is considering whether or not to participate in a 
medical study, but since he has poorly controlled hyper-
tension, he is concerned the study will reveal he is more 
likely to suffer a stroke than an average male. If we sup-
pose John opts out of the research study and the study 
reveals that those with poorly controlled hypertension 
are 3× more likely to suffer a stroke. Despite not par-
ticipating in the study, John’s insurance company may 
update John’s premium to $3027 ($9 current expected 
cost of stroke×3 times more likely=$27).

Now suppose John opts into the study and the 
researchers conclude he is 3× more likely to suffer a 
stroke. During the study, the researchers found John 
has an additional risk factor specific to him which 
increases his risk of stroke within the next year to at 
least 20%. Would his premium increase substantially 
due to his participation? Differential privacy ensures 
that would not happen. In particular, if the research-
ers use a value of ε=1, then the insurance company’s 
estimate of the probability that John will suffer a stroke 
in the next year can increase from 0.09% to at most 
0.09% (1+1)=0.18%. Thus, John’s insurance premium 
can increase from $3000 to, at most, $3054. In other 
words, John’s cost of participating in the study, in terms 
of an additional increase in her insurance premium, is 
at most $27.

Nissim et al12 provide a particularly useful primer on 
understanding differential privacy for a nontechnical 
audience as well as how to assess values for specific pri-
vacy parameters. Differential privacy has been adopted 
by the US Census Bureau for the 2020 US Census. The 
Census Bureau also provides guidance on choosing an 
appropriate privacy loss.13,14 A general background of 
differential privacy can be found in Dwork and Roth,15 
and Abadi et al16 introduced differential privacy for 
deep learning.

In this study, we introduce differential privacy to the 
GAN framework and evaluate the extent to which dif-
ferentially private GANs could generate biomedical data 
that can be shared for valid reanalysis while controlling 
participant privacy risks. We achieve differential privacy 
by limiting the maximum influence of any single partici-
pant during training and then adding a small amount 
of random noise.16 More detailed technical explana-
tions of our usage of differential privacy can be found 
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in the Methods in the Data Supplement. We evalu-
ated usefulness by (1) comparing variable distributions 
between the real and simulated data, (2) comparing the 
correlation structure between variables in the real and 
simulated data, (3) a blinded evaluation of individual-
level data by 3 clinicians, and (4) comparing predictors 
constructed on real versus simulated data. The method 
generates realistic data by each of these evaluations.

METHODS
We used a type of GAN known as an auxiliary classifier gener-
ative adversarial network (AC-GAN)17 to simulate participants 
based on the population of SPRINT clinical trial. We included 
all participants with measurements for the first 12 SPRINT vis-
its (n=6502), dividing them into a training set (n=6000) and a 
test set (n=502). To evaluate the effect of applying differential 
privacy during the generation of synthetic participant data, 
we trained 2 AC-GANs using the training set: a traditional, 
standard AC-GAN (results termed nonprivate throughout 
the remainder of this article) and an AC-GAN trained under 
differential privacy (results termed private). We used both 
GANs to simulate data that we then compared to the real 
SPRINT data by visualizing participant blood pressure trajec-
tories, analyzing variable correlation structure and evaluating 
whether predictive models trained on synthetic data achieve 
similar performance to models trained on real data. Three cli-
nicians attempted to predict whether participants were real or 
synthetic and whether they were in the standard or intensive 
treatment group.

AC-GAN for SPRINT Clinical Trial Data
An AC-GAN (Figure IA in the Data Supplement) is made up 
of 2 neural networks competing with each other. Details 
about the neural network architectures are available in the 
Methods in the Data Supplement. We trained the generator 
(G) to take in a specified treatment arm (standard/intensive) 
and random noise and generate new participants that can 
fool the discriminator (D). The generator takes in specified 
treatment arm to generate participants that belong to the 
specified arm. This labeling and additional task is the differ-
ence between an AC-GAN and a standard GAN. The gen-
erator simulated a systolic blood pressure, diastolic blood 
pressure, and a number of medications for each synthetic 
patient for each of 12 SPRINT study visits. We trained the 
discriminator to differentiate real and simulated data from a 
data set containing both groups. We repeated this process 
until the generator created synthetic participants that were 
difficult to discriminate from real ones (ie, the accuracy of the 
discriminator could not improve much above ≈50%).

Training With Differential Privacy
To limit the possibility that a participant’s trial involvement 
could be identified, we need to limit the influence any single 
study participant has on the neural network training of the 
discriminator, the only part of the AC-GAN that accesses real 
data. Neural networks are trained using gradient descent, by 
adjusting weights according to the gradient of a loss func-
tion. Nontechnically, this means taking a series of steps that 

provide a more accurate output. To incorporate differential 
privacy, we limit the maximum distance of any of these steps 
and then add a small amount of random noise. A detailed 
explanation of the processes is given in Methods in the Data 
Supplement and Abadi et al.16

SPRINT Clinical Trial Data
SPRINT was a randomized, single-blind treatment trial that 
divided hypertensive participants to either intensive treat-
ment with a systolic blood pressure target of <120 mm Hg 
or standard treatment with a systolic blood pressure target 
of <140 mm Hg. The trial included a total of 9361 partici-
pants. We included 6502 participants who had blood pres-
sure measurements for each of the first 12 measurements 
(RZ, 1M, 2M, 3M, 6M, 9M, 12M, 15M, 18M, 21M, 24M, and 
27M). We included measurements for systolic blood pres-
sure, diastolic blood pressure, and the count of medications 
prescribed to each participant, for a total of 3 parameters 
assessed at 12-time points.

Clinician Evaluation
Three physicians made a blinded real or synthetic judgment 
for each of 100 figures showing systolic blood pressure, dia-
stolic blood pressure, and number of medications at each 
of 12 visits. These cardiologists classified how realistic the 
patients looked (from 1 to 10, where 10 is most realistic) and 
whether the patients had been randomized to SPRINT’s stan-
dard or intensive treatment arm. Before reviewing the fig-
ures and regularly during the review of figures, the clinicians 
reviewed the published SPRINT protocol to help contextualize 
the data. We performed a Mann-Whitney U test to evaluate 
whether the real or synthetic samples received significantly 
different scores and compared the accuracy of the treatment 
arm classifications.

Transfer Learning Task in SPRINT Trial
Each of the 6502 participants in our analytical data set was 
labeled by treatment arm. We evaluated machine learning 
methods (logistic regression, support vector machines, and 
random forests from the scikit-learn18 package) by their abil-
ity to predict a participant’s treatment arm. This was done 
by splitting the 6502 participants into a training set of 6000 
participants (referred to as real in this article) and a test set 
of 502 participants. We then trained 2 AC-GANs using the 
6000 participant training set, (1) an AC-GAN model trained 
without differential privacy (referred to as nonprivate) and 
(2) an AC-GAN trained with differential privacy (referred to 
as private). Each classifier was then trained on 3 data sets, 
(1) the real training data set, (2) synthetic participants gen-
erated by the nonprivate AC-GAN, and (3) synthetic partici-
pants generated by the private AC-GAN. Each classifier was 
then evaluated on the same, real test set of participants. This 
allows for a comparison of classification performance (mea-
sured by area under the receiver-operator characteristic curve) 
between models trained on the real data, synthetic data, and 
private synthetic data. We evaluated both accuracy as well as 
the correlation between important features (random forest) 
and model coefficients (logistic regression and support vector 
machine).
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Predicting Heart Failure in the Medical 
Information Mart for Intensive Care 
Critical Care Database
We generated synthetic patients for the purpose of predicting 
heart failure. MIMIC is a database of 46 297 deidentified elec-
tronic health records for critical care patients at Beth Israel. We 
defined patients who suffered from heart failure as any patient 
in MIMIC diagnosed with an International Classification of 
Diseases, Ninth Revision code included in the Veterans Affairs’ 
Chronic Heart Failure Quality Enhancement Research Initiative’s 
guidelines: (402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 
404.13, 404.91, 404.93, 428, 281.1, 428.20, 428.21, 
428.22, 428.23, 428.30, 428.31, 428.32, 428.33, 428.40, 
428.41, 428.42, 428.43, and 428.9). We performed com-
plete case analysis for patients with at least 5 measurements 
for mean arterial blood pressure, arterial systolic and diastolic 
blood pressures, beats per minute, respiration rate, peripheral 
capillary oxygen saturation (Spo2), mean noninvasive blood 
pressure, and mean systolic and diastolic blood pressures. For 
patients with >5 measurements for these values, the first 5 
were used. This yielded 8260 total patients and 2110 cases of 
heart failure. We included the first 7500 patients in the train-
ing set and the remaining 760 in a validation set. The training 
and transfer learning procedures matched SPRINT protocol.

RESULTS
We trained a differentially private AC-GAN to generate 
5000 synthetic participants that resemble the real trial 
participants (Figure 1). Because the AC-GAN was trained 
under differential privacy, we could either release the 
model or generate as many patients as desired without 
an additional impact on training as differential privacy 
is robust to post-processing.15 We compare the median 
systolic blood pressures over time (Figure 2) of 3 groups, 

(1) real participants (real), (2) simulated participants via 
a nonprivate AC-GAN (nonprivate), and (3) simulated 
participants via the differentially private AC-GAN (pri-
vate). The nonprivate participants generated at the end 
of training appear similar to the real participants. The 
private participants have wider variability because of 
the noise added during training (Figure 1A).

The Table compares how close statistics calculated 
between the 3 groups were, as well as a comparison of 
treatment decisions between the real and synthetic partic-
ipants. In particular, we examined the proportion of times 
an additional medication was added when a participant 
was above the target systolic blood pressure goal for their 
treatment arm (120 mm Hg for intensive and 140 mm Hg 
for standard). For this task, the private synthetic partici-
pants closely reflected the original trial (15.51% versus 
15.14%). This demonstrates the potential to meaning-
fully ask questions using synthetic data before acquiring 
and confirming a putative relationship in the real data.

As another method of determining whether the result-
ing synthetic data are similar to the real data, we measured 
the correlation between each study visit’s systolic blood 
pressure, diastolic blood pressure, and medication count. 
We performed this analysis within SPRINT data set (real cor-
relation structure) and within the data sets generated by the 
GAN without and the GAN with differential privacy (nonpri-
vate correlation structure and private correlation structure, 
respectively). The Pearson correlation structure of the real 
SPRINT data (Figure 2A) was closely reflected by the correla-
tion structure of the nonprivate generated data (Figure 2B). 
Of note was initial positive correlation between the number 
of medications a participant was taking and the early sys-
tolic blood pressures, but this correlation decreased as time 
goes on. The Pearson correlation structure (ie, the values 
below the diagonal in Figure 2A and 2B) for the real SPRINT 
data (ie, the training data) and the nonprivate data were 
highly correlated (Spearman correlation=0.9645; P value 
<0.0001). Addition of differential privacy during the syn-
thetic data generation process (ie, the private data set) gen-
erated data generally reflecting these trends, but with an 
increased level of noise (Figure 2C). The correlation matrices 
between the real SPRINT data and the private generated 
data were only slightly less correlated (Spearman correla-
tion=0.9185; P value <0.0001). The noisy training process 
of the private discriminator places an upper bound on its 
ability to fit the distribution of data. Increased sample sizes 
(such as in EHRs or other real-world data sources) would 
help to clarify this distribution and because larger sample 
sizes cause less privacy loss, less noise would need to be 
added to achieve an acceptable privacy budget.

Human Comparison of Real Versus 
Synthetic Participants
To ensure similarity between the synthetic and real 
SPRINT data persists during rigorous inspection at 

Figure 1. Median systolic blood pressure trajectories from initial visit 
to 27 mo.
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more granular scale, we asked 3 clinicians to judge 
whether individual participant data were real SPRINT 
data or synthetic data. These 3 physicians, experi-
enced in the treatment of hypertension and familiar 
with SPRINT trial, were each asked to determine in 
a blinded fashion whether 100 participants (50 real 
and 50 synthetic) looked real. The clinicians looked 
for data inconsistent with SPRINT protocol or that 
otherwise appeared anomalous. For example, the cli-
nicians were alert for instances in which the systolic 

blood pressure was <100 mm Hg, but the participant 
was prescribed an additional medication. The clini-
cians classified each record on a 0 to 10 realism scale 
(10 was the most realistic), as well as whether the 
data correspond to standard or intensive treatment 
for 100 participants each (Figure  3A through 3D). 
The mean realism score for the synthetic patients 
(N=150) was 5.18 and the mean score for the real 
patients 5.26 (N=150; Figure  3E). We performed a 
Mann-Whitney U test to evaluate whether the scores 
were drawn from significantly different distributions 
and found a P value of 0.333. The clinicians correctly 
classified 76.7% of the real SPRINT participants and 
82.7% of the synthetic participants as the standard 
or intensive group. During this process, without prior 
instruction, the clinicians followed a couple of inter-
esting patterns which were confirmed via interview: 
(1) they tried to avoid choosing 5 as it would not 
provide any signal as to whether they thought the 
example was real or synthetic and (2) they gener-
ally did not feel confident enough to select extreme 
scores on either side. These behaviors can be seen in 
the resulting bimodal distribution.

