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Multi-spectral fluorescent reporter influenza
viruses (Color-flu) as powerful tools for in vivo
studies
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Seasonal influenza A viruses cause annual epidemics of respiratory disease; highly pathogenic

avian H5N1 and the recently emerged H7N9 viruses cause severe infections in humans,

often with fatal outcomes. Although numerous studies have addressed the pathogenicity

of influenza viruses, influenza pathogenesis remains incompletely understood. Here we

generate influenza viruses expressing fluorescent proteins of different colours (‘Color-flu’

viruses) to facilitate the study of viral infection in in vivo models. On adaptation to mice,

stable expression of the fluorescent proteins in infected animals allows their detection by

different types of microscopy and by flow cytometry. We use this system to analyse the

progression of viral spread in mouse lungs, for live imaging of virus-infected cells, and for

differential gene expression studies in virus antigen-positive and virus antigen-negative live

cells in the lungs of Color-flu-infected mice. Collectively, Color-flu viruses are powerful

tools to analyse virus infections at the cellular level in vivo to better understand influenza

pathogenesis.
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I
nfluenza A virus is a respiratory pathogen that causes annual
epidemics and sporadic pandemics1. Moreover, highly
pathogenic avian H5N1 and the recently emerged H7N9

influenza viruses have caused an appreciable number of human
infections with high mortality rates2,3. Influenza viruses infect
respiratory epithelial cells and alveolar macrophages in
mammalian hosts4. The host immune system recognizes the
RNA genome of influenza viruses via cytosolic sensors5,6, which
trigger innate immune responses that lead to the production of
type I interferons (IFNs) and proinflammatory cytokines and
chemokines7. Type I IFNs upregulate the production of antiviral
proteins including myxovirus resistance (Mx), oligoadenylate
synthetase (OAS) and interferon-stimulated gene 15 (ISG15)8.
Dysregulation of the innate immune responses to influenza virus
infection causes lung pathology mediated by infiltrating immune
cells, including macrophages and neutrophils9,10. Although
several studies have addressed host responses to influenza virus
infections11, the mechanisms of influenza virus-induced
pathology are still not fully understood.

To analyse the immune responses to influenza virus infection
in vivo, viruses have been generated that expressed a fluorescent
reporter protein12,13. However, these viruses were significantly
attenuated12,13 and may not accurately reflect natural infections.
Manicassamy et al.14 generated a GFP-expressing influenza virus,
which they used to assess the route of antigen presentation on
influenza virus infection15. However, the GFP gene was not stably
maintained during replication in mouse lung or cultured cells,
even though they isolated the GFP-expressing virus by repeated
plaque purifications14.

Here we generated appreciably improved versions of
fluorescent influenza viruses each of which stably expresses one
of four different fluorescent proteins that can be monitored
simultaneously. Plaque purification is not required for our strains
to maintain the fluorescent expression. Using these viruses, we
performed several studies to demonstrate the versatility of this
novel tool set.

Results
Generation of ‘Color-flu’ viruses. To generate a fluorescent
influenza virus expressing a reporter protein fused to the NS1
open reading frame, we chose Venus, a GFP variant with eight
mutations including F46L, which improves chromophore
formation and increases brightness compared with GFP16. As
expected based on previous findings of attenuation for influenza
viruses expressing reporter proteins12,13, the mouse pathogenicity
of A/Puerto Rico/8/34 (PR8; H1N1) virus expressing Venus
(WT-Venus-PR8) was substantially lower than that of wild-type
PR8 (WT-PR8); the dose required to kill 50% of infected mice
(MLD50) was more than 104.3 plaque-forming units (PFU) for
WT-Venus-PR8 compared with 102.5 PFU for WT-PR8 (Fig. 1).
We therefore serially passaged WT-Venus-PR8 in C57BL/6 (B6)
mice. After six consecutive passages, we identified a variant
(designated mouse-adapted (MA)-Venus-PR8; possessing a
T-to-A mutation at position 380 of the hemagglutinin protein,
and an E-to-D mutation at position 712 of the polymerase subunit
PB2) with appreciably higher pathogenicity (MLD50¼ 103.3 PFU)
compared with WT-Venus-PR8, although it was still slightly less
pathogenic than the original PR8 virus (Fig. 1). To assess the
replicative ability of MA-Venus-PR8 in mouse lungs, we
intranasally infected B6 mice with 104 PFU of MA-Venus-PR8
or WT-PR8. At all time points tested, the lung virus titres were
similar for MA-Venus-PR8- and WT-PR8-infected mice
(Table 1). To test the stability of Venus expression, we
performed plaque assays using lung homogenate from infected
mice and found that only one of 150 plaques on each of days 3, 5
and 7 post-infection (p.i.) was Venus-negative, attesting to the

