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Abstract Different term weighting techniques such as TF � IDF or BM25 have been used

intensely for manifold text-based information retrieval tasks. Their use for modeling term

profiles for named entities and subsequent calculation of similarities between these named

entities have been studied to a much smaller extent. The recent trend of microblogging

made available massive amounts of information about almost every topic around the world.

Therefore, microblogs represent a valuable source for text-based named entity modeling.

In this paper, we present a systematic and comprehensive evaluation of different term
weighting measures, normalization techniques, query schemes, index term sets, and simi-
larity functions for the task of inferring similarities between named entities, based on data

extracted from microblog posts. We analyze several thousand combinations of choices for

the above mentioned dimensions, which influence the similarity calculation process, and we

investigate in which way they impact the quality of the similarity estimates. Evaluation is

performed using three real-world data sets: two collections of microblogs related to music

artists and one related to movies. For the music collections, we present results of genre
classification experiments using as benchmark genre information from allmusic.com.

For the movie collection, we present results of multi-class classification experiments using as

benchmark categories from IMDb. We show that microblogs can indeed be exploited to

model named entity similarity with remarkable accuracy, provided the correct settings for the

analyzed aspects are used. We further compare the results to those obtained when using Web

pages as data source.

Keywords Social media mining � Microblog analysis � Vector space model �
Term weighting � Information extraction � Evaluation

M. Schedl (&)
Department of Computational Perception, Johannes Kepler University,
Altenberger Straße 69, 4040 Linz, Austria
e-mail: markus.schedl@jku.at

123

Inf Retrieval (2012) 15:183–217
DOI 10.1007/s10791-012-9187-y



1 Introduction

Microblogging has encountered a tremendous popularity gain during the past couple of

years. Today’s most popular microblogging service Twitter1 has more than 100 million

registered users (Yarow 2011). Millions of users post ‘‘tweets’’ that reveal what they are

doing, what is on their mind, or what is currently important for them. According to Evans

(2011), the number of tweets per day surpassed 50 millions in early 2010. Twitter thus

represents a rich data source for text-based information extraction (IE) and information

retrieval (IR).

In classical text-IR, term weighting techniques such as TF � IDF and BM25 are typ-

ically used in combination with a similarity function to estimate the relevance of a set of

documents to a query. In IE the same techniques (term weighting and similarity cal-

culation) can be used to model term profiles for named entities and compute pairwise

similarity scores between these entities. Such similarity measures are vital for various

applications, in particular, in the domain of multimedia retrieval. For example, in music

information retrieval elaborating musical similarity measures that are capable of cap-

turing aspects that relate to real, perceived similarity is one of the main challenges as it

enables a wealth of intelligent music applications. Examples are systems to automatically

generate playlists (Aucouturier and Pachet 2002; Pohle et al. 2007), music recommender

systems (Celma 2008; Zadel and Fujinaga 2004), music information systems (Schedl

2008), semantic music search engines (Knees et al. 2007), and intelligent user interfaces

(Knees et al. 2007; Pampalk and Goto 2007) to access music collections by means more

sophisticated than the textual browsing facilities (artist-album-track hierarchy)

traditionally offered.

Various approaches to model the term vector space (Salton et al. 1975) on the Web have

been proposed throughout the last years, e.g., Debole and Sebastiani (2003), Lan et al.

(2005), Salton and Buckley (1988), Schedl et al. (2011), Whitman and Lawrence (2002).

Microblogs, in contrast, have been studied to a much smaller extent, although using this

data source for the purpose of similarity estimation between entities offers several

advantages over the use of Web pages. First, microblog posts are shorter and typically

more precise than Web pages, the former reducing computational complexity, the latter

potentially offering more accurate results. Second, due to the instantaneous nature of

microblogs, text-based similarity estimation approaches leveraging this kind of data are

better capable of incorporating breaking news and offering a more up-to-date view on

events related to the investigated domains, such as information on album releases or latest

gossip about musicians or actors.

Addressing the lack of literature on modeling named entities via term vectors on the

microblogosphere and thoroughly investigating different aspects of the models, the work at

hand is the first aiming to answer the following research questions. First, we would like to

assess if microblog data gathered over several months are capable of reflecting similarities

between named entities from two domains, namely music artists and movies. We chose

these two domains because accurate similarity measures are of particular importance in

these contexts, which is underlined by the recent popularity and developments of rec-

ommender systems for music and movies, such as those offered by last.fm and

Netflix, cf. Celma (2008), Koren (2009). The second important question that is addressed

in this work is how to model similarities between the entities of interest. There exists a

large number of possibilities to construct term vectors from texts/microblogs related to the

1 http://twitter.com. Accessed January 2011.
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named entities under consideration (in regard to term selection, term weighting, or nor-

malization, for example). The corresponding algorithmic choices, together with the actual

similarity measure employed, have a great impact on the accuracy of the similarity esti-

mates between the music or movie entities. The objective of this work is hence to identify

well-performing combinations of these choices and to derive general rules for modeling

similarities between named entities from microblogs. Performance is measured by an

evaluation approach resembling (Sanderson and Zobel 2005). More precisely, Mean

Average Precision (MAP) scores are computed on genre labels predicted by a k-Nearest

Neighbor (kNN) classifier. To reduce the computational complexity of evaluating the

otherwise enormous set of different algorithmic combinations, results are first computed on

a smaller set and only combinations statistically insignificantly different from the top-

performing combination will be assessed on the larger data sets.

The work at hand was inspired by Zobel and Moffat (1998), where the authors thor-

oughly evaluate various choices related to constructing text feature vectors for IR purposes,

e.g., term frequency (TF), term weights (IDF), and normalization approaches. They ana-

lyze the influence of these decisions on retrieval behavior. Similarly, a systematic large-

scale study (in terms of single evaluation experiments and factors analyzed) on the

influence of a multitude of decisions on similarity estimation, using real-world data col-

lections, is presented here. To this end, we investigate several thousand combinations of

the following single aspects:

– query scheme

– index term set

– term frequency

– inverse document frequency

– normalization with respect to document length

– similarity function

The term frequency rd,t of a term t in a document d estimates the importance t has for

document d (representing the named entity under consideration). The inverse document
frequency wt estimates the overall importance of term t in the whole corpus and is

commonly used to weight the rd,t factor, i.e., downweight terms that are important for

many documents and hence less discriminative for d. We further assess the impact of

normalization with respect to document length. Moreover, different similarity functions
Sd1;d2

to estimate the proximity between the term vectors of two named entities’ documents

d1 and d2 are examined.

The remainder of this article is organized as follows. Section 2 outlines the context of

this work by conducting a literature review on text-based similarity measurement and

microblog mining. Section 3 then describes all aspects we analyzed to model the named

entity similarity space on the microblogosphere. The core part of this contribution can be

found in Section 4, where details on the experiments are given and results are presented

and discussed. Finally, conclusions are drawn in Section 5.

2 Related work

Related work basically falls into two categories: text-based similarity measurement and

microblog mining. Whereas the former has a long tradition, ranging back several decades,

the latter is a rather young research field.
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2.1 Text-based similarity measures

There exists a wide range of literature on modeling text documents according to the bag-

of-words principle using vector space representations, e.g., Baeza-Yates and Ribeiro-Neto

(2011), Luhn (1957), Salton et al. (1975). Since elaborating on all publications related to

the discipline of text-IR is out of this article’s scope, we restrict ourselves to point to some

work dealing with text-IR in the context of multimedia retrieval on the Web, as this context

is closely related to the sets of named entities we use in the evaluation experiments.

Text data in the multimedia domain generally constitutes context information or

contextual data, opposed to content-based features directly extracted from the media

items. Deriving term feature vectors from Web pages for the purpose of music artist

similarity calculation was first undertaken in Cohen and Fan (2000). Cohen and Fan

automatically extract lists of artist names from Web pages, which are found by querying

Web search engines. The resulting pages are then parsed according to their DOM tree,

and all plain text content with minimum length of 250 characters is further analyzed for

occurrences of entity names. Term vectors of co-occurring artist names are then used for

artist recommendation. Using artist names to build term vector representations, whose

term weights are computed as co-occurrence scores, is an approach also followed later in

Schedl et al. (2005), Zadel and Fujinaga (2004). In contrast to Cohen and Fan’s

approach, the authors of Schedl et al. (2005), Zadel and Fujinaga (2004) derive the term

weights from search engine’s page count estimates and suggest their method for artist

recommendation.

Automatically querying a Web search engine to determine pages related to a specific

topic is a common and intuitive task, which is therefore frequently performed for data

acquisition in IE research. Examples in the music domain can be found in Geleijnse and

Korst (2006), Whitman and Lawrence (2002), whereas Cimiano et al. (2004), Cimiano and

Staab (2004), Knees et al. (2007) apply this technique in a more general context.

Building term feature vectors from term sets other than artist names is performed in

Whitman and Lawrence (2002), where Whitman and Lawrence extract different term sets

(unigrams, bigrams, noun phrases, artist names, and adjectives) from up to 50 artist-related

Web pages obtained via a search engine. After downloading the pages, the authors apply

parsers and a part-of-speech (POS) tagger (Brill 1992) to assign each word to its suited test

set(s). An individual term profile for each artist is then created by employing a version of

the TF � IDF measure. The overlap between the term profiles of two artists, i.e., the sum of

weights of all terms that occur in both term profiles, is then used as an estimate for their

similarity.

Extending the work presented in Whitman and Lawrence (2002), Baumann and

Hummel (2003) introduce filters to prune the set of retrieved Web pages. First, they

remove all Web pages with a size of more than 40 kilobytes (after parsing). They also try to

filter out advertisements by ignoring text in table cells comprising more than 60 characters,

but not forming a correct sentence. Finally, Baumann and Hummel perform keyword

spotting in the URL, the title, and the first text part of each page. Each occurrence of the

initial query parts (artist name, ‘‘music’’, and ‘‘review’’) contributes to a page score. Pages

that score too low are filtered out.

Knees et al.’s (2004) approach is similar to Whitman and Lawrence (2002). Unlike

Whitman and Lawrence who experiment with different term sets, Knees et al. use only one

list of unigrams. For each artist, a weighted term profile is created by applying a TF � IDF
variant. Calculating the similarity between the term profiles of two artists is then performed

using the cosine similarity. Knees et al. evaluate their approach in a genre classification
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setting using as classifiers k-Nearest Neighbor (kNN) and Support Vector Machines (SVM)

(Vapnik 1995).

Other approaches derive term profiles from more specific Web resources. In Celma et al.

(2006), for example, the authors propose a music search engine that crawls audio blogs via

RSS feeds and calculates TF � IDF features. Hu et al. (2005) extract TF-based features from

music reviews gathered from Epinions.com.2 In Schedl (2010) the author extracts user

posts associated with music artists from the microblogging service Twitter3 and models

term profiles using term lists specific to the music domain.

In the work reported on so far, the authors usually select a specific variant of the

TF � IDF term weighting measure and apply it to documents retrieved for the entity under

consideration. The individual choices involved in selecting a specific TF � IDF variant and

similarity function, however, do not seem to be the result of detailed assessments. They

rather resemble common variants that are known to yield good results in IR tasks. Whether

these variants are also suited to describe named entities via term profiles and subsequently

estimate similarities between them is seldom assessed comprehensively in the literature.

Sebastiani (2002) presents a review of different approaches to text categorization from a

machine learning perspective, focusing on term selection techniques. Salton and Buckley

(1988) investigate different approaches to term weighting and similarity measurement for

text retrieval. Closest to the work at hand is certainly Zobel and Moffat’s thorough study

on various choices in modeling term profiles (Zobel and Moffat 1998). In particular, term

weights for queries and documents as well as similarity functions are analyzed. However,

Zobel and Moffat aim at determining good algorithmic choices for the purpose of docu-

ment retrieval, i.e., retrieving relevant documents for a given query. We are, in contrast,

interested in similarity measurement between two documents that represent named entities.

Therefore, this article presents the first comprehensive study on named entity similarity

estimation on the microblogosphere.

2.2 Microblog mining

With the advent of microblogging a huge, albeit noisy data source became available.

Literature dealing with microblogs can be broadly categorized into works that study human

factors or properties of the Twittersphere and works that exploit microblogs for infor-

mation extraction and retrieval tasks.

As for the former, Teevan et al. (2011) analyze query logs to uncover differences in

search behavior between users of classical Web search engines and users looking for

information in microblogs. They found that Twitter queries are shorter and more

popular than bing4 queries on average. Furthermore, microblogs are more often sought

for people, opinions, and breaking news. In terms of query formulation, reissuing the same

query can be more frequently observed in microblog search. In Web search, by contrast,

modifying and extending a query is very popular.

Java et al. (2007) study network properties of the microblogosphere as well as geo-

graphical distributions and intentions of Twitter users. The authors report that

Twitter is most popular in North America, Europe, and Asia (Japan), and that same

language is an important factor for cross-connections (‘‘followers’’ and ‘‘friends’’) over

continents. Employing the HITS algorithm (Kleinberg 1999) on the network of

2 http://www.epinions.com/music. Accessed August 2007.
3 See the footnote 1.
4 http://www.bing.com. Accessed January 2010.
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‘‘friend’’-relations, Java et al. further derived user intentions from structural properties.

They identified the following categories: information sharing, information seeking, and

friendship-wise relationships. Analyzing the content of Twitter posts, the authors dis-

tilled the following intentions: daily chatter, conversations, sharing information/URLs, and

reporting news.

In a recent study, Kwak et al. (2010) perform a topological analysis of the Twitter
network. The authors report a low level of reciprocity, i.e., only 22% of the connections

between users are bidirectional. The average path length was found to be only four, which

is surprisingly small for a network the size of the Twittersphere and considering the

directional network structure. Moreover, a moderate level of homophily, i.e., a higher

likelihood for connections between similar people than between dissimilar people, was

discovered when measuring similarity in terms of geographic location and user popularity.

In addition, Kwak et al.’s study indicates that information diffusion after the first retweet is

very fast.

Work related to content mining of microblogs includes the following: Cheng et al.

propose a method to localize Twitter users based on spatial cues (‘‘local’’ words)

extracted from their tweets’ content (Cheng et al. 2010). To this end, in a first step several

classifiers are trained to identify words with a strong geospatial meaning. In order to deal

with the sparsity in the distribution of these cues, different smoothing approaches, e.g.,

taking into account neighboring cities when constructing the term representation of a city,

are applied subsequently. In an experiment conducted on a set of tweets posted within the

USA, Cheng et al.’s approach placed more than a half of the users within a 100-mile-radius

of their correct location.

Making use of the fact that tweets are a good source for up-to-date information and

breaking news, Dong et al. (2010) propose an approach to identify fresh URLs in

Twitter posts. To this end, the authors investigate content-based features extracted from

the tweets, an authority score computed for each user, and Twitter-specific statistical

features, such as number of retweets or number of users that replied to a message con-

taining a tiny URL. They show that these features can be used to improve both recency

ranking and relevance ranking in real-time Web search. Another work that aims at

improving ranking can be found in Duan et al. (2010). Duan et al. propose a novel ranking

strategy for tweet retrieval. To this end, they investigate different feature sets, including

content-based features, Twitter-specific features, and authority scores of users (fol-

lowers, retweeters, mentioners). Using a learning to rank algorithm, the authors found that

the best-performing features are authority scores, length of a tweet, and whether the tweet

contains a URL.

An approach to classifying tweets can be found in Sriram et al. (2010). Sriram et al.

describe each tweet by an eight-dimensional feature vector comprising the author of the

post and seven binary attributes indicating, for example, occurrence of slang words, cur-

rency and percentage signs, or the use of capitalization and repeated characters. Sriram

et al.’s feature set outperformed the standard bag-of-words approach using a Naı̈ve Bayes

classifier to categorize tweets into the five classes news, events, opinions, deals, and private

messages.

Armentano et al. (2011) present a recommender system that suggests potentially

interesting users to follow based on the similarity between tweets posted by the seed user

and tweets posted by a set of candidate users. To this end, the authors create and investigate

different user profiles, for example, modeling the seed user via term frequencies of his/her

aggregate posts or of all of his/her followees. Related to Armentano et al.’s work, Weng

et al. aim at identifying influential twitterers for a given topic (Weng et al. 2010). To this
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end, they apply Latent Dirichlet Allocation (LDA) (Blei et al. 2003) to their corpus of

tweets. Subsequently, topical similarity between twitterers is computed as the Jensen–

Shannon divergence between the distribution of the latent topics of the respective users.

Further taking into account the link structure, Weng et al. propose a ranking function for

influential twitterers in each topic. Similar to Armentano et al. (2011), Weng et al. evaluate

their approach in a recommendation setting.

Microblogs have also been exploited for the purpose of event and trend detection.

Sakaki et al. propose semantic analysis of tweets to detect earthquakes in Japan in real-

time (Sakaki et al. 2010). A more general approach to automatically detect events and

summarize trends by analyzing tweets is presented by Sharifi et al. (2010). Another work

on trend detection is Schedl (2011), where Schedl exploits tweets for spatio-temporal

popularity estimation of music artists. Sankaranarayanan et al. aim at capturing tweets that

report on breaking news (Sankaranarayanan et al. 2009). They cluster the identified tweets

according to their TF � IDF weights and cosine similarity. Furthermore, each cluster is

assigned a set of geographic locations using both spatial clues in the tweets themselves and

explicit location information as indicated by the twitterers.

3 Modeling the microblog term vector space

Resembling the large-scale experiments conducted in Zobel and Moffat (1998), our

analysis is guided by the question whether specific algorithmic choices perform consis-

tently and considerably better or worse than others. Performance is measured via classi-

fication tasks among term vector representations of tweets, cf. Sect. 4. Our goal is, hence,

to derive guidelines for favoring or avoiding specific algorithmic variants when the task is

similarity estimation between named entities and the corpus comprises microblogs. The

assessed aspects for modeling named entities based on microblogs are detailed in the

following (Table 1).

3.1 Query scheme

We decided to assess two different schemes to query Twitter as previous work on Web-

based IE (Schedl et al. 2005; Whitman and Lawrence 2002) has shown that adding

domain-specific key terms to a search request generally improves the quality of feature

vectors in terms of similarity-based classification accuracy. In Web-based music

Table 1 Denominations used in
term weighting functions and
similarity measures

D Set of documents

N Number of documents

fd,t Number of occurrences of term t in document d

ft Number of documents containing term t

Ft Total number of occurrences of t in the collection

T d Set of distinct terms in document d

fd
m Largest fd,t of all terms t in d

fm Largest ft in the collection

rd,t Term frequency (cf. Table 5)

wt Inverse document frequency (cf. Table 6)

Wd Document length of d
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information research, for example, common terms used as additional key words are ‘‘music

review’’ or ‘‘music genre style’’. Taking into account the 140-character-limitation of

tweets, we decided to include only ‘‘music’’ as additional query term (QS_M) for the music

data sets, or we query without any additional key terms, i.e., use only the artist name

(QS_A). For the movie data set, the setting QS_M refers to including the term ‘‘movie’’ in

the query. Table 2 summarizes the two query schemes investigated.

3.2 Index term set

Earlier work in text-based music artist modeling (Turnbull et al. 2007; Hu and Downie

2007; Pampalk et al. 2005) shows that a crucial choice in defining the representation of an

artist is that of the terms used to index the corresponding documents. For the work at hand,

we hence investigated various term sets, which are summarized for the music and movie

collections, respectively, in Tables 3 and 4. Set TS_A contains all terms found in the

corpus (after casefolding, stopping, and stemming). Set TS_S is the entire term dictionary

of SCOWL,5 which is an aggregation of several spell checker dictionaries for various

English languages and dialects. Set TS_N encompasses all artist names present in the

music data set. Previous work has shown that the corresponding co-occurrence approach to

music artist similarity estimation yields remarkable results (Schedl and Knees 2008;

Schedl et al. 2005). Term set TS_D is a manually created dictionary of music-related terms

that resembles the one used in Pampalk et al. (2005). It contains, for example, descriptors

of genre, instruments, geographic locations, epochs, moods, and musicological terms. Set

TS_L represents the 250 most popular tags utilized by users of last.fm. Set TS_F
comprises the aggregated data sets for the data types musical genre, musical instrument,
and emotion, extracted from Freebase.6

For the movie data set (cf. Table 4), we adapted the term sets accordingly. Sets TS_A
and TS_S conceptually equal the corresponding sets used to index music-related tweets.

Term set TS_D, in contrast, is a dictionary of movie-related terms, which we extracted

from the ‘‘key words’’ provided by IMDb. Since this key word set is considerably noisy,

we performed frequency-based filtering. We retained only terms that were assigned to at

least 10 different movies, but to not more than 100 different movies. The former constraint

effectively removes noise, the latter discards terms that are unlikely to discriminate well

between different categories of movies.

To build the inverted word-level index (Zobel and Moffat 2006), we use a modified

version of the open source indexer Lucene,7 which we extended to represent Twitter
posts. The extensions will be made available through the CoMIRVA framework8 (Schedl

et al. 2007). When creating the indexes for the different term sets, we commonly employ

casefolding and stopping, e.g., Baeza-Yates and Ribeiro-Neto (2011). Stemming, in

Table 2 Query schemes used to
retrieve music/movie-related
tweets

Abbr. Query scheme

QS_A ‘‘artist name’’ / ‘‘movie name’’

QS_M ‘‘artist name’’?music / ‘‘movie name’’?movie

5 http://wordlist.sourceforge.net. Accessed January 2011.
6 http://www.freebase.com. Accessed January 2011.
7 http://lucene.apache.org. Accessed January 2011.
8 http://www.cp.jku.at/CoMIRVA. Accessed January 2011.
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contrast, is only performed for the term sets for which it seems reasonable, i.e., for term

sets TS_A and TS_S.

3.3 TF and IDF: term weighting

The term weighting models investigated here resemble Zobel and Moffat’s (1998). We

decided to extend the TF � IDF formulations investigated by them with BM25-like for-

mulations. The assessed variants for TF can be found in Table 5, those for IDF are shown

in Table 6. Table 1 contains an overview of the denominations used in the different term

weighting formulations, normalization strategies, and similarity measures (Tables 7, 8).

BM25 is an alternative term weighting scheme, used in the Okapi framework for text-

based probabilistic retrieval, cf. Robertson et al. (1995, 1999). This model assumes a priori

knowledge on topics from which different queries are derived. Moreover, based on

information about which documents are relevant for a specific topic and which are not, the

term weighting function can be tuned to the corpus under consideration. Since BM25 is a

well-established term ranking method, we included it in the experiments. However, it has

to be noted that we cannot assume categorical a priori knowledge here, neither on the level

of single tweets, nor on the level of named entities. On the level of tweets, manually

classifying hundreds of thousands of posts would be too labor-intensive. On the named

entity level, we could obviously group the entities (or more precisely, the corresponding

Table 3 Different term sets used to index the music-related Twitter posts

Abbr./term set Cardinality Description

TS_A/all_terms C224a, QS_A: 38,133
C224a, QS_M: 19,133
C3ka, QS_A: 1,489,459
C3ka, QS_M: 437,014

All terms (stemmed) that occur in the corpus
of the retrieved Twitter posts

TS_S/scowl_dict 698,812 All terms that occur in the entire SCOWL
dictionary

TS_N/artist_names 224/3,000 Names of the artists for which data was retrieved

TS_D/dictionary 1,398 Manually created dictionary of musically
relevant terms

TS_L/last.
fm_toptags

250 Overall top-ranked tags returned by last.fm’s
Tags.getTopTags function

TS_F/freebase 3,628 Music-related terms extracted from Freebase
(genres, instruments, emotions)

Table 4 Different term sets used to index the movie-related Twitter posts

Abbr./term set Cardinality Description

TS_A/all_terms QS_A: 1,843,286/54,378
QS_M: 754,067/29,532

All terms (stemmed) that occur in the corpus
of the retrieved Twitter posts

TS_S/scowl_dict QS_A: 698,812/28,355
QS_M: 698,812/12,473

All terms that occur in the entire SCOWL dictionary

TS_D/dictionary QS_A: 25,527/4,877
QS_M: 25,527/3,569

Dictionary of filtered IMdb key words
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tweets) according to a genre taxonomy and optimize BM25 correspondingly. However, we

believe that this is not justifiable for two reasons: First, for arbitrary media repositories, we

cannot assume to have access to genre information. Second, using genre information would

obviously bias the results of the genre classification experiments as the other term

weighting measures do not incorporate such a priori knowledge. Thus, BM25 would be

Table 5 Evaluated variants to calculate the term frequency rd,t

Abbr. Description Formulation

TF_A Formulation used for binary match SB = b
rd;t ¼

1 if t 2 T d

0 otherwise

�

TF_B Standard formulation SB = t rd, t = fd,t

TF_C Logarithmic formulation rd,t = 1 ? log e fd,t

TF_C2 Alternative logarithmic formulation suited for fd,t \ 1 rd,t = log e (1 ? fd,t)

TF_C3 Alternative logarithmic formulation as used in ltc variant rd,t = 1 ? log 2 fd,t

TF_D Normalized formulation rd;t ¼ fd;t
f m
d

TF_E Alternative normalized formulation. Similar to Zobel and Moffat
(1998) we use K = 0.5. SB = n

rd;t ¼ K þ ð1� KÞ � fd;t
f m
d

TF_F Okapi formulation, according to Robertson et al. (1995), Zobel and
Moffat (1998). For W we use the vector space formulation, i.e.,
the Euclidean length

rd;t ¼ fd;t
fd;tþWd=avd2DðWdÞ

TF_G Okapi BM25 formulation, according to Robertson et al. (1999) rd;t ¼ ðk1þ1Þ�fd;t

fd;tþk1 � ð1�bÞþb� Wd
avd2D ðWd Þ

h i

k1 = 1.2, b = 0.75

Table 6 Evaluated variants to calculate the inverse document frequency wt

Abbr. Description Formulation

IDF_A Formulation used for binary match SB = x wt = 1

IDF_B Logarithmic formulation SB = f wt ¼ loge 1þ N
ft

� �
IDF_B2 Logarithmic formulation used in ltc variant wt ¼ loge

N
ft

� �

IDF_C Hyperbolic formulation wt ¼ 1
ft

IDF_D Normalized formulation wt ¼ loge 1þ fm
ft

� �

IDF_E Another normalized formulation SB = p wt ¼ loge
N�ft

ft

The following definitions are based on
the term’s noise nt and signal st.

nt ¼
P

d2Dt

� fd;t
Ft

log2
fd;t
Ft

� �

st = log 2 (Ft - nt)

IDF_F Signal wt = st

IDF_G Signal-to-noise ratio wt ¼ st

nt

IDF_H
wt ¼ max nt0

t02T

� �
� nt

IDF_I Entropy measure wt ¼ 1� nt

log2 N

IDF_J Okapi BM25 IDF formulation, according to Pérez-Iglesias
et al. (2009), Robertson et al. (1999)

wt ¼ log N�ftþ0:5
ftþ0:5
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unjustifiably favored. For our experiments, we therefore use a simpler BM25 formulation

as the one proposed in Robertson et al. (1999), cf. variants TF_G and IDF_J in Tables 5

and 6, respectively.

3.4 Virtual documents and normalization

When creating a Web-based term profile that describes a named entity (a music artist or

movie in our case), it is common to aggregate the Web pages associated with the entity

under consideration to form a ‘‘virtual document’’ (Baumann and Hummel 2003; Knees

et al. 2004). This procedure not only facilitates handling small or empty pages, it is also

more intuitive since the item of interest is the entity under consideration, not a Web page.

The study conducted in Schedl et al. (2011) further shows that calculating term weights on

the level of individual Web pages before aggregating the resulting feature vector performs

inferior for the task of similarity calculation than using ‘‘virtual documents’’. Therefore it

seems reasonable to aggregate all tweets retrieved for a named entity to one ‘‘virtual post’’,

Table 7 Evaluated normalization strategies for document length

Abbr. Description Formulation

NORM_NO No normalization

NORM_SUM Normalize sum of each virtual document’s term feature vector to 1
P

t2T d

rd;t ¼ 1

NORM_MAX Normalize maximum of each virtual document’s term feature vector to 1 max
t2T d

rd;t ¼ 1

Table 8 Evaluated similarity functions Sd1 ;d2

Abbr. Description Formulation

SIM_INN Inner product Sd1 ;d2
¼

P
t2T d1 ;d2

wd1;t � wd2 ;t

� �

SIM_COS Cosine measure
Sd1 ;d2

¼
P

t2T d1 ;d2

wd1 ;t
�wd2 ;tð Þ

Wd1
�Wd2

SIM_DIC Dice formulation
Sd1 ;d2

¼
2
P

t2T d1 ;d2

wd1 ;t
�wd2 ;tð Þ

W2
d1
þW2

d2

SIM_JAC Jaccard formulation
Sd1 ;d2

¼
P

t2T d1 ;d2

wd1 ;t
�wd2 ;tð Þ

W2
d1
þW2

d2
�
P

t2T d1 ;d2

wd1 ;t
�wd2 ;tð Þ

SIM_OVL Overlap formulation
Sd1 ;d2

¼
P

t2T d1 ;d2

wd1 ;t
�wd2 ;tð Þ

minðW2
d1
;W2

d2
Þ

SIM_EUC Euclidean similarity
Dd1 ;d2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t2T d1 ;d2

wd1 ;t � wd2 ;t

� �2
s

Sd1 ;d2
¼ maxd0

1
;d0

2
ðDd0

1
;d0

2
Þ

� �
� Dd1 ;d2

SIM_JEF Jeffrey divergence-based similarity Sd1 ;d2
¼ maxd0

1
;d0

2
ðDd0

1
;d0

2
Þ

� �
� Dd1 ;d2

D F;Gð Þ ¼
P

i

fi log fi
mi
þ gi log gi

mi

� �

mi ¼ fiþgi

2
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in particular taking into consideration the already strong limit of Twitter posts to 140

characters.

Since the different length of two entity’s virtual documents might influence the per-

formance of retrieval and similarity prediction tasks, e.g., Baeza-Yates and Ribeiro-Neto

(2011), we evaluate several normalization methods, which are summarized in Table 7.

3.5 Similarity function

The similarity measures analyzed are shown in Table 8. We included all measures

investigated by Zobel and Moffat (1998) that can be applied to our somewhat differing

usage scenario of computing similarities between two equally dimensional term feature

vectors that represent two comparable named entities. In addition, Euclidean similarity

(SIM_EUC) and similarity inferred from Jeffrey divergence (SIM_JEF) (Lin 1991) were

included.

3.6 Notation

To facilitate referring to a particular evaluation experiment, which is defined as a com-

bination of the choices described above, we adopt the following scheme to denote one

algorithmic setting:

\Query Scheme[.\Index Term Set[.\Normalization[.

\TF[.\IDF[.\Similarity Measure[

Omitting certain components, we denote sets of algorithmic combinations: e.g.,

TF_C.IDF_B.SIM_COS refers to all experiments with term frequency formulation

TF_C, inverse document formulation IDF_B, and the cosine similarity function,

irrespective of query scheme, index term set, and document normalization.

4 Evaluation

4.1 Data sets

We performed evaluation using three data sets, covering two types of named entities that

relate to two different media types: music artists and movie titles. The creation of these

data sets is outlined and their properties are presented in the following.

4.1.1 Music artists

We used two data sets of music artists for evaluation. The first one, referred to as C224a,

consists of 224 well-known artists and has a uniform genre distribution (14 genres,9 16

artists each). It has been frequently used to evaluate Web-/text-based music information

retrieval approaches.10

9 The genres in C224a are Country, Folk, Jazz, Blues, R’n’B/Soul, Heavy Metal/Hard Rock, Alternative
Rock/Indie Punk, Rap/Hip Hop, Electronica, Reggae, Rock’n’Roll, Pop, and Classical.
10 C224a is available at http://www.cp.jku.at/people/schedl/data/C224a.txt.
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The second data set consists of 3,000 music artists, representing a large real-world

collection. The data has been gathered as follows. We used last.fm’s API11 to extract

the most popular artists for each country of the world, which we then aggregated into a

single list of 201,135 unique artist names. Since last.fm’s data is prone to misspellings

or other mistakes due to its collaborative, user-generated knowledge base, we cleaned the

data set by matching each artist name with the database of the expert-based music

information system allmusic.com,12 from which we also extracted genre information.

Starting this matching process from the most popular artist found by last.fm and

including only artist names that also occur in allmusic.com, we eventually obtained a

list of 3,000 music artists. This artist set, which will be denoted C3ka in the following, is

publicly available.13 According to allmusic.com the artists are categorized into 18

distinct genres. The distribution of the genres in C3ka is shown in Table 9. Please note

that the editors of allmusic.com use the genre ‘‘Rock’’ to denote a widespread range of

music; basically, everything from Pop to Dark Metal is classified as ‘‘Rock’’. Therefore,

the genre distribution is considerably unbalanced.

4.1.2 Movies

The second data set consists of 1,008 distinct movie titles extracted from IMDb (Jass

2003). For 25 movie genres, we gathered the 50 top-ranked movies. We further added the

overall 50 top-ranked movies of each decade, from the 1910s to the 2010s. This adds a

Table 9 Genre distribution of
music artist set C3ka

Genre Artists Share (%)

Avantgarde 8 0.267

Blues 11 0.367

Celtic 5 0.167

Classical 42 1.400

Country 24 0.800

Easy listening 6 0.200

Electronica 149 4.967

Folk 24 0.800

Gospel 23 0.767

Jazz 106 3.533

Latin 91 3.033

Newage 18 0.600

Rap 203 6.767

Reggae 29 0.967

RnB 101 3.367

Rock 2,031 67.700

Vocal 30 1.000

World 99 3.300

11 http://last.fm/api. Accessed January 2011.
12 http://www.allmusic.com. Accessed January 2011.
13 C3ka is available at http://www.cp.jku.at/people/schedl/data/C3ka.txt.
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further 11 categories. Please note that some movies occur in the top-ranked list for more

than one genre, hence the total number of 1,008 distinct movie titles. The movie data set

will be referred to as C1km in the following, and the movie names are available for

download.14

4.2 Acquiring tweets

To gather posts related to the two domains under assessment, i.e., music and movies, we

use Twitter’s API15 to issue queries according to the schemes indicated in Table 2.

Accounting for the time-varying behavior of the search results and to obtain a broad

coverage, we queried Twitter from December 2010 to February 2011 and aggregated

the posts retrieved over time for each query. The resulting set of tweets per query/named

entity is then pre-processed by employing casefolding and stopping. When using the term

sets TS_A and TS_S, stemming is employed additionally.

For artist set C224a, we achieved a coverage of 100%; for set C3ka, we achieved a

coverage of 96.87%, i.e., for 2,906 artists out of the 3,000 tweets were available. Coverage

for the movie data set C1km was considerably lower (82.8% or 834 movies), likely due to

the fact that IMDb always lists the full, official movie title, which is often replaced by a

shortened version when referring to the movie in a microblog, e.g., ‘‘The Fog of War:

Eleven Lessons from the Life of Robert S. McNamara’’.

As for the total amounts of tweets extracted, using collection C224a, 21,336 tweets

were gathered for QS_A and 10,867 for QS_M. For set C3ka, 3,161,582 tweets were

retrieved for QS_A and 2,972,130 for QS_M. For the movie set C1km, we retrieved

11,684,074 tweets using query scheme QS_A and 4,958,223 tweets using query scheme

QS_M.

4.3 Experimental setup

To assess the quality of the named entity’s term models, we perform genre classification
experiments, evaluating the different algorithmic choices. As ground truth the genre labels

given by allmusic.com and IMDb are used for the music sets and the movie set,

respectively. Although genre taxonomies are often inconsistent and erroneous (Pachet and

Cazaly 2000), it has become commonplace to use genre as a proxy for similarity. In

principle, a more precise ground truth could be established from human similarity judg-

ments. Complete similarity judgments are, however, not publicly available on a large scale,

neither for music, nor for movies. Hence, we have to restrict evaluation to the retrieval task

of determining k artists/movies similar to a given query artist/movie. This task resembles

k nearest neighbor (kNN) classification, where the class of a seed item is predicted as the

most frequent class among the seed’s k most similar items. In the case of the single-class

classification problem given by the music data sets, performing kNN is straightforward.

However, when dealing with multiple labels/classes assigned to each item, as in the case of

the movie set, we opted to employ a strict decision rule: Given a seed item with s class

labels associated and a number of k nearest neighbors to consider, we accumulate the

number of occurrences of up to s classes among the k neighbors. We then calculate the

(proportionate) precision of the top s classes given by the accumulated counts on the seed’s

s classes, i.e., each of the top s classes among the k nearest neighbors that match one of the

14 C1km is available at http://www.cp.jku.at/people/schedl/data/C1km.txt.
15 https://dev.twitter.com. Accessed February 2012.
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seed’s s classes account for a precision score of 1/s. The algorithm used to compute

precision@k for the multi-class experiments is illustrated in Algorithm 1.

We performed a two-staged evaluation: In order to determine and filter inferior algo-

rithmic combinations, we first ran a comprehensive set of evaluation experiments on the

equally genre-distributed data set C224a. In a second set of experiments, we then eval-

uated the remaining variants on the real-world artist set C3ka. On the movie set C1km all

variants were evaluated.

Our experimental setting resembles the ones employed in Buckley and Voorhees

(2000), Sanderson and Zobel (2005). Given a query item, the retrieval task is to find items

of the same class(es) via similarity. We use Mean Average Precision (MAP) as perfor-

mance measure. Employing Algorithm 1, MAP is simply computed as the arithmetic mean

of the precision@k scores. Following Sanderson and Zobel (2005), we first calculate MAP

of each distinct algorithmic setting on data set C224a. Excluding redundant combinations,

a total of 23,100 single experiments have been conducted for set C224a and 11,627 for set

C1km. In the first stage of the experiments, only variants that fulfill at least one of the

following two conditions are retained:

– there is a relative MAP difference of 10% or less to the top-ranked variant

– or the t test does not show a significant difference to the top-ranked variant (at 5%

significance level).

For set C224a, the top 577 variants have a relative MAP difference (from the 1st to the

respective rank, taking the respective rank as basis) of less than 10%. The pairwise t test

shows a significant difference for the top-ranked 1,809 variants. For the second stage of

experimentation, conducted on collection C3ka, we therefore evaluated only these top-

ranked 1,809 variants. For the movie set C1km, these numbers are 2,392 (relative MAP

difference) and 5,629 (t test), respectively (Figs. 1, 2).

Algorithm 1 Precision@k in
the multi-class case
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4.4 Results and discussion

4.4.1 MAP scores

Table 10 shows the 10 top-ranked and the 10 bottom-ranked variants with their MAP

scores (considering up to 15 nearest neighbors) for set C224a. The MAP scores of the

23,100 evaluated variants span a wide range and are quite diverse (cf. Fig. 3), with a mean

of l = 37.89 and a standard deviation of r = 17.16. From Table 10 it can be seen that

highest MAP scores can only be achieved when using QS_A, TS_A, and NORM_NO. At the

other end of the ranking we see that QS_M and SIM_OVL dominate the most inferior

variants.

Table 11 shows the top- and bottom-ranked variants with their MAP scores for the

movie data set C1km (considering up to 50 nearest neighbors). Note that these MAP scores
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Fig. 2 Box plots of MAP scores for each algorithmic choice on music set C224a
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are overall lower than the scores for the music collections, with a mean of l = 23.12 and a

standard deviation of r = 2.61. This lower overall performance is partly due to the higher

number of classes, partly because of the stricter decision rule employed in the classification

process, cf. Sect. 4.3. Highest ranks are again dominated by query scheme QS_A and term

set TS_A, whereas the lowest-ranking variants are dominated by QS_A.TS_S.NORM_
SUM.SIM_JEF.

When comparing Tables 10 and 11, it becomes obvious that the best- and worst-

performing variants vary considerably with the set of names entities, in particular in terms

of TF and IDF formulations as well as similarity measures. Furthermore, it seems easier to

identify algorithmic choices that yield worse performance and should thus be avoided than

to clearly suggest best-performing choices.

4.4.2 Distribution of specific algorithmic choices

Figure 4 displays the distribution of each analyzed aspect among all 23,100 experimental

setups investigated for set C224a. Figure 5 shows this distribution among the 1,809 top-

ranked variants. Figure 6 shows the top-ranked algorithmic choices for artist set C3ka and

Fig. 7, eventually, shows this distribution for the movie data set C1km.

For some aspects, general rules can be derived from these plots: Regarding the query

scheme, it is obvious that using only the named entity as indicator to determine related

tweets (QS_A) outperforms adding domain-specific key words. This result at first glance

contrasts earlier work on Web-based music artist classification (Knees et al. 2008).

Table 10 MAP scores of the
top-ranked and bottom-ranked
variants on music set C224a

MAP Variant

64.018 QS_A.TS_A.NORM_NO.TF_C2.IDF_E.SIM_JAC

63.929 QS_A.TS_A.NORM_NO.TF_C2.IDF_J.SIM_JAC

63.839 QS_A.TS_A.NORM_NO.TF_C.IDF_E.SIM_JAC

63.810 QS_A.TS_A.NORM_NO.TF_C2.IDF_E.SIM_COS

63.780 QS_A.TS_A.NORM_NO.TF_C.IDF_E.SIM_COS

63.780 QS_A.TS_A.NORM_NO.TF_C2.IDF_B2.SIM_JAC

63.780 QS_A.TS_A.NORM_NO.TF_C2.IDF_B2.SIM_DIC

63.720 QS_A.TS_A.NORM_NO.TF_C2.IDF_E.SIM_DIC

63.601 QS_A.TS_A.NORM_NO.TF_C2.IDF_J.SIM_COS

63.542 QS_A.TS_A.NORM_NO.TF_C.IDF_J.SIM_JAC

� � � � � �
3.482 QS_M.TS_A.NORM_MAX.TF_G.IDF_G.SIM_OVL

3.452 QS_M.TS_S.NORM_SUM.TF_B.IDF_F.SIM_OVL

3.423 QS_M.TS_A.NORM_SUM.TF_C3.IDF_J.SIM_OVL

3.363 QS_M.TS_S.NORM_MAX.TF_G.IDF_F.SIM_OVL

3.274 QS_M.TS_A.NORM_SUM.TF_C.IDF_E.SIM_OVL

3.065 QS_M.TS_A.NORM_SUM.TF_C.IDF_J.SIM_OVL

3.006 QS_M.TS_A.NORM_MAX.TF_G.IDF_F.SIM_OVL

2.976 QS_M.TS_S.NORM_MAX.TF_F.IDF_F.SIM_OVL

2.857 QS_M.TS_A.NORM_MAX.TF_F.IDF_G.SIM_OVL

2.649 QS_M.TS_A.NORM_MAX.TF_F.IDF_F.SIM_OVL
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However, Knees et al. analyze Web pages, not microblogs. It seems that adding any

additional key word too strongly prunes Twitter’s result set.

As for the term sets used for indexing, the very top ranks are dominated by algorithmic

variants that use the complete set of terms occurring in the corpus (TS_A), for both the

music and the movie data sets. It is noteworthy, however, that the good performance of the

general term sets (TS_A and TS_S) comes at the price of much higher computational

complexity (cf. Tables 3, 4 for term set cardinalities). Hence, when performance is crucial,

the results suggest using other term sets. A particularly good choice when the domain is

music at first glance seems to be TS_N, the list of artist names, as it is the set that most

frequently occurs among the top-ranked variants (32.5% or 588 times). However, TS_N
yields very unstable results, as will be shown in the subsequent subsection. Another

interesting finding is that the music dictionary TS_D, despite its good performance for

similarity-based artist clustering using Web pages, cf. Pampalk et al. (2005), occurs first

only at rank 1,112. An empirically verified reason for this may be that Twitter users

tend to refrain from using a decent music-specific vocabulary, even when they twit about

music-related issues.16 For the movie set C1km, in contrast, TS_D represents a good trade-

off between computational complexity and accuracy as it does not significantly more

seldom occur among the top-ranked variants than the set TS_S (both about 28 vs. 44% for

TS_A). It seems that a collaboratively assembled dictionary, such as TS_D for the movie

domain, outperforms a domain-specific one assembled by experts, such as TS_D for the

music domain, provided it is not too small.

As for the term weighting functions (TF and IDF variants), no clear picture regarding

favorable variants emerges when analyzing the top-ranked algorithmic combinations. We

found, however, that TF_A occurred most seldom among the top-ranked variants,

regardless of the data set. This variant should thus be avoided. The most frequently

occurring formulations on the other hand are TF_C2 (15.69% of the top-ranks for the

music sets) and TF_E (16.80%), the latter being particularly present in the very top ranks

for the music data sets. TF_C2 also occurs frequently among the top-ranked variants of the

movie set C1km (13.52%), together with TF_D (14.55%), TF_F (13.82%), and TF_G
(13.87%).

Analogously to TF, for IDF variants we can easily point to formulations that should be

avoided, namely IDF_G (0.50% among C3ka’s top ranks), IDF_F (0.66%), and IDF_A
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Fig. 3 Distribution of MAP scores among all 23,100 ranks on music set C224a

16 Only 478 unique terms out of the 1,398 in TS_D were used, only 319 were used in at least two different
tweets.

200 Inf Retrieval (2012) 15:183–217

123



(2.54%). However, we were not able to determine a single variant that clearly outperforms

all others. The IDF variants most frequently occurring within the top ranks of the music

sets are IDF_B2 (13.93%), IDF_J (13.71%), and IDF_E (13.38%). For the movie set

C1km, the very same variants perform best (IDF_E with 11.16% occurrence, IDF_J with

11.09%, and IDF_B2 with 9.95%).

As for the similarity measure, we found no clear evidence that cosine similarity

(SIM_COS), the de-facto standard measure in IR, generally outperforms the others. It is

likely that the key advantage of SIM_COS, the document length normalization, plays a

minor role here, because tweets are limited to 140 characters which are usually exhausted

by Twitter users. Further support for this hypothesis is given by the remarkably good

performance of the simple inner product SIM_INN measure that does not perform any

length normalization. On all three data sets, SIM_INN occurs almost twice as often as

SIM_COS among the top-ranked variants (about 32 vs. 16%). Also among the virtual

document normalization methods, using no normalization at all (NORM_NO) outperforms

the other variants investigated, accounting for 52.24% of the top ranks for the music sets,

and for 39.94% of the top variants using set C1km. In addition to SIM_INN, also the

Jeffrey divergence-based similarity SIM_JEF performed comparably well over all data

sets (31.5% for the music sets, 17.77% for C1km).

To investigate if extrapolating the results from the small music set C224a to the real-

world set C3ka is valid, we calculated Spearman’s rank-order correlation coefficient (e.g.,

Sheskin 2004) on the two rankings obtained with the two artist sets. The computation

revealed a moderate correlation of 0.37. This correlation indicates that the rankings

Table 11 MAP scores of the
top-ranked and bottom-ranked
variants on movie set C1km

MAP Variant

27.964 QS_A.TS_A.NORM_SUM.TF_G.IDF_C.SIM_INN

27.962 QS_A.TS_A.NORM_NO.TF_A.IDF_C.SIM_DIC

27.962 QS_A.TS_A.NORM_NO.TF_A.IDF_C.SIM_JAC

27.962 QS_A.TS_A.NORM_MAX.TF_A.IDF_C.SIM_DIC

27.962 QS_A.TS_A.NORM_MAX.TF_A.IDF_C.SIM_JAC

27.895 QS_A.TS_A.NORM_NO.TF_E.IDF_C.SIM_DIC

27.895 QS_A.TS_A.NORM_NO.TF_E.IDF_C.SIM_JAC

27.895 QS_A.TS_A.NORM_SUM.TF_E.IDF_C.SIM_DIC

27.895 QS_A.TS_A.NORM_SUM.TF_E.IDF_C.SIM_JAC

27.895 QS_A.TS_A.NORM_MAX.TF_E.IDF_C.SIM_DIC

� � � � � �
17.101 QS_M.TS_S.NORM_SUM.TF_C3.IDF_H.SIM_JEF

17.101 QS_M.TS_S.NORM_SUM.TF_C3.IDF_I.SIM_JEF

17.101 QS_M.TS_S.NORM_SUM.TF_D.IDF_F.SIM_JEF

17.101 QS_M.TS_S.NORM_SUM.TF_D.IDF_G.SIM_JEF

17.101 QS_M.TS_S.NORM_SUM.TF_E.IDF_F.SIM_JEF

17.101 QS_M.TS_S.NORM_SUM.TF_E.IDF_G.SIM_JEF

17.101 QS_M.TS_S.NORM_SUM.TF_F.IDF_F.SIM_JEF

17.101 QS_M.TS_S.NORM_SUM.TF_F.IDF_G.SIM_JEF

17.101 QS_M.TS_S.NORM_SUM.TF_G.IDF_F.SIM_JEF

17.101 QS_M.TS_S.NORM_SUM.TF_G.IDF_G.SIM_JEF
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produced by the same algorithmic choices are not largely influenced by factors such as size

of artist collection or number of artists per genre.

4.4.3 Average quality and performance variance

In order to assess the quality of individual algorithmic choices—e.g., the use of a specific

similarity measure—for the overall task of retrieving similar items, we further computed

for all aspects analyzed and for each concrete choice average performance measures over

all combinations that use the algorithmic choice under consideration. In particular,

arithmetic mean, median, and standard deviation of the ranks and the actual MAP scores
were calculated; mean and median describe the overall performance of each algorithmic

choice, whereas the standard deviation can be interpreted as an estimate of the

‘‘robustness’’ of the algorithmic choice against changes in other algorithmic aspects. If
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Fig. 4 Distribution of different settings among all variants on music set C224a. a Query scheme, b term
set, c TF formulation, d IDF formulation, e similarity function, f normalization method
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variants employing a specific choice are tightly grouped together in the rank-ordered set

of all combinations, their standard deviation will be small. This also means that the

performance of such tightly grouped variants (according to a particular aspect, e.g., use

of term set TS_F) is less sensitive to changes in other choices (for example, employing a

different normalization).

To investigate both average performance and robustness of specific variants, Fig. 1

shows box plots of the rankings obtained for each algorithmic choice in each of the six

broad aspects under consideration.17 Figure 2 shows the same statistical figures, but this
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Fig. 5 Distribution of different settings among the top-ranked variants on music set C224a. a Query
scheme, b term set, c TF formulation, d IDF formulation, e similarity function, f normalization method

17 The red mark represents the median, the upper and lower edges of the box are respectively the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers
(http://www.mathworks.de/help/toolbox/stats/boxplot.html. Accessed December 2011).
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time computed on MAP scores instead of ranks. Table 12 reports detailed results for each

algorithmic choice.

Taking a closer look at Figs. 1, 2 and Table 12, the following observations can be made:

– QS_A clearly outperforms QS_M in terms of quality, although the results obtained with

QS_M are more robust.

– TS_F outperforms all other term sets, both in quality and robustness. This superiority

becomes even more clearly visible when using MAP scores as quality measure

(Fig. 2) instead of ranks (Fig. 1). Interestingly, term sets TS_A and TS_N do not

perform well overall, since the results they produce are spread across a wide range of

ranks (or MAP values), and their quality is not too good either. Figure 4b reveals the

reason for the huge spread of TS_N: Even though TS_N is employed in some of the

highest ranked variants, there are also two large clusters of variants employing TS_N
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Fig. 6 Distribution of different settings among the top-ranked variants on music set C3ka. a Query
scheme, b term set, c TF formulation, d IDF formulation, e similarity function, f normalization method

204 Inf Retrieval (2012) 15:183–217

123



towards the very end of the rank-ordered set of experiments ([ rank 15,000).

Especially its combination with the algorithmic choices QS_M, TF_B, TF_D, TF_E,

IDF_A, IDF_H, SIM_INN, or SIM_OVL proves detrimental. Looking at the quality

scores of TS_A, a particularly interesting fact stands out, which is that TS_A
performs much better in terms of MAP than in terms of rank score. Hence, although

the findings presented in Sect. 4.4.2 suggest that TS_A is well-suited to yield top

results, this seems to be true only when particular other algorithmic choices are

present. As a consequence, TS_A should be used with caution, only when

computational complexity is not an issue and when other algorithmic choices can

be ensured (cf. Table 10).
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Fig. 7 Distribution of different settings among the top-ranked variants on movie set C1km. a Query
scheme, b term set, c TF formulation, d IDF formulation, e similarity function, f normalization method
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Table 12 Detailed results among algorithmic choices on music set C224a

Variant Rank MAP

Median Mean SD Min Max Median Mean SD Min Max

QS_A 8,929 10,021 7,247.2 1 23,080 48.066 40.380 18.016 3.869 64.018

QS_M 13,340 13,080 5,633.8 1,112 23,100 39.732 35.399 15.866 2.649 57.083

TS_A 12,421 12,257 7,869.8 1 23,100 42.158 34.325 20.659 2.649 64.018

TS_D 10,388 10,983 5,349.6 1,112 23,052 45.774 40.693 14.028 4.851 57.083

TS_F 8,639 9,068 4,831.1 529 19,098 48.527 45.408 10.402 12.857 58.393

TS_L 10,343 9,949 5,561.6 318 23050 45.863 43.012 12.610 4.970 59.702

TS_N 15,660 12,880 7,901.3 221 23,058 33.214 33.181 18.853 4.702 60.595

TS_S 14,444 14,165 6,439.0 225 23,098 35.997 30.717 18.527 2.976 60.536

TF_A 13,152 12,310 5,325.9 144 22,979 40.223 38.829 12.361 5.982 61.875

TF_B 10,034 10,505 6,373.3 90 23,092 46.399 40.625 15.846 3.452 62.321

TF_C 17,240 14912 6,462.9 3 23,096 26.116 28.360 18.222 3.066 63.839

TF_C2 9,006 9,854 6,509.2 1 23,088 47.961 41.976 15.709 3.631 64.018

TF_C3 17,972 15,421 6,618.3 22 23,093 19.137 26.607 18.628 3.423 63.066

TF_D 9,871 10,371 6,290.5 89 23,053 46.682 40.974 15.697 4.821 62.321

TF_E 10,587 10,981 6,110.3 15 23,063 45.417 40.524 14.978 4.435 63.184

TF_F 9,448 10,079 6,276.5 62 23,100 47.321 41.836 15.187 2.649 62.589

TF_G 9,274 10,028 6,303.5 25 23,097 47.589 41.899 15.288 3.006 62.976

IDF_A 12,855 12,632 5,775.5 449 23,055 41.012 36.061 15.921 4.792 58.839

IDF_B 9,773 10,475 6,681.4 29 23,000 46.860 40.374 16.573 5.804 62.946

IDF_B2 8,665 9,780 6,765.0 6 23,058 48.482 41.785 16.607 4.702 63.780

IDF_C 12,782 12,409 6,020.9 87 23,027 41.220 37.195 15.609 5.446 62.351

IDF_D 9,790 10,554 6,700.2 13 23,015 46.845 40.208 16.601 5.595 63.363

IDF_E 8,744 9,784 6,750.8 1 23,095 48.363 41.722 16.674 3.274 64.018

IDF_F 17,108 16,061 4,884.2 459 23,100 27.173 26.772 15.586 2.649 58.750

IDF_G 17,009 15,439 5,334.3 258 23,099 28.021 28.219 16.568 2.857 60.179

IDF_H 9,731 10,304 6,596.3 19 22,970 46.920 40.977 16.472 6.042 63.155

IDF_I 8,889 9,887 6,637.9 12 23,038 48.125 41.664 16.435 5.298 63.393

IDF_J 8,673 9,731 6,750.9 2 23,096 48.482 41.807 16.660 3.066 63.929

SIM_COS 9,281 10,275 6,463.8 4 23,060 47.559 41.047 16.073 4.583 63.809

SIM_DIC 9,201 10,127 6,471.4 7 22,910 47.679 41.323 16.013 6.339 63.780

SIM_EUC 18,116 17,262 4,082.2 562 23,027 18.095 23.070 14.796 5.446 58.274

SIM_INN 10,896 11,135 6,407.8 141 23,005 44.926 39.429 16.049 5.774 61.905

SIM_JAC 9,194 10,132 6,470.0 1 22,972 47.708 41.318 16.017 6.042 64.018

SIM_JEF 8,235 9,299 6,820.6 87 23,058 49.137 42.635 16.488 4.702 62.351

SIM_OVL 13,004 12,624 6,074.8 18 23,100 40.610 36.403 16.155 2.649 63.155

NORM_MAX 11,851 11,781 6,415.5 27 23,100 43.452 37.418 16.919 2.649 62.976

NORM_NO 9,482 9,811 5,908.0 1 23,054 47.292 43.276 13.289 4.821 64.018

NORM_SUM 14,978 13,277 7,219.1 15 23,096 34.241 32.300 19.258 3.066 63.184

Best results for each category are printed in boldface
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– As for the term frequency, formulations TF_C and TF_C3 perform poorly and are

unstable. We therefore strongly recommend to refrain from these. The binary

formulation TF_A is the most stable one, but performs inferior to all but the worst

variants mentioned above. Among the other, preferably performing variants, TF_C2
sticks out as yielding particularly good results, in terms of both rank score and MAP.

Furthermore, TF_F and TF_G perform equally well as TF_C2 in terms of MAP and

slightly worse than the top-performing variant in terms of rank score. Both TF_F and

TF_G are slightly more robust than TF_C2. Hence, as an overall recommendation one

should select one of the term frequency formulations TF_C2, TF_F, or TF_G, with a

slight preference for the former one if top-performance is crucial and a slight

preference for one of the latter two variants if stability of the results is more important.

– Variants IDF_A, IDF_C, IDF_F, and IDF_G perform significantly worse than the

other formulations of inverse document frequency. As for top-performing choices,

IDF_E ranks at the very top according to both MAP and rank scores. Also IDF_B2
and IDF_J are not significantly inferior.

– Among the similarity functions, SIM_EUC performs remarkably inferior to all other

variants. SIM_OVL does not perform considerably better. Best results can be achieved

employing SIM_JEF, while at the same time maintaining a reasonable stability level.

– NORM_NO performs best in terms of quality and robustness, whereas NORM_SUM
performs worst in both regards.

4.4.4 Comparison with web page-based experiments

We also conducted a similar study using as data source Web pages related to music artists

instead of microblogs (Schedl et al. 2011). In order to assess the specificities of microb-

logs, in the following the results obtained in the paper at hand for the music data sets are

compared against those reported in Schedl et al. (2011), where the same evaluation setting

is employed. Although the music data sets are partly different, the results of Schedl et al.

(2011) are comparable to those of the current study. Overall, the best-performing variants

according to Schedl et al. (2011) in this paper’s notation are the following:

– TF_C3.IDF_I.SIM_COS
– TF_C3.IDF_H.SIM_COS
– TF_C2.IDF_I.SIM_COS
– TF_C2.IDF_H.SIM_COS

In all top-ranked variants, no normalization on the Web page-level, i.e., giving each

Web page retrieved for the artist under consideration the same weight, is performed.

Nevertheless, the virtual documents are normalized, i.e., when aggregating individual

Web pages retrieved for a particular artist to a virtual document, each term score is

divided by the absolute number of Web pages retrieved for the artist that contain the

term.

Comparing the two studies, the first observation to be made is that regardless of the data

source (Web pages or microblogs), logarithmic formulations of TF tend to perform best (in

particular for music artists). As for IDF, the variants IDF_I, IDF_H, and IDF_B2
perform best for Web pages, while IDF_B2, IDF_E, and IDF_J yield highest MAP

scores for microblogs. Thus, again logarithmic formulations considerably outperform other

variants for both data sources. Regarding the similarity measure, the top-ranked variants on

the corpus of Web pages employ cosine similarity, while for microblogs no clear indication
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for the cosine measure to outperform the others can be found. Furthermore, normalization

does not improve results when the corpus is constituted of tweets. In contrast, when the

corpus comprises Web pages, normalization on the level of virtual documents considerably

ameliorates the MAP scores. No comparison can be made on the level of term sets due to

the fact that Schedl et al. (2011) does not take into account different dictionaries for

indexing. As for the query scheme, QS_M which includes the term ‘‘music’’ in addition to

the named entity sought for clearly outperforms QS_A on the Web-page-corpus, while the

inverse holds on the microblog-corpus. It seems that adding additional, domain-specific

search terms to the query is counterproductive when looking for microblogs since it prunes

the set of tweets too heavily, while doing so is a necessity to filter unrelated Web pages

from the search results.

4.5 Alternative classifiers

Since we modeled and evaluated the retrieval task as a genre classification task, we can

alternatively use classifiers other than kNN for evaluation purposes. We hence compare the

memory-based kNN classifier with several state-of-the-art classifiers: the kernel-based

Support Vector Machines (SVM) (Vapnik 1995), Random Forests (RF) (Breiman 2001),

i.e., an ensemble learner based on decision trees, and Repeated Incremental Pruning to
Produce Error Reduction (RIPPER) (Cohen 1995), a propositional rule learner. We

Table 13 Accuracies of the top-
ranked and bottom-ranked vari-
ants using SVM classification on
music set C224a

Acc. Variant

71.875 QS_A.TS_A.NORM_NO.TF_C.IDF_G

71.875 QS_A.TS_A.NORM_NO.TF_C2.IDF_G

71.429 QS_A.TS_A.NORM_NO.TF_C3.IDF_G

70.089 QS_A.TS_A.NORM_NO.TF_C2.IDF_F

69.643 QS_A.TS_A.NORM_MAX.TF_F.IDF_G

69.196 QS_A.TS_A.NORM_NO.TF_C.IDF_F

68.750 QS_A.TS_A.NORM_MAX.TF_B.IDF_F

68.750 QS_A.TS_A.NORM_MAX.TF_D.IDF_F

68.750 S_A.TS_A.NORM_MAX.TF_G.IDF_F

68.750 QS_A.TS_A.NORM_MAX.TF_G.IDF_G

68.750 QS_A.TS_A.NORM_NO.TF_D.IDF_F

68.750 QS_A.TS_A.NORM_SUM.TF_D.IDF_F

� � � � � �
7.143 QS_A.TS_S.NORM_MAX.TF_A.IDF_F

7.143 QS_A.TS_S.NORM_MAX.TF_E.IDF_F

7.143 QS_A.TS_S.NORM_NO.TF_A.IDF_F

7.143 QS_A.TS_S.NORM_NO.TF_E.IDF_F

7.143 QS_A.TS_S.NORM_NO.TF_F.IDF_F

7.143 QS_A.TS_S.NORM_NO.TF_G.IDF_F

7.143 QS_A.TS_S.NORM_SUM.TF_A.IDF_F

7.143 QS_A.TS_S.NORM_SUM.TF_E.IDF_F

6.696 QS_A.TS_S.NORM_MAX.TF_C.IDF_F

6.696 QS_A.TS_S.NORM_MAX.TF_C3.IDF_F
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employed 10-fold Cross-Validation using the default parameters of the respective WEKA

(Hall et al. 2009) classifiers.

Tables 13, 14, and 15 show the highest- and lowest-ranked variants when using as

classifier SVM, RF, and RIPPER, respectively. Similar to the kNN experiments

described in Sect. 4.3, query set QS_A clearly outperforms QS_M. It can be observed that

SVM benefits from having access to as much data as possible, i.e., it achieves highest

accuracies when operating on term set TS_A. The Random Forest classifier yields sig-

nificantly lower accuracies and performs best when using artist names as term set TS_N.

The rule learner RIPPER seemingly performs best on the Freebase set TS_F, the reason

for which is probably the clearest semantic distinction between the terms in this dic-

tionary. Performing no normalization proved beneficial also for classifiers other than

kNN, although in the case of RF, this becomes apparent better from looking at the top

ranks in Fig. 9e than from Table 14. To yield top performance with the RF classifier, the

use of IDF_F (in addition to QS_A.TS_N) seems to be more important than employing

a particular normalization function. No clear picture emerges, in contrast, when ana-

lyzing the impact of the term frequency formulation. Even though the top 4 performers

with SVM employ variants of the TF_C formulation, combinations including several

Table 14 Accuracies of the top-
ranked and bottom-ranked vari-
ants using RF classification on
music set C224a