A B

C

Figure 2. Pairwise Pearson correlation between columns.  
A, Original and real data, (B) nonprivate and auxiliary classifier generative adversarial network (AC-GAN) simulated data, and (C) differentially private and AC-GAN 
simulated data (RZ, randomization visit; 1M, 1-mo visit; 2M, 2-mo visit; 3M, 3-mo visit; 6M, 6-mo visit; 9M, 9-mo visit; 12M, 12-mo visit; 15M, 15-mo visit; 18M, 
18-mo visit; 21M, 21-mo visit; 24M, 24-mo visit; and 27M, 27-mo visit).

Table.  Summary Statistic Comparison Between Real, Nonprivate 
Synthetic, and Private Synthetic Participants, Mean (SD)

Real
Nonprivate 
Synthetic

Private 
Synthetic

SBP 129.01 (15.14) 128.96 (14.76) 128.74 (15.21)

Diastolic blood pressure 72.02 (11.43) 72.86 (10.93) 72.92 (11.47)

Medications 2.27 (1.15) 2.04 (1.12) 2.25 (1.14)

% SBP above target 39.56% 40.48% 39.80%

% SBP above target 
where medication added

15.14% 14.99% 15.51%

SBP indicates systolic blood pressure.
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Machine Learning Models Trained on 
Simulated Participants Are Accurate for 
Real Participants
Clinician review, visualizations of participant distribu-
tions, and variable correlations showed that synthetic 
participants appeared similar to real participants. Next, 

we sought to determine whether or not subsequent 
data analyses using synthetic data matched that of the 
real data. To do this, we trained machine learning clas-
sifiers using 4 methods (logistic regression, random for-
ests, support vector machines, and nearest neighbors) 
to distinguish treatment arms on 3 different sources of 
data: real participants, synthetic participants generated 

A B

C D

E F

Figure 3. Clinician evaluation of synthetic data. 
A, Synthetic participant scored a 2 by clinician expert. B, Synthetic participant scored a 4 by clinician expert. C, Synthetic participant scored a 6 by clinician expert. 
D, Synthetic participant scored an 8 by clinician expert. E, Comparison of scores between real and synthetic participant (dotted red lines indicate means). F, Distri-
bution of scores between real (blue) and synthetic (green) patients. BP indicates blood pressure.
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by the nonprivate model, and synthetic participants 
generated by the private model. We compared perfor-
mance of these classifiers on a separate holdout test 
set of 502 real participants that were not included in 
the training process (Figure 4). A drop in performance 
was expected because adding noise to maintain privacy 
reduces signal. If desired, training a nonprivate model 
could provide an approximate upper bound for expect-
ed performance.

We also sought to determine the extent to which 
the classifiers trained on real versus synthetic data 
were relying on the same features to make their pre-
dictions (Figure VI in the Data Supplement). We found 
that there was significant correlation between the 
importance scores (random forest) and coefficients 
(support vector machine and logistic regression) for 
the models trained on real versus synthetic data (Table 
I in the Data Supplement). In addition, it is important 
to note that the models achieved their performance 
while relying on >10 features at relatively even levels 
(Figure VI in the Data Supplement), demonstrating 
the ability to capture multivariate correlations. Finally, 
we tested the correlation between the first cross-val-
idation fold with each other fold within the real data 
to set an upper bound of expected correlation (Figure 
VII in the Data Supplement).

Privacy Analysis
We evaluate privacy based on the (ε, δ) formulation of 
differential privacy.15 This formal definition of differen-
tial privacy has 2 parameters. The parameter ε measures 
the maximum data set shift that could be observed by 
adding or removing a single participant (termed privacy 
loss). The second parameter, δ, is the upper bound of 

the probability that the privacy loss exceeds ε. Put in 
other words, ε represents the maximum privacy loss 
where there is no privacy breach, and δ represents the 
probability of a privacy breach. We frame the problem 
in this way because it is impossible to anticipate all 
future methods of attack. For further details refer to 
the Methods in the Data Supplement.

Therefore, it is important to choose values for ε and 
δ that are satisfactory to the specific use case and corre-
spond to the consequences of a privacy breach. The val-
ues of (ε, δ) increase as the algorithm (the discrimina-
tor from the AC-GAN) accesses the private data. In our 
experiment, our private AC-GAN algorithm is able to 
generate useful synthetic data with ε=3.5 and δ<10−5 
(Figure 5). The upper bound of the epoch selection task 
(Methods in the Data Supplement) used (0.05, 0) per 
each model included for a total of (0.5, 0) differential 
privacy. This established a modest, single-digit ε privacy 
budget of (4, 10−5) that is on par or lower than other 
methods using deep learning with differential privacy.