high genetic stability of Venus expression in this recombinant
virus. In contrast, only 70% of NS1-GFP virus expressed the
reporter protein14. The robust virulence and genetic stability of
MA-Venus-PR8 indicate that this virus represents a highly
attractive reporter system to visualize influenza virus-infected
cells in vivo.

To increase the versatility of fluorescent influenza viruses as
imaging tools, we next generated additional MA-PR8 variants
expressing different spectral GFP mutants, namely, eCFP (ex.
434 nm, em. 477 nm) and eGFP (ex. 489 nm, em. 508 nm)17. We
also generated an mCherry variant (ex. 587 nm, em. 610 nm),
which emits fluorescence at a longer wavelength than Venus
(ex. 515 nm, em. 528 nm)16,18. These influenza viruses encoding
the multi-spectral fluorescent reporter proteins were collectively
named ‘Color-flu’. To determine the pathogenicity of Color-flu
viruses, we compared the virus titres in mouse lung tissues and
the MLD50 values of MA-eCFP, eGFP and mCherry-PR8 with
those of MA-Venus-PR8 and MA-PR8. All of virus strains
showed comparatively high replication in the lungs and the
MLD50 values were similar among the Color-flu viruses
(Supplementary Fig. 1 and Table 1). We also tested the stability
of the fluorescent expression of the Color-flu viruses in vivo and
in vitro by plaque assay. When we collected virus from the lungs
of mice on day 7 p.i., the percentages of fluorescent-positive
plaques were 98.0% (MA-eCFP-PR8), 100.0% (MA-eGFP-PR8)
and 96.4% (MA-mCherry-PR8). We also measured the
percentages of fluorescent-positive plaque in the sample from
the culture medium of MDCK cells after 72 h p.i. and found them
to be 100.0% (MA-eCFP-PR8), 99.2% (MA-eGFP-PR8) and
98.2% (MA-mCherry-PR8). In addition, we examined the
stability of an NS1-fluorescent protein chimera in virus-infected
cells by infecting MDCK cells with MA-Venus-PR8 virus and
detecting NS1-Venus chimeric protein by using anti-GFP and
anti-NS1 antibodies (Supplementary Fig. 2). We found that the
NS1-Venus chimeric protein was not degraded until the time
point we examined (that is, 12 h p.i.), indicating that the
fluorescent signal is mainly emitted from the NS1-fluorescent
protein chimera and not from degradation products in cells
infected with Color-flu viruses. These findings indicate that the
pathogenicity and stability of the Color-flu viruses were not
affected by the different fluorescent reporter genes. To assess the
expression of Color-flu viruses in mouse lungs, we collected lungs
from B6 mice infected with each of the Color-flu viruses and
processed them for visualization as described in the Methods
section. All four colours were clearly visible in whole transparent
lung tissue when analysed with a fluorescent stereomicroscope
(Fig. 2a). Fluorescent signals were mainly seen in the bronchial
epithelial layer at day 3 p.i. At day 5 p.i., fluorescent signals
extended to the peripheral alveolar regions. These data indicate
that all four Color-flu viruses are useful for analysing the
distribution of influenza virus-infected cells in mouse lungs.

Next, we employed the Nuance spectral imaging system to test
whether the fluorescent signals of all four Color-flu viruses could
be detected simultaneously. Lung tissues were collected from B6
mice intranasally inoculated with a mixture of the four strains
(2.5� 104 PFU each in a total volume of 50 ml). Analysis of lung
sections obtained at days 2 and 5 p.i. showed that the fluorescent
signals of all four Color-flu viruses were distinguishable from
each other (Fig. 2b). At day 2 p.i., we found clusters of the same
fluorescent colour in bronchial epithelial cells, suggesting local
spread of the individual viruses. At this time point, a limited
number of alveolar cells were infected. At day 5 p.i., we detected a
cluster of alveolar cells expