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ABSTRACT

Background: Videofluoroscopic swallowing study (VFSS) is currently considered the 
gold standard to precisely diagnose and quantitatively investigate dysphagia. However, 
VFSS interpretation is complex and requires consideration of several factors. Therefore, 
considering the expected impact on dysphagia management, this study aimed to apply 
deep learning to detect the presence of penetration or aspiration in VFSS of patients with 
dysphagia automatically.
Methods: The VFSS data of 190 participants with dysphagia were collected. A total of 10 
frame images from one swallowing process were selected (five high-peak images and five 
low-peak images) for the application of deep learning in a VFSS video of a patient with 
dysphagia. We applied a convolutional neural network (CNN) for deep learning using the 
Python programming language. For the classification of VFSS findings (normal swallowing, 
penetration, and aspiration), the classification was determined in both high-peak and low-
peak images. Thereafter, the two classifications determined through high-peak and low-peak 
images were integrated into a final classification.
Results: The area under the curve (AUC) for the validation dataset of the VFSS image for the 
CNN model was 0.942 for normal findings, 0.878 for penetration, and 1.000 for aspiration. 
The macro average AUC was 0.940 and micro average AUC was 0.961.
Conclusion: This study demonstrated that deep learning algorithms, particularly the CNN, 
could be applied for detecting the presence of penetration and aspiration in VFSS of patients 
with dysphagia.

Keywords: Deep Learning; VFSS; Deglutition; Swallowing Reflex

INTRODUCTION

The swallowing process includes the coordinated contraction and relaxation of the muscles 
of the tongue, pharynx, larynx, and esophagus, which is controlled by the central nervous 
system (CNS) from the brain cortex to the brainstem.1-3 Any lesion in the path from the 
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CNS to the swallowing muscles can cause difficulty in swallowing, which is referred as 
dysphagia.4,5 Dysphagia is a common clinical symptom in patients with cerebrovascular, 
neuromuscular, and neurodegenerative diseases and with head and neck cancers.6-8 The 
videofluoroscopic swallowing study (VFSS) is currently considered the gold standard to 
accurately diagnose and quantitatively analyze dysphagia.9 Clinicians repeatedly perform 
a frame-by-frame analysis of spatiotemporal and quantitative parameters in a recorded 
VFSS video to determine the cause of dysphagia and the appropriate diet.10-13 Therefore, 
despite being able to objectively observe the entire process of swallowing through VFSS, its 
interpretation is complex and needs consideration of several factors.9

Recently, deep learning, a technique in artificial intelligence wherein the system learns rules 
and patterns from the given information, has been increasingly studied in the medical field.14 
Deep learning has several advantages in terms of detecting the possible interactions between 
attributes or variables; hence, it may be useful in diagnosis and prediction.15

The application of the recent developments in deep learning research could reduce the 
burden over clinicians caused by the complexity of VFSS interpretation. Moreover, to date, no 
research pertaining to deep learning has been directed to detect the presence of penetration 
or aspiration in VFSS of patients with dysphagia. Therefore, considering the expected impact 
on dysphagia management, this study aimed to apply deep learning to detect penetration or 
aspiration in VFSS of patients with dysphagia automatically.

METHODS

All procedures were carried out in accordance with the relevant guidelines and regulations. 
We included patients who visited the outpatient clinic of the rehabilitation department, who 
were admitted to the rehabilitation department of one of the two university hospitals (Ulsan 
University Hospital and Yeungnam University Hospital) because of dysphagia, or who were 
diagnosed using VFSS between January 2009 and April 2020. The steps of the modeling 
process applied in this study are shown in Fig. 1.

Data collection
The VFSS data of 190 participants with dysphagia were collected. The exclusion criteria were 
as follows: 1) patients of age less than 20 years; 2) patients who had undergone tracheostomy; 
3) patients with facial or cranial anomalies; and 4) patients having metal plate in the cervical 
spine or facial bone that could develop an artifact.

Analysis of VFSS
When the VFSS was performed, the patients were instructed to seat upright under a 
videofluoroscopy machine with the head in a neutral position. Boundaries for the frame of 
videofluoroscopy included the incisors anteriorly, cervical vertebrae posteriorly, nasal border 
of the soft palate superiorly, and cervical esophagus inferiorly.16,17 The fluoroscopic images of 
swallows were digitally recorded and stored at 30 frames/s.16,17

Each VFSS was performed using a bolus of ‘‘thin’’ fluid (1–50 cP). Each patient received a 
5-mL bolus delivered using a 10-mL syringe.16,17
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In the analysis of VFSS, the presence of penetration was determined when the contrast 
material passed above the true vocal cord, and not below.18 The presence of aspiration 
was determined when the contrast material passed below the true vocal cord.18 Based on 
the above criteria, the presence or absence of penetration or aspiration in the dynamic 
fluoroscopic images was reviewed by two rehabilitation medicine specialists with more than 
10 years of clinical experience in dysphagia. Based on the VFSS, patients were classified into 
normal (without penetration and aspiration), penetration, and aspiration groups.

VFSS image selection
To analyze VFSS by deep learning, we selected five consecutive frame images (at 0.33-s 
intervals) from the VFSS, back and forth, when the hyoid bone reached the peak (the highest 
position of the hyoid bone; high-peak image), and another five consecutive frame images 
from the VFSS when the hyoid bone completely descended from the peak (the lowest position 
of the hyoid bone; low-peak image) (Fig. 2). Therefore, 10 frame images were selected from 
one swallowing process (five high-peak images and five low-peak images) for the application 
of deep learning in the VFSS video of a patient with dysphagia (Fig. 2).

Deep learning analysis
We applied a convolutional neural network (CNN) for deep learning using the Python 
programming language. TensorFlow 2.6.0 with Keras, and scikit-learn toolkit 0.24.1 were 
used to train CNN models. The details and performance of the best model are described in 
Table 1. A CNN consists of one or more convolutional layers, often with a subsampling layer; 
the convolutional layers are followed by one or more fully connected layers, similar to that in 
a standard neural network.19 To achieve better learning outcomes, we employed several pre-
trained CNN models including efficientnet [B0, B1, and B3],20 mobilenet,21 inceptionV3,22 
and Resnet50.23 Both fine-tuning and training from scratch were employed for each CNN 
model. VFSS images were used as inputs to classify patients with dysphagia into normal (no 
penetration and aspiration), penetration, or aspiration groups. Training and validation data 
were randomly assigned using scikit-learn, keeping the ratios of normal, penetration and 
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Fig. 1. The steps of the modeling process applied in this study. 
VFSS = videofluoroscopic swallowing study.
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aspiration the same in both datasets. Of the study population (total 190 patients), 70% (n = 
133), 30% (n = 57) were included in the training and validation sets, respectively. Additionally, 
of the 950 images each for high-peak and low-peak images, 70% (665 images) and 30% (285 
images) were used for training and validation, respectively.

For obtaining the classification model according to VFSS findings (normal, penetration, 
and aspiration), the classification was initially conducted in both high-peak and low-peak 
images. We applied the following classification criteria: 1) normal: ≥ 4 normal images (of five 
images [separately for high-peak and low-peak images]); 2) penetration: < 4 normal images 
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Fig. 2. ROC curve for the data validation models. The AUC of the validation dataset of the VFSS images for 
the convolutional neural network model was 0.942 for normal findings, 0.878 for penetration, and 1.000 for 
aspiration. For calculating the average AUC, both macro and micro average AUC was employed. Macro average 
AUC was 0.940 and micro average AUC was 0.961. 
AUC = area under the curve, ROC = receiver operating characteristic, VFSS = videofluoroscopic swallowing study.

Table 1. Performances of the deep-learning model
Sample size (patients) 133, 70% for training, 57, 30% for validation, total 190
Sample ratio (patients) Normal: 113, 59.47%; penetration: 32, 16.84%; aspiration: 45, 23.68%
Sample size (images) 665, 70% for training, 285, 30% for validation, total 950 each for high-peak and low-peak images
Sample ratio (images) Normal: 690, 72.63%; penetration:147, 15.47%; aspiration: 213, 22.42% for high-peak images

Normal: 700, 73.68%; penetration: 40, 4.21%; aspiration: 210, 22.11% for low-peak images
CNN model Model for high-peak images Model for low-peak images

-MobileNet with fine-tuning -MobileNet with fine-tuning
-SGD optimizer, relu activation -SGD optimizer, elu activation
- Data augmentation, dropout and early stopping for 
reducing overfitting

- Data augmentation, dropout and early stopping for reducing 
overfitting

-Image size 320 × 180 × 3 as input -Image size 320 × 180 × 3 as input
-Training accuracy: 100% -Training accuracy: 100%
-Validation accuracy: 93.68% -Validation accuracy: 93.68%

VFSS classifier performance Classifier of high-peak images for individual patient Classifier of low-peak images for individual patient
-Training accuracy: 100% -Training accuracy: 100%
-Validation accuracy: 94.74% -Validation accuracy: 94.74%

VFSS integrated classifier 
performance

-Training accuracy: 100%, validation accuracy: 94.74%
-Validation ROC AUC for normal 0.942, penetration 0.878, aspiration 1.000
-Validation macro average ROC AUC 0.940, micro average ROC AUC 0.961

CNN = convolutional neural network, SGD = stochastic gradient descent, VFSS = videofluoroscopic swallowing study, ROC = receiver operating characteristics, 
AUC = area under the curve.
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and no aspiration image; and 3) aspiration: < 4 normal images and ≥ 1 aspiration images. 
The two classifications from the high-peak and low-peak images were integrated into a 
final classification according to the following criteria: 1) normal: normal in both high-peak 
and low-leak images; 2) penetration: ≤ 1 normal (in the two classification results) and no 
aspiration; and 3) aspiration: ≤ 1 normal and ≥ 1 aspiration (Table 2).

Statistical analysis
Statistical analyses were performed using Python 3.8.10 and scikit-learn version 0.24.1. 
Receiver operating characteristic curve analysis was performed, and the area under the curve 
(AUC) was calculated. The confidence interval for the average AUC was calculated as bias-
corrected and accelerated using the R 4.0.5 and multiROC 1.1.1 package.24

Ethics statement
This study was approved by the Institutional Review Board of Yeungnam University Hospital 
(2019-10-008). The board decided that informed consent was not required due to the 
retrospective nature of the study and the use of anonymous clinical data.

RESULTS

A total of 190 patients (mean age, 66.83 ± 15.47 years; 92 men, 88 women) were included in 
this study (Table 3). Of the 190 patients, 113 (59.47%) patients were classified in the normal 
group (no penetration and aspiration), 32 (16.84%) patients in the penetration group, and 45 
(23.68%) patients in the aspiration group (Table 1). Additionally, of the 950 high-peak images 
of 190 patients, 590 images (62.11%) were normal, and 147 (15.47%) and 213 images (22.42%) 
showed penetration and aspiration, respectively. Of the 950 low-peak images of 190 patients, 
700 (73.68%), 40 (4.21%), and 210 (22.11%) showed normal, penetration, and aspiration 
findings, respectively.

https://doi.org/10.3346/jkms.2022.37.e42
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Table 2. The criteria for the integration of the classification results of high-peak and low-peak images
Classification model Dysphagia classification criteria
Initial classifier in each high-peak and low-peak images Normal: NI ≥ 4

Penetration: NI < 4 and AI = 0
Aspiration: NI < 4 and AI ≥ 1

Integrated classifier (final decision) Normal: N = 2
Penetration: N ≤ 1 and A = 0
Aspiration: N ≤ 1 and A ≥ 1

NI = normal image, AI = aspiration image, N = normal decision, A = aspiration decision.

Table 3. Characteristics of patients with dysphagia who were included in this study
Characteristics Values
Age, yr 66.83 ± 15.47
Sex, male:female 92:88
Normal:penetration:aspiration 113 (59.47):32 (16.84):45 (23.68)
Cause

Stroke 92 (48.42)
Spinal cord injury, cervical level 16 (8.42)
Parkinson's disease 15 (7.89)
Motor neuron disease 19 (10.00)
Dementia 23 (12.11)
Deconditioning 25 (13.16)

Values are presented as mean ± SD or number (%).
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The AUC of the validation dataset of the VFSS images for the CNN model was 0.942 for 
normal findings, 0.878 for penetration, and 1.000 for aspiration. For calculating the average 
AUC, both macro and micro average AUC was employed. Macro average AUC was 0.940 and 
micro average AUC was 0.961 (Fig. 2).

