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Abstract

Neural mechanisms which bind items into sequences have been investigated in a large

body of research in animal neurophysiology and human neuroimaging. However, a major

problem in interpreting this data arises from a fact that several unrelated processes, such as

memory load, sensory adaptation, and reward expectation, also change in a consistent

manner as the sequence unfolds. In this paper we use computational simulations and data

from two fMRI experiments to show that a host of unrelated neural processes can masquer-

ade as sequence representations. We show that dissociating such unrelated processes

from a dedicated sequence representation is an especially difficult problem for fMRI data,

which is almost exclusively the modality used in human experiments. We suggest that such

fMRI results must be treated with caution and in many cases the assumed neural represen-

tation might actually reflect unrelated processes.

Introduction

One of the most important features of human cognition is the ability to bind individual events

into a sequence. Almost any complex task requires us to remember not only the individual ele-

ments but also the order in which they occurred. For example, two tasks such as starting a car

and stopping it might share the same events but in different order. All computational models

of sequence processing acknowledge this distinction between the representations of items in

memory and the representation of the order in which they occur [1, 2]. The view that item’s

position in the sequence is encoded separately and independently of their identity has been

also suggested by decades of research in human behaviour and animal neurophysiology.

Neurons in the monkey prefrontal cortex (PFC) have been found to be selective for each

position in a learned sequence [3–6]. Fig 1 gives an example of a simple positional code show-

ing the responses of position-sensitive neurons from monkey supplementary motor area as

observed by [7]. Other research on animal neurophysiology has suggested that the hippocam-

pus encodes the position of items in a sequence [6, 8–10], with some authors proposing the

existence of ‘time cells’ tracking the temporal position of items in a sequence [11, 12]. From

hereon we refer to such neural representation of the item’s position in the sequence as
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positional code. The extensive literature on the neural representation of the positional code is

summarised in Table 1.

However, interpreting a neural signal tracking the positional code suffers from a major

methodological problem: items in different positions necessarily differ along other dimensions

too. For example, in a memory task, memory load will be greater at position three than posi-

tion two. Changes in neural activity that are sensitive to memory load might therefore give

the appearance of coding position. An item in position n will always be associated with a load

of n items. Any neural index of load will therefore consistently be in a different state for items

in different positions. An item in position n also occurs at a later time than item n − 1. Sensory

adaptation might change the neural response to items as the sequence progresses. Such a signal

could also masquerade as a positional code. Any or all of these factors might therefore lead to a

differential neural response which would correlate with the position of an item in a sequence,

but which might play no role in determining how the brain codes temporal position. In their

analysis of how we can measure information in the brain, [42] made a contrast between

Fig 1. Sequence representation and temporal position. (A) Representation of two sequences as mappings

between item codes and temporal position codes. (B) Left: representation of temporal position in a 7-item sequence.

The variance around positional signal is coded in terms of the darkness of the circle. Right: the order position is

retrieved by reinstating each positional code which then cues the associated item. (C) Examples of temporal position

selective neurons from [7]. From left to right: pre-supplementary motor area neuron selective for 1st position,

supplementary eye field neuron selective for 2nd position, and supplementary motor area neuron selective for the 3rd

position in the serial object task.

https://doi.org/10.1371/journal.pone.0176585.g001
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“cortex as receiver” and “experimenter as receiver”. There may be ways in which we as experi-

menters can decode neural states to recover information about temporal position, but what we

would like to do is to identify specifically those neural representations that the cortex uses to

represent temporal position and to drive behaviour.

In this paper we show that dissociating positional ‘read-out’ from a neural positional code

is an especially difficult problem for fMRI data. We show that fMRI data acquired from

sequentially presented stimuli suffer from several confounds. First, we show that with any

Table 1. Studies of neural representation of positional code.