Predicting Heart Failure in the MIMIC 
Critical Care Database
We applied the method to the MIMIC Critical Care Data-
base19 to demonstrate its generality. We tested whether 
our approach could be applied in a second data set by 
predicting heart failure from the first 5 measurements 
for 9 vital sign measurements in 7222 patients. The 
vital sign measurements included: mean arterial blood 
pressure, arterial systolic and diastolic blood pressures, 
beats per minute, respiration rate, peripheral capillary 
oxygen saturation (Spo2), mean noninvasive blood pres-
sure, and mean systolic and diastolic blood pressures. 
Performance on privately generated synthetic patients 

Figure 4. Accuracy of models trained on 
synthetic participants vs real data.  
Line indicates performance on real data, which 
on average should provide the best possible 
performance; bar indicates performance of clas-
sifier trained on private synthetic participants; 
bottom of chart indicates random performance.
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was on par with performance models trained on real 
patients (Figure 6A through 6D). As in SPRINT data, the 
coefficients for logistic regression and the support vec-
tor machine as well as the feature importances were 
significantly correlated between real and synthetic data 
(Table II in the Data Supplement).

DISCUSSION
Deep GANs and differential privacy offer a technical 
solution to the challenge of sharing biomedical data 
to facilitate exploratory analyses. Our approach, which 
uses deep neural networks for data simulation, can 
generate synthetic data to be distributed and used for 
secondary analysis. We perform training with a differ-
ential privacy framework that limits study participants’ 
privacy risk. We apply this approach to data from 
SPRINT clinical trial due to its recent use for a data 
reanalysis challenge.

We introduce an approach that samples from mul-
tiple epochs to improve performance while maintaining 
privacy. However, this is an early stage work and several 
challenges remain. Deep learning models have many 
training parameters and require substantial sample siz-
es, which can hamper this method’s use for small clini-
cal trials or targeted studies. In this study, we demon-
strated the ability to use differentially private AC-GANs 
on relatively low-dimensional time series data sets. We 
applied our method to time series as we believe this 
provided a better test than simple point in time data 
because there would be time-based correlation struc-
tures. We expect this approach to be most well suited 

Figure 5. The value of delta as a function of epoch for different ε values.  
An ε value of 3.5 allows for 1000 epochs of training and δ<10−5.

A

E F

B C D

Figure 6. Machine learning and statistical evaluation of synthetic data. 
 A–D, Performance on transfer learning task by source of training data for each machine learning method. E, Pairwise Pearson correlation between columns 
for the original and real data. F, Pairwise Pearson correlation between columns for the private synthetic data. AUROC indicates area under the receiver operator 
characteristic; LR, logistic regression; RF, random forest.
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to sharing specific variables from clinical trials to enable 
wide sharing of data with similar properties to the actu-
al data. We do not intend the method to be applied 
to generate high-dimensional genetic data from whole 
genome sequences or other such features. Application 
to that problem would require the selection of a subset 
of variants of interest or substantial additional method-
ological work.

Another fruitful area of use may be large electronic 
health records systems, where the ability to share syn-
thetic data may aid methods development and the 
initial discovery of predictive models. Similarly, finan-
cial institutions or other organizations that use outside 
contractors or consultants to develop risk models might 
choose to share generated data instead of actual client 
data. In very large data sets, there is evidence that dif-
ferential privacy may even prevent overfitting to reduce 
the error of subsequent predictions.

Though our approach provides a general framing, 
the precise neural network architecture may need to be 
tuned for specific use cases. Data with multiple types 
presents a challenge. EHRs contain binary, categorical, 
ordinal, and continuous data. Neural networks require 
these types to be encoded and normalized, a process 
that can reduce signal and increase the dimensionality of 
data. New neural networks have been designed to deal 
more effectively with discrete data.20,21 Researchers will 
need to incorporate these techniques and develop new 
methods for mixed types if their use case requires it.

Due to the fluid nature of security and best practic-
es, it is important to choose a method which is math-
ematically provable and ensures that any outputs are 
robust to post-processing. Differential privacy satisfies 
both needs and is thus being relied on in the upcom-
ing 2020 United States Census.22 It is imperative to 
remember that to receive the guarantees of differen-
tial privacy a proper implementation is required. We 
think testing frameworks to ensure accurate imple-
mentations are a promising direction for future work, 
particularly in domains with highly sensitive data like 
health care.

The practice of generating data under differential 
privacy with deep neural networks offers a technical 
solution for those who wish to share data to the chal-
lenge of patient privacy. This technical work comple-
ments ongoing efforts to change the data sharing cul-
ture of clinical research.
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