Acc. Variant

57.589 QS_A.TS_N.NORM_MAX.TF_A.IDF_F

57.589 QS_A.TS_N.NORM_SUM.TF_E.IDF_F

57.589 QS_A.TS_N.NORM_NO.TF_A.IDF_F

57.589 QS_A.TS_N.NORM_SUM.TF_A.IDF_F

57.589 QS_A.TS_N.NORM_MAX.TF_E.IDF_F

57.589 QS_A.TS_N.NORM_NO.TF_E.IDF_F

57.143 QS_A.TS_N.NORM_SUM.TF_G.IDF_F

56.696 QS_A.TS_N.NORM_NO.TF_F.IDF_F

55.357 QS_A.TS_N.NORM_MAX.TF_C2.IDF_F

54.911 QS_A.TS_N.NORM_NO.TF_A.IDF_G

54.911 QS_A.TS_N.NORM_NO.TF_A.IDF_G

54.911 QS_A.TS_N.NORM_SUM.TF_A.IDF_G

54.911 QS_A.TS_N.NORM_MAX.TF_A.IDF_G

54.911 QS_A.TS_N.NORM_MAX.TF_C2.IDF_G

54.911 QS_A.TS_N.NORM_SUM.TF_C2.IDF_G

� � � � � �
7.589 QS_A.TS_S.NORM_MAX.TF_C2.IDF_F

7.143 QS_A.TS_S.NORM_SUM.TF_A.IDF_F

7.143 QS_A.TS_S.NORM_MAX.TF_A.IDF_F

7.143 QS_A.TS_S.NORM_MAX.TF_F.IDF_F

7.143 QS_A.TS_S.NORM_NO.TF_B.IDF_F

7.143 QS_A.TS_S.NORM_SUM.TF_C2.IDF_F

7.143 QS_A.TS_S.NORM_NO.TF_A.IDF_F

7.143 QS_A.TS_S.NORM_NO.TF_C2.IDF_F

6.697 QS_A.TS_S.NORM_SUM.TF_G.IDF_F

6.697 QS_A.TS_S.NORM_SUM.TF_B.IDF_F

6.250 QS_A.TS_S.NORM_MAX.TF_C.IDF_F
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other formulations can be found among the top-performing variants as well. Among the

top-performing variants in the RF experiments, the simple binary match function TF_A
appears surprisingly often. For the decision tree learner, the IDF formulation hence

seems to be more important. For RIPPER, variants of TF_C clearly outperform all other

choices.

Figures 8, 9, and 10 show the distribution of each algorithmic choice among all 3,564

experimental setups18 when using classifier SVM, RF, and RIPPER, respectively.

Table 15 Accuracies of the top-
ranked and bottom-ranked vari-
ants using RIPPER classification
on music set C224a

Acc. Variant

58.4821 QS_A.TS_F.NORM_NO.TF_B.IDF_H

58.4821 QS_A.TS_F.NORM_NO.TF_C3.IDF_H

58.0357 QS_A.TS_F.NORM_MAX.TF_C.IDF_C

58.0357 QS_A.TS_F.NORM_MAX.TF_C.IDF_D

58.0357 QS_A.TS_F.NORM_MAX.TF_C.IDF_E

58.0357 QS_A.TS_F.NORM_MAX.TF_C.IDF_J

57.5893 QS_A.TS_F.NORM_NO.TF_C.IDF_J

57.5893 QS_A.TS_F.NORM_NO.TF_C2.IDF_I

57.5893 QS_A.TS_F.NORM_NO.TF_C.IDF_A

57.5893 QS_A.TS_F.NORM_NO.TF_C2.IDF_A

57.5893 QS_A.TS_F.NORM_NO.TF_C.IDF_B2

57.5893 QS_A.TS_F.NORM_NO.TF_B.IDF_D

57.5893 QS_A.TS_F.NORM_NO.TF_C2.IDF_D

57.5893 QS_A.TS_F.NORM_NO.TF_B.IDF_C

57.5893 QS_A.TS_F.NORM_NO.TF_B.IDF_A

57.5893 QS_A.TS_F.NORM_NO.TF_C3.IDF_B

� � � � � �
4.4643 QS_A.TS_S.NORM_SUM.TF_G.IDF_F

4.4643 QS_A.TS_S.NORM_NO.TF_E.IDF_F

4.4643 QS_A.TS_S.NORM_NO.TF_B.IDF_F

4.4643 QS_A.TS_S.NORM_SUM.TF_C.IDF_F

4.4643 QS_A.TS_D.NORM_MAX.TF_A.IDF_G

4.4643 QS_A.TS_S.NORM_NO.TF_G.IDF_F

4.4643 QS_A.TS_S.NORM_SUM.TF_B.IDF_F

4.4643 QS_A.TS_S.NORM_NO.TF_F.IDF_F

4.4643 QS_A.TS_S.NORM_SUM.TF_E.IDF_F

4.4643 QS_A.TS_S.NORM_SUM.TF_C2.IDF_F

4.4643 QS_A.TS_D.NORM_SUM.TF_A.IDF_G

4.4643 QS_A.TS_S.NORM_MAX.TF_G.IDF_F

4.4643 QS_A.TS_S.NORM_MAX.TF_C2.IDF_F

4.4643 QS_A.TS_S.NORM_NO.TF_A.IDF_F

4.4643 QS_A.TS_S.NORM_NO.TF_C2.IDF_F

4.4643 QS_A.TS_S.NORM_SUM.TF_D.IDF_F

18 For the experiments with alternative classifiers, similarity functions did not apply; if a classifier required
a similarity function, we used WEKA’s default.
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Although these plots do not reveal significant information for all aspects analyzed, we

can summarize the interesting observations and consequently formulate advices as

follow:

– QS_A clearly outperforms QS_M with all classifiers.

– TS_A is found frequently among the top ranks in the SVM experiments, but also peaks

at the very bottom ranks. The top 600 ranks of the RF experiments are entirely

dominated by TS_N, and TS_F performs very well with the RIPPER classifier. The

generic but broad vocabularies TS_A and TS_S perform remarkably inferior when

using RF or RIPPER. It seems that rule learners and decision tree learners benefit from

a smaller, but more well defined vocabulary, such as TS_N or TS_F.

– It is hard to give advice for favoring or refraining from specific choices of the term

frequency function. When using an SVM classifier, Fig. 8c might suggest to employ
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TF_E or TF_G, because both are frequently found among the top-ranked variants;

however, neither of them does consistently perform well. In particular TF_E also

occupies inferior positions around rank 2,600. For the RF classifier, TF_G seems the

most favorable TF formulation, too. One clear advice that can be given is to refrain

from TF_A, regardless of the classifier applied. Even though binary match performs

well in some settings, the peaks at mediocre and lowest ranks do by no means suggest

the use of TF_A.

– The rather uniform distribution of the IDF variants among all ranks does not encourage

the formulation of specific advices.

– Slight (when using RF or RIPPER) to rather dominant (SVM) peaks of the NORM_NO
setting, correspond well to the observation already made for the kNN experiments
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using MAP as performance measure. Due to the special characteristics of tweets, it is

not advisable to perform document length normalization.

To investigate whether results are consistent between different classifiers in terms of the

variants’ rank-order according to classification accuracy, we computed Spearman’s rank-

order correlation coefficient. The pairwise correlation can be found in Table 16. As it can

be seen, different classifiers not very surprisingly yield different ranks for the same

algorithmic variants. Nevertheless, a small but significant (p = 0.00002) correlation

between SVM and RF could be observed. A moderate to high correlation between SVM

and RIPPER is notable as well. Between RF and RIPPER a slight to moderate correlation is

present. The p values for the combinations (SVM,RIPPER) and (RF,RIPPER) are infini-

tesimally small.
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5 Conclusions and future work

In this article, we presented a comprehensive evaluation of using Twitter posts for the

purpose of similarity estimation between named entities. To this end, we performed tens of

thousands single experiments on three data sets, two related to the music domain, one from

the movie domain. Different algorithmic choices related to query scheme, index term set,

length normalization, TF � IDF formulation, and similarity measure were thoroughly

investigated. The main findings can be summarized as follows:

– Restricting the search by domain-specific key words prunes the resulting set of tweets

too heavily. Using only the named entity as query (QS_A) should be favored.

– Top-ranked results are achieved using all terms in the corpus (TS_A), though at high

computational costs and little robustness against small changes in other algorithmic

choices. If computational complexity or robustness is an issue, the results suggest using

as index term set a domain-specific dictionary (TS_F for the music domain or TS_D
for the movie domain).

– Normalizing for length does not significantly improve the results, neither when

performed on term vectors, nor when included in the similarity function. Taking into

account the higher computational costs, we therefore recommend refraining from

normalization (NORM_NO) and using as similarity measure, for example, the inner

product (SIM_INN) or the Jeffrey divergence-based similarity (SIM_JEF). Both

SIM_EUC and SIM_OVL should definitively be avoided.

– The binary match TF formulation TF_A should not be used. The most favorable

variants are TF_C2 and TF_E. But also TF_F and TF_G do not perform significantly

worse, regardless of the data set used.

– Among the IDF formulations, we suggest to refrain from using IDF_A, IDF_F, and

IDF_G, as they performed poorly on all data sets. Better alternatives are given by

formulations IDF_B2, IDF_E, and IDF_J, which ranked well on all sets.

Future work on evaluating different similarity models based on microblogs will include

incorporating the bloger’s perspective, for example, by exploiting social graphs. Taking

into account that perceived similarities are often subjective, influenced by peers, and can be

defined according to very different dimensions, in the music as well as in the movie

domain, a more fine-grained analysis based on the results presented here should be per-

formed. As some of the algorithmic choices of the best- and worst-performing combina-

tions varied between the movie and music data sets, we further plan to assess if the

performance of specific variants depends on the type of the named entities. We will

therefore conduct experiments on other sets of named entities, for example, politicians or

books.

Another promising research direction is assessing temporal and geographic properties
of tweets. Geographical aspects could be used, for example, to develop geo-aware popu-
larity estimates of named entities. Together with temporal information, such a popularity

Table 16 Pairwise Spearman’s
rank-order correlation coeffi-
cients between variants produced
by alternative classifiers on music
set C224a

SVM RF RIPPER

SVM 0.071 0.528

RF 0.071 0.189

RIPPER 0.528 0.189
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measure could give indication on the development and spreading of trends around the

world.
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