First author Year Stimuli Task Subject Measurement

Allen [13] 2016 odour motor rodent electrophysiology

Amiez [14] 2007 visual manual human fMRI

Averbeck [4] 2003 motor motor monkey electrophysiology

Averbeck [15] 2006 visual saccade monkey electrophysiology

Averbeck [16] 2007 visual saccade monkey electrophysiology

Barone [17] 1989 visual manual monkey electrophysiology

Berdyyeva [7] 2010 visual saccade monkey electrophysiology

Berdyyeva [18] 2011 visual motor monkey electrophysiology

Carpenter [19] 1999 visual motor monkey electrophysiology

Crowe [20] 2014 manual manual monkey electrophysiology

DuBrow [21] 2014 visual manual human fMRI

DuBrow [22] 2016 visual manual human fMRI

Fujii [23] 2005 visual saccade monkey electrophysiology

Gelfand [24] 2003 auditory manual human fMRI

Nieder [25] 2006 visual manual monkey electrophysiology

Ginther [26] 2011 odour motor rodent electrophysiology

Heusser [27] 2016 visual manual human MEG

Hsieh [28] 2014 visual manual human fMRI

Hsieh [29] 2015 visual manual human fMRI

Hyde [30] 2012 in vitro rodent electrophysiology

Inoue [5] 2006 visual manual monkey electrophysiology

Isoda [31] 2004 visual saccade monkey electrophysiology

Kalm [32] 2014 auditory auditory human fMRI

Kalm [33] 2016 auditory visual human fMRI

Kraus [34] 2013 motor motor rodent electrophysiology

Lehn [35] 2009 visual manual human fMRI

MacDonald [12] 2013 odour motor rodent electrophysiology

MacDonald [11] 2011 odour motor rodent electrophysiology

Mankin [8] 2012 spatial motor rodent electrophysiology

Manns [36] 2007 odour motor rodent electrophysiology

Manns [9] 2007 odour motor rodent electrophysiology

Merchant [37] 2013 auditory manual monkey electrophysiology

Nakajima [3] 2009 manual manual monkey electrophysiology

Naya [6] 2011 visual manual monkey electrophysiology

Nieder [38] 2012 visual manual monkey electrophysiology

Ninokura [39] 2004 visual manual monkey electrophysiology

Pastalkova [10] 2008 motor motor rodent electrophysiology

Petrides [40] 1991 visual manual monkey lesion

Rangel [41] 2014 motor motor rodent electrophysiology

https://doi.org/10.1371/journal.pone.0176585.t001
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sequence processing task there are experimental variables which are collinear with the posi-

tional signal (e.g. memory load, sensory adaptation, etc.) and which can serve as a positional

code. Second, we show how interference between stimulus representations, task phases, and

measurement modalities can also lead to a similar positional read-outs indistinguishable from

a dedicated positional code. Importantly these correlated effects do not simply result in a uni-

variate change in signal that varies across sequence position but also change the pattern of

information that can be read out by multivariate methods.

The problem of interpreting a positional signal is especially relevant since neural data on

human sequence processing comes almost exclusively from fMRI studies (Table 1). Our simu-

lations and experimental data show that results from fMRI experiments studying the positional

code must be treated with caution. Specifically, in many cases the assumed positional code

might actually reflect processes which are correlated with position in the sequence instead.

Positional code from collinear processes

Any signal tracking the position of an item in a sequence will be collinear with a number of

cognitive processes:

• Memory load—signal for position n will always co-occur with a memory load of n items

when storing a sequence. Any neural index of load will therefore always reflect the progres-

sion of sequence.

• Sensory adaptation—neural responses in the human sensory cortex have been shown to

monotonically decrease as a response to sequentially presented stimuli [43–45]. Any signal

that monotonically changes over sequence positions can be used to read out position-like

code.

• Reward—in most animal studies the subject is rewarded after successfully attending or

recalling a sequence. This means that the next item in a sequence is always closer to the

reward. Neurons tracking the temporal proximity of reward have been described in both

monkey and rodent studies [6, 11, 18].

• Passage of time—signal for position n always occurs after the signal for position n − 1.

All these processes represent a change in the cognitive state of the participant throughout

the processed sequence, and hence will necessarily be collinear with any positional code. It fol-

lows that in the analysis of experiments on temporal order it is necessary to distinguish

between a dedicated positional code and a positional read-out from collinear processes.

Next, we provide two examples of positional read-out based on human fMRI data. In the

first example we show how sensory adaptation in the sensory cortices can be interpreted as a

positional signal. In the second example we show how differences in retinotopic activation

over the course of the sequence can similarly provide positional read-out. In the final part of

the section we provide simulations which explore whether it is possible to develop methods to

subtract the effects of such collinear processes from sequentially obtained data.

Sensory adaptation

Sensory adaptation across sequence positions has been observed in a number of fMRI studies

of sequence processing as a decreasing univariate signal over positions [43–45]. Note that an

inverse trend, where the univariate signal increases over sequence positions, has also been

observed [33]. The latter most likely reflects the attenuation of the BOLD signal in response to

sequentially presented stimuli as reported in other fMRI studies on human STM [46, 47].
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However, the direction of the univariate change is unimportant as any consistent change over

sequence positions will permit position decoding.

Here we used two human fMRI datasets obtained with a sequence processing task [32, 33]

to carry out a classification analysis of item position in a sequence. In both cases we chose the

sensory cortex of the presented stimuli as a region of interest (ROI): in the first experiment

the sequences were presented auditorily [32] and in the second visually [33]. Since in both

experiments sensory areas responded differentially to sequence positions (Fig 2A) linear classi-

fication analysis can be used to predict the position of the items significantly above chance

(Fig 2B). However, in both cases the signal changes were uniform across all voxels in the ana-

tomical region suggesting not a dedicated positional code, but sensory adaptation or change in

measurement noise. Sensory adaptation thus serves as a clear example how a monotonically

changing signal can be read out by an experimenter as a positional code.

Retinotopic activation

In the example above (Sensory adaptation) the population of neural units (sensory cortex)

responded uniformly to sequentially presented stimuli. Next we present a case where neural

units within the population respond differentially across the sequence. We use fMRI data from

a visual sequence processing task to show that the response in the primary visual cortex can be

Fig 2. Sensory adaptation in the sensory cortex and decoding order position. (A) Uniform signal change over

3-item sequences in sensory brain areas averaged across participants. Data from visual regions V1, V2, pericalcarine,

and lateraloccipital regions is from [33]. Data from auditory areas Heschl’s gyrus (HG) and superior temporal sulcus

(STS) is from [32]. (B) Distribution of average linear classification accuracy values of item position in V1 region across

participant’s from [33]. Bar charts display the average classification accuracy across participants by comparing the

known positions (labels) to the predictions made by the classification algorithm. Bars show the proportion of predicted

values for each position. Correct classifications are represented with a darker bar. Error bars show the standard error

of the mean. The red line depicts the chance level classification accuracy 1/3.

https://doi.org/10.1371/journal.pone.0176585.g002
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used to predict the position of the item in the sequence. However, this is possible not because

of any positional code but because of task-selective voxels in the visual cortex.

In [33] participants had to attend a sequence of visually presented images followed by a

manual response indicating the order of the items. Importantly, all images were controlled for

luminance and cropped to ensure that each image appeared in a similar retinal area: all stimuli

subtended a 6˚ visual angle around the fixation point in order to elicit an approximately foveal

retinotopic representation. As a result, all sequence items elicited approximately similar retino-

topic response in the foveal area of the primary visual cortex.

The authors observed that the activation of the retinotopically driven voxels was correlated

with the relative suppression of the voxels outside of the retinotopically activated areas

(Fig 3A). Such suppression has been observed as a function of stimulus location in the visual

Fig 3. Interference between task phases: Retinotopic suppression. (A) Activation and suppression in V1

averaged across all stimuli for a single participant. The activated voxels (yellow, p < 0.001) mark the foveal

part of the visual cortex driven by the stimuli (presented at 6˚ visual angle). (B) Peristimulus time histogram of

sequence presentation of two groups of voxels from a single participant’s V1. The black line denotes the

average of the voxels activated by the stimuli and the red line denotes the average of the voxels suppressed

by the stimuli. Dashed vertical lines indicate the time bins where sequence items were presented.

https://doi.org/10.1371/journal.pone.0176585.g003
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field [48] and attention [49, 50]. Importantly, the amount of activation and suppression

changed across sequence positions. Since the sequence items were presented in immediate suc-

cession, the extent of retinotopic suppression and activation varied as a function of item’s posi-

tion in the sequence. Fig 3B shows data from a single participant’s V1, where voxels are split

into two groups: retinotopically activated (red-yellow on Fig 3A) and suppressed (blue-cyan

on Fig 3A) represented by red and blue lines. As the activation and suppression of two differ-

ent sets of voxels changes across positions, a linear classification algorithm can use the differ-

ence between activated and suppressed voxels, or the difference between the red and blue lines

on Fig 3B, to reliably predict the item’s position.

This can be further illustrated when linear discriminant analysis (LDA) class boundaries

based on item position are plotted with following sets of voxels from V1:

1. All voxels (including both retinotopically activated and suppressed voxels)

2. Only activated voxels (p< 0.01)

3. Only suppressed voxels (p< 0.01)

LDA shows that the linear classifier is only able to reliably predict the position of the item

when both activated and suppressed voxels in the brain region are included (Fig 4, top row).

The classification is at chance level if only one set of voxels are used (Fig 4, row 2-3).

Next we carry out a simulation of sequentially generated fMRI data to explore whether both

uniformly and differentially proceeding collinear processes could be controlled for when try-

ing to extract a positional code.

Simulation of collinear processes

Here we simulate two types of position-collinear processes which can serve as a positional

read-out. In the first case the brain area responds uniformly along the sequence (e.g. sensory

adaptation) and in the second case units within the population respond differentially. We

show that in the first case we can make reasonable a priori assumptions about the nature of the

positional code and hence remove a uniform signal. However, when the population responds

differentially to sequence positions there are no prior criteria to distinguish positional read-

out from a positional code.

The MATLAB/Octave code for the simulated data and plots is freely available at https://

github.com/kkalm/poscode.

Uniformly changing signal across sequence positions

Here we model sensory adaptation in a simple sequence processing task as an example of a

uniformly changing position-collinear process. We show how human fMRI data obtained

with the same task fits the simulation results. We also propose a data pre-processing step—

de-meaning of neural responses—as a tool to eliminate univariate signal collinear to the posi-

tional code.

Throughout the simulations we use the term ‘brain region’ for a population of neural units

and the term ‘voxels’ for units themselves. This makes the terminology compatible with the

experimental data presented from human fMRI experiments.

Representation of sequence items in a brain region. As a baseline condition we simulate

the case where the only information stored in a brain region is item information (without any

positional code) and where there is no position-collinear information such as decay or inter-

ference. We simulate a sensory brain region of n = 20 voxels which encodes identities for three
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Fig 4. LDA of item position in V1 using different subsets of voxels. Top row: all voxels from V1; middle row: only

retinotopically activated voxels from V1; bottom row: only retinotopically suppressed voxels from V1. Left column: Bar charts

display the average classification accuracy across participants by comparing the known positions (labels) to the predictions

made by the classification algorithm. Bars show the proportion of predicted values for each position. Correct classifications are

represented with a darker bar. Error bars show the standard error of the mean. The red line depicts the chance level

classification accuracy 1/3.Right column: LDA between-class boundaries based on two voxels from the set. Data from [33].

https://doi.org/10.1371/journal.pone.0176585.g004
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different items i as independent samples from the uniform distribution (Fig 5A):

ri � Uð0; 1Þ ð1Þ

A brain region’s response Y to the item i will be the item pattern ri plus some noise sampled

from n-dimensional Gaussian distribution with a zero mean.

yi ¼ ri þN ð0; sÞ ð2Þ

To model a noisy average of these patterns we simulate an experiment where those three items

are presented in different order as sequences for 6 times. The simulated response matrix Y

depicts those 6 sequences with item and position values labelled on the x-axis (Fig 5B).

As a result, the brain region’s response matrix Y contains noisy representations of item

identity but no information about position in the sequence. This can be visualised by plotting

the scatter of the data Y and LDA class borders according to item and position labels (Fig 6). It

is obvious that patterns Y are only linearly separable in terms of item identity but not position.

Sensory adaptation. So far we have assumed that item representations are completely

independent of sequence position. Next we consider the case where there is a degree of sensory

adaptation across the sequence. We simulate sensory adaptation for a brain region as a fixed

vector across voxels multiplied by a decreasing function of sequence position, plus a Gaussian

noise of fixed magnitude. This means that sensory adaptation will influence all voxels in the

brain region similarly. In other words, in terms of a neural response of a brain region, sensory

adaptation is a univariate signal decreasing monotonically over sequence positions.

We simulate sensory adaptation for all voxels i.e. voxels respond to stimulus positions {1, 2,

3} by a decreasing vector a = [1, 0.7, 0.4]. The average responses of the voxels can be shown as

column-wise means of the response matrix (Fig 7B). As a result, the response of the brain

region allows us to linearly separate both item identities and their positions in the sequence

(Fig 7C). Re-running this simulation 250 times yields a distribution of average LDA accuracy

values (Fig 7D).

Eliminating uniform signal by de-meaning. If we assume that any collinear process to

sequence position affects all voxels in the brain region uniformly then simple de-meaning of

the response matrix will eliminate any univariate signal from the data.

Fig 5. Simulated responses to items. (A) Item patterns over 20 voxels. (B) Six sequences as permutations

of three items. Item codes are displayed on the top of x-axis, position codes at the bottom.

https://doi.org/10.1371/journal.pone.0176585.g005
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Here we z-score the response matrix before classification so that column-wise averages

equal zero and values of the matrix correspond to z-scores based on the column mean (Fig 8).

Carrying out LDA as before shows that the resulting average classification accuracy is at

chance level as z-scoring the response matrix removes effects common to all voxels. Similarly,

when z-scoring was applied to the fMRI data above (see Sensory adaptation), positional effects

were no longer significant.

However, is is also possible that the sensory brain region actually contains a positional

code. It is clear that in order to survive a de-meaning process a dedicated positional code must

not be uniform across voxels. De-meaning process cannot affect a multivariate positional sig-

nal which affects voxels differentially. We can model each voxel’s position preference T as a

Gaussian likelihood function over the position values of the stimuli: i.e. each voxel responds

most to a single position and less to adjacent positions: T � N ðPosition; sÞ, (note that alterna-

tive tuning distributions are also feasible, see the simulation code for examples). Next, we add

sensory adaptation (Fig 9B), Gaussian noise (Fig 9C), z-score the data (Fig 9D), and carry out

LDA, as above. The resulting average classification accuracy will be close to 100%: since z-scor-

ing does not affect voxel pattern similarity, the positional code is used by the linear classifier to

successfully distinguish between order positions.

However, any differential response within the brain region to sequence positions—such as

the retinotopic activation example above—will similarly remain unaffected by z-scoring. As a

result we can use de-meaning only to remove uniform effects from the brain region’s

response.

Summary of position-collinear effects

A number of cognitive processes take place while stimuli are processed in a sequence. Impor-

tantly, several of them—time, memory load, sensory adaptation—will be collinear to any signal

tracking the position of items in a sequence.

We showed that uniform position-collinear processes—such as sensory adaptation– can be

subtracted from neural responses by a de-meaning technique such as z-scoring. Importantly,

Fig 6. The scatter of item patterns and LDA between-class boundaries based on the two most

informative voxels. (A) Item information. (B) Position information.

https://doi.org/10.1371/journal.pone.0176585.g006
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Fig 7. Simulation of sensory adaptation. (A) Voxels’ responses with sensory adaptation. (B) Average

responses of voxels as column-wise means of the response matrix. (C) LDA between-class boundaries based on

the two most informative voxels.(D) Distribution of average LDA accuracy values (based on 250 simulations).

https://doi.org/10.1371/journal.pone.0176585.g007

Fig 8. Simulation of sensory adaptation, z-scoring. (A) Voxels’ responses with sensory adaptation.; z-

scored. (B) Average responses of voxels as column-wise means of the response matrix.

https://doi.org/10.1371/journal.pone.0176585.g008
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this relies on an assumption that such processes will influence all units uniformly in a neural

population. However, if individual voxels within a brain region respond differentially—such as

in the case of retinotopic activation—the neural response becomes indistinguishable from a

dedicated positional code.

Positional code from interference

A positional ‘read-out’ without a dedicated positional code can also arise from interference

between sequentially presented stimulus representations. Here we use a simulation to show

that a model of sequence representation which only includes item codes and no dedicated

positional code can elicit positional effects given some interference between item codes. To

illustrate this, imagine a brain region where the representations of successive items are over-

layed on top of each other. Each successive item elicits a neural pattern that is a mixture of its

own representation and a decaying representation of the preceding items. Such superimposed

items could be linearly separable in terms of their positions alone without the need of any

explicit representation of position.

Fig 9. Simulation of sensory adaptation. (A) Voxel response matrix based on positional preferences. (B)

Voxel response matrix: positional preferences + sensory adaptation. (C) Voxel response matrix: positional

preferences + sensory adaptation + Gaussian noise. (D) Voxel response matrix z-scored. Column-wise means

are zero.

https://doi.org/10.1371/journal.pone.0176585.g009
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Here we look at two cases of interference between item codes—additive and proportional

interference– and how both can lead to position-like codes. The item representations are mod-

elled exactly as above in Representation of sequence items in a brain region.

Additive interference

Interference between representations can occur when the state of the memory is not

completely wiped clean every time a new stimulus arrives. Instead, the new state of the mem-

ory might be a mixture of the new stimulus and the previous state of the memory. Here we

assume that at sequence position p the response of the brain region Y equals to the item pattern

ri plus some residual activity from the previous state of the brain region:

yp ¼ ri þ ppyp� 1 ð3Þ

where p is the position of the item in the sequence and π is the mixing coefficient which deter-

mines the proportion of the residual activity. Here π declines with a constant rate over previ-

ous states of Y so that:

pp ¼ p0b
p� 1

ð4Þ

where β is the rate parameter of the decreasing mixing coefficient π, and the initial value of

π0 = 1. Setting the initial value of π to 1 ensures that the current item pattern is always repre-

sented in full. To illustrate this mechanism consider two different β values and how they affect

interference in a 3-item sequence ‘CBA’:

b ¼ 0:2 yp¼1 ¼ rC

yp¼2 ¼ rB þ 0:2rC

yp¼3 ¼ rA þ 0:2rB þ 0:04rC

b ¼ 0:6 yp¼1 ¼ rC

yp¼2 ¼ rB þ 0:6rC

yp¼3 ¼ rA þ 0:6rB þ 0:36rC

It is clear that the value of the β parameter determines the amount of interference from previ-

ous items: when β = 0 there is no interference, and when β> 1 the activity from previous

items contributes more to the current activity pattern yp than the current item pattern ri.

Importantly, with each arriving item the overall activity of the brain region, as defined by

the vector sum of yp, increases, since some of the previous response is added to the new

response. In other words, additive interference as defined above (Eq (3)) guarantees that:
X

ypþ1 >
X

yp

Similar increase in brain activity as a function of the number of sequentially presented items

has been observed in several neuroimaging studies of short-term memory [46, 47].

Additive interference enables position decoding. If we simulate additive interference as

described above then despite the brain region only encoding item identity information we can

linearly separate patterns Y in terms of their position because the total activity increases as a

function of position. The effect of additive residual activity on sequence positions can be

shown by plotting the positional means before and after interference transform (Fig 10).

Note that patterns pertaining to the first positions in the sequence (black markers on

Fig 11B) have not moved since there is no interference for the first items in the sequence from
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previous items. The position-wise transformation of the response patterns allows to separate

them linearly using both item and position labels (Fig 11).

We can now decode the position of the items significantly above chance because item posi-

tion correlates with the amount of response in the simulated brain region. Plotting the classifi-

cation accuracy of both item and position as a function of interference (β parameter value,

Eq (4)) we can see that even with relatively small β values positional decoding becomes

Fig 10. The transformation of response values for two voxels as a result of interference (β = 0.5). Small

circular markers depict response patterns, larger circular markers depict pattern means. Empty markers depict

the original patterns and means, filled markers depict the data after simulating the interference process. Solid

lines depict the movement of class means as a result of interference. (A) Item information. (B) Position

information.

https://doi.org/10.1371/journal.pone.0176585.g010

Fig 11. LDA between-class boundaries for two voxels, interference β = 0.5. (A) Item information. (B)

Position information.

https://doi.org/10.1371/journal.pone.0176585.g011
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significantly greater than chance whilst it is always possible to decode item identity above

chance (Fig 12).

Positional pattern similarity decreases as a function of lag. Interference between item

representations results in a change in pattern similarity across sequence positions. Specifically,

between-position pattern similarity decreases as the distance between positions (lag) increases.

In other words, pattern similarity is significantly higher across items that shared the same tem-

poral position information than between items that are 1 or more positions apart (Fig 13). For

the purposes of creating more positions the following plot (Fig 13) displays data generated

exactly as above but with 5-item sequences instead of three.

Such an effect of positional pattern similarity has be observed in a number of animal and

human studies [28, 29, 51, 52] and interpreted as a signature of positional code. The size of the

Fig 12. Linear classification accuracy of item identity (black) and position (red) as a function of

additive interference (as represented by the β parameter, Eq (4)). The red dotted line shows chance level

classification accuracy. Error bars depict SEM based on 1,000 simulations of the interference process with

fixed parameter values.

https://doi.org/10.1371/journal.pone.0176585.g012

Fig 13. Positional pattern similarity decreases as a function of lag. Similarity matrix on the left shows

average positional pattern similarity, as measured by Pearson’s ρ, based on additive interference with β = 0.8.

Plot on the right visualises this similarity as a function of positional lag. The red line depicts a statistically

significant negative slope over positional lag (p < 0.05).

https://doi.org/10.1371/journal.pone.0176585.g013
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lag effect can be measured as the magnitude of the negative slope over lag values as depicted

on Fig 13 (right). Since positional effects are here solely caused by the interference mechanism

it follows that the size of the lag effect correlates with the β parameter, which determines the

extent of residual activity from the previous item. Fig 14 shows how the change in the lag effect

as a function of additive interference.

Proportional interference

Pure additive interference is implausible since it presumes unlimited growth of the response in

the brain region. We can cap the total response in the brain region (∑yp) by normalising the

response pattern every time a new item is presented. The easiest way to do this is to change the

role β from the amount of residual activity to the proportion of residual activity. This requires a

single change to the interference mechanism (Eq (3)) so that now we also weigh the current

item representation ri, but with 1 − π:

yp ¼ ð1 � ppÞri þ ppyp� 1
ð5Þ

Although the mixing coefficient π is here calculated exactly as before (Eq (4)): πp = π0β
p−1) its

meaning has changed. Whereas previously β represented the amount of interference from the

previously presented item, now β determines the proportion of the previous item pattern yp−1

in the current item pattern yp. If we set β = 0.2, the representation of a four-item sequence A,

B, C, D would evolve as follows:

yp¼1 ¼ rA

yp¼2 ¼ 0:8rB þ 0:2rA

yp¼3 ¼ 0:8rC þ 0:16rB þ 0:04rA

yp¼4 ¼ 0:8rD þ 0:16rC þ 0:032rB þ 0:008rA

Fig 14. The size of the positional lag effect as a function of additive interference (β). Error bars depict

SEM based on 1,000 simulations of the interference process with fixed parameter values.

https://doi.org/10.1371/journal.pone.0176585.g014

Reading positional codes with fMRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0176585 May 17, 2017 16 / 25

https://doi.org/10.1371/journal.pone.0176585.g014
https://doi.org/10.1371/journal.pone.0176585


Though the mechanism of interference here is the same as in the previous simulation, we no

longer allow the response of the brain region (∑yp) to grow as the sequence proceeds. In other

words, we have eliminated any univariate signal correlated with position. Consequently, linear

decoding of response patterns based on position is not significantly different from chance any

more (Fig 15A, red line). However, the positional lag effect remains since it is based on pattern

similarity (as measured by Pearson’s ρ) which is insensitive to class means (Fig 15B).

In sum, de-meaning the neural response patterns only subtracts univariate effects of

between-item interference. Pattern similarity effects of interference, such as the positional lag

effect, still remain. It follows therefore that the positional lag effect alone is not a sufficient evi-

dence for a neural positional code and additional statistical tests, such as classification analysis,

are required.

Summary of item interference effects

Even in the absence of any true positional code, if the encoding of item information is based

on overlaying item representations in a non-additive fashion this can potentially masquerade

as a positional code. Depending on the magnitude of interference both position decoding and

positional lag effects can be successfully simulated. Positional decoding is possible when resid-

ual activity from previous items is not capped and the brain region’s mean response grows

with sequence position. When the activity patterns are normalised so that the mean response

stays the same then only the positional lag effect remains.

Other sources of interference

The mechanism of interference, as described above in the context of item codes, can be simi-

larly applied to other variables of the experimental design. In fact, as outlined in the Introduc-

tion, any fixed parameter of the experimental design is collinear with positional effects. Next

we briefly discuss how position-like codes emerge as a result of interference between task

phases and as a result of temporally convolved measurement.