DISCUSSION

To the best of our knowledge, this study is the first to use deep learning to detect the presence 
of penetration or aspiration in VFSS of patients with dysphagia. The results of this study are 
promising, and the study has high accuracy. Considering that AUCs of 0.7–0.8, 0.8–0.9, and 
> 0.9 are generally considered acceptable, excellent, and outstanding, respectively, the ability 
of deep learning models used in this study to detect normal swallowing, penetration, or 
aspiration is outstanding.25

While neural networks and other pattern detection methods have been utilized for the 
past 50 years, recently, there has been a significant development in the field of CNN.14 The 
multiple convolutional layers of the CNN model may be more appropriate for classifying the 
clinical outcome based on radiologic or other image-based data because of the characteristics 
of the model such as ruggedness to shifts and distortion in images, limited memory 
requirement, and easier and better training.19 Detection of a particular finding using CNN 
has been reported to be rugged to distortions such as changes in shape caused by different 
poses, lighting conditions, and camera angles, presence of partial occlusions, and horizontal 
and vertical shifts, if a considerable amount of data set is sufficiently trained.19 Moreover, in 
the convolutional layer of the CNN, the same coefficients are used across different locations 
in space; hence, the memory requirement is drastically reduced.19

Several methods of deep learning-based VFSS analysis have been reported in previous 
studies.9,10,22 Using the single-shot multi-box detector, one of the state-of-the-art deep 
learning methods for object detection, Zhang et al.26 developed a tracking system for the 
detection of the hyoid bone. However, the analysis of motion or action in VFSS videos is 
difficult using this method, because the technique focuses on the detection of a spatial region 
on a single image rather than on the analysis of a sequence of images from videographic 
data. Lee et al.9,10 reported a state-of-the-art video analysis method using an integrated 
three-dimensional convolutional network for the detection of the pharyngeal phase and for 
analyzing the swallowing reflex in a VFSS video without manual spatial annotations. While 
the detection of the pharyngeal phase and analysis of the swallowing reflex are useful for 
shortening the time required for VFSS by the clinician, they have limitations in that both 
require further analysis to determine the status of the patients.

To date, most VFSS-based deep learning studies have focused on tracking anatomical 
structures such as hyoid bones, analyzing the pharyngeal phase, or recording the swallowing 
reflex time. However, in clinical settings, the most important implication of VFSS is detection 
of the presence of penetration or aspiration. Therefore, unlike previous studies, the deep 
learning program developed in this research would be useful to physicians in clinical settings.

There are a few limitations to this study. We could not input the entire video of VFSS for deep 
learning analysis; we trained the CNN model only by selecting two sets of five consecutive 
frame images from VFSS of patients with dysphagia. However, in VFSS, we believe that 
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penetration or aspiration usually develops in two phases. If the primary cause of penetration 
or aspiration is delayed swallowing reflex or reduced laryngeal elevation, the penetration or 
aspiration usually develops when the hyoid bone is at the high-peak. In the low-peak, over-
flow penetration or aspiration can also develop when the amount of pyriformis or vallecular 
sinus residue increases while the hyoid bone descends (at the end of the swallowing process). 
Therefore, five consecutive VFSS images in both positions of the hyoid bone (high-peak 
and low-peak) include considerable moments of penetration and aspiration in VFSS video. 
This hypothesis was proven correct according to the results of this study, using VFSS with 
deep learning by means of a CNN, which showed high accuracy. However, for more accurate 
analysis, deep learning analysis of complete VFSS video images will be necessary in the future.

In conclusion, this study demonstrated that deep learning algorithms, particularly the CNN, 
could be applied for detecting the presence of penetration and aspiration in VFSS of patients 
with dysphagia.
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