Fig 15. Classification accuracy and positional similarity as simulated by the proportional interference

mechanism. Error bars depict SEM based on 1,000 simulations of the interference process. Notice that β values

on the x-axis have been approximately halved since the parameter now indicated the proportion of residual

activity. (A) Linear classification accuracy of item identity (black) and position (red) as a function of proportional

interference (β). The red dotted line shows chance level classification accuracy. (B) The size of the positional lag

effect as a function of proportional interference (β).

https://doi.org/10.1371/journal.pone.0176585.g015
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Interference between task phases

One of the most common tasks used in studying sequence representation is the serial recall
task (Fig 16). In the serial recall task presentation of a sequence of items is usually followed by

a response phase requiring the participant to recall the sequence. Importantly, the temporal

order between task phases themselves is always fixed: recall must necessarily follow presenta-

tion, rest always occurs between the trials etc. As a result, the positional structure of the pre-

sented sequence in the task is collinear with the structure of the task itself. For example, in the

serial recall task the last item in the sequence is always followed by the recall phase. Similarly,

the first item in the sequence is always preceded by recall on the previous trial. As a result we

can reliably predict the position of an item in the sequence based on its adjacency to different

task phases.

We can model interference between task phases by simulating a response of 20 voxels as

above, but during a single trial of a serial recall task. The task has two phases occurring in fixed

order: presentation and recall (Fig 16). We assume that some voxels in the brain region are

selective for the presentation and some for the recall phase. This selectivity can be described as

voxels’ likelihood to respond given a task phase. If there is no interference between task phases

the response of phase-selective voxels is independent at any stage of the task: the previous

phase of the task does not alter the voxels’ activity at current stage (Fig 17A). However, if we

implement additive interference as described above then the extent of the response of phase-

selective voxels becomes collinear with item position in the sequence (Fig 17B). Importantly,

no item codes are necessary here, just sensitivity to task phases suffices. Due to interference we

can now linearly separate the response patterns in terms of their sequence position because the

Fig 16. A serial recall task based on [33].

https://doi.org/10.1371/journal.pone.0176585.g016

Fig 17. The average simulated activity of two sets of voxels, each sensitive either to the presentation or

recall phase of the task. In this hypothetical task a presentation of three items in a sequence is followed by recall

of three items. (A) Without interference. (B) Additive interference.

https://doi.org/10.1371/journal.pone.0176585.g017
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total response changes as a function of task phase (Fig 17B). In every other aspect the mecha-

nism is the same as described in Positional code from interference above.

Neurons’ or voxels’ sensitivity to a specific task phase is common, since in most experi-

ments perceptual information is impossible to balance across task phases. For example, the

presentation phase in serial recall task commonly uses a different stimulus modality (visual or

auditory) than the following recall phase (manual or verbal recall, see Table 1). As a result,

large patches of the cortex are only engaged during a specific phase of the task creating condi-

tions described above.

Interference from measurement: Functional MRI

So far we have described interference mechanisms arising between neural representations.

However, equally importantly, interference between representations can result from noisy

measurement. Similarly to representational interference, this can lead to positional effects

which are spurious.

Functional MRI measures neural activity by detecting changes in the concentration of oxy-

hemoglobin and deoxyhemoglobin in neural tissue (BOLD signal). The relationship between a

neural event and the corresponding BOLD signal can be described by a haemodynamic

response function (HRF). Importantly, the HRF is non-linear and spread out over several sec-

onds (Fig 18A), meaning that the BOLD signal corresponding to temporally adjacent events,

such as items in a sequence or task phases, will always contain a response elicited by events

preceding the event of interest (Fig 18B). This creates conditions similar to between-item and

task phase interference described above—only this time there is no need for cognitive or repre-

sentational interference. The temporal overlap in the BOLD signal will result in interference

between measured item or phase representations even if the neural representations are inde-

pendent of each other.

Discussion

A major methodological barrier to studying the neural representation of positional code is that

in any sequence processing task items in different position necessarily differ on other dimen-

sions too. In this paper we used simulations and experimental data to show how both position-

collinear experimental variables, noisy measurement, and interference between sequence

items can lead to positional read-out in the absence of a dedicated positional code. This raises

two important questions: (1) is it important to distinguish between a positional read-out and a

‘true’ positional code; and (2) what steps can be taken to delineate those in experimental data.

Fig 18. Temporal interference in fMRI. (A) The haemodynamic response function (HRF) with the vertical

line representing the corresponding neural event. (B) Temporal interference between two adjacent events:

black and red lines.

https://doi.org/10.1371/journal.pone.0176585.g018
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Positional read-out vs. dedicated positional code

Most models of neural sequence representation assume the existence of a dedicated positional

code in the brain [1, 53–55]. However, since several cognitive processes (e.g. memory load,

sensory adaptation) are collinear with any positional signal, a question arises whether those

collinear processes could be used as a positional signal not just by the experimenter but also by

the brain. We argue that a positional read-out from either simple position-collinear processes

or between-item interference is not sufficient to support the storage and recall of a sequence.

Positional read-out from collinear processes is not sufficient for recalling a sequence.

Recalling items in a sequence requires reinstating their order during recall. This problem is

solved by positional models of sequence processing by associating each sequence item with its

position during encoding and retrieving the order of items during recall by reinstating each

positional code, which then cues the associated item (Fig 1B, e.g.: [53–56]). However, it is hard

to see how processes such as memory load or sensory adaptation could be used to cue associ-

ated items. Although experimenters can decode item position in a sequence based on memory

load or sensory adaptation it is hard to see how “cortex as receiver” can use those neural signals

to represent position and guide behaviour. For example, in case of using memory load (or any

monotonically changing signal) as a positional code to cue associated items would require first

to reinstate such ‘load’ to cue the corresponding item. However, such interpretation of ‘mem-

ory load’, which can be reinstated independently of the amount of items in memory, loses its

original meaning and becomes a clumsy re-interpretation of a dedicated positional code. For

this reason any effect of sequence processing, such as memory load or sensory adaptation, can-

not be inverted into cause that would enable to associate items into sequence.

Positional read-out from between-item interference is not sufficient for recalling a

sequence. We showed that interference between item representations can potentially mas-

querade as a positional code. This is because noisiness of the item representations changes

monotonically over sequence positions as a result of interference. The change in the noise pro-

file can therefore be used by the experimenter to reliably predict the position of the item in the

sequence. However, as with simple position-collinear processes, it is hard to see how changes

in the signal-to-noise ratio can be used by the brain to guide sequence recall. The main conse-

quence of interference via overlaying item representations is that the later items in the

sequence are noisier than the early ones. This contradicts the well-established recency effect in

sequence recall, where last items in the sequence are more accurately recalled than the ones in

the middle (see [57], for a review). Secondly, using the noisiness of item representations as a

positional code to cue associated items conflates the cause and effect relationship in sequence

processing, as discussed above. The noisiness of the items would need to be reinstated inde-

pendently of items themselves, thus necessitating the recoding of the noise levels into a dedi-

cated positional signal.

Methods to dissociate between positional read-out and dedicated

positional code

It is not possible to devise a task where the positional signal is orthogonal to other experimen-

tal variables since cognitive processes collinear to the positional code will always arise when-

ever stimuli are presented in sequence. However, the vast majority of previous studies on the

positional code (Table 1) do not acknowledge the possibility of the ‘contamination’ of the posi-

tional code or take any measures to control for it.

Two assumptions are required to distinguish between a positional read-out and a ‘true’

positional code. First, position-collinear processes like memory load or sensory adaptation will

uniformly affect all neural units engaged in encoding the item representations. This
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assumption is relatively uncontroversial if we presume that such processes are the result (and

not source) of sequence processing. Second, we need to assume that a dedicated positional

code is reflected in the position-sensitivity within a population of neural units. In other words,

units respond selectively to sequence positions based on some tuning function. Under such

conditions simple de-meaning (e.g z-scoring) of the neural data with respect to experimental

condition (item position) will eliminate any univariate signal from the data including any uni-

variate positional read-outs (see Eliminating uniform signal by de-meaning).

However, we also showed that between-item interference can result in pattern similarity

effects which masquerade as positional signal in the form of the lag effect (see Positional pat-

tern similarity decreases as a function of lag and Proportional interference). Effects of pattern

similarity are independent of signal amplitude and hence invariant to de-meaning. As a result,

the effect of positional lag which has been used in several previous studies of positional code

[28, 29, 51, 52] cannot be taken as a proof of neural positional code without ruling out

between-item interference first. We show that this can be achieved by using linear classifica-

tion analyses on the de-meaned neural responses.

Besides cognitive interference– such as based on overlaying item representations—posi-

tional read-out can result in noisy measurement, such as the temporal interference inherent in

fMRI. In other words, any fMRI signal pertaining to successively presented sequence items

will include a positional signal based on measurement error, even if we assume no interference

between the neural representations of items themselves. As a result, the positional lag effect

alone should never be used in fMRI studies as an indicator of neural positional representation.

In fMRI studies sequentially presented stimuli will always be collinearly dependent on each

other because of the inherent temporal lag in the BOLD signal. As a solution, whole-sequence

data can be used to extract positional information using the representational similarity analysis

[32, 58].

Conclusions

In this paper we have explored two types of processes that could enable an experimenter to

read out a positional ‘code’ in the absence of a dedicated positional code. First, we show that

with any sequence processing task there are experimental variables collinear with the posi-

tional signal (e.g. time, memory load, etc.) which can serve as a positional code. Second, we

show how interference between item representations, task phases, and measurement modali-

ties can also lead to a similar positional read-outs.

We argue that it is important to distinguish between a positional read-out and a dedicated

positional code, since only the latter has been shown to be compatible with experimental data.

Furthermore, we argue that such collinear processes which enable positional read-out are the

result of sequence representation not cause, and hence would not be able to even theoretically

support sequence retrieval. Finally, we suggest practical steps in data analysis to distinguish

between a positional read-out and a code. Furthermore, this paper shows that many results

from behavioural and neural experiments studying the positional code must be treated with

caution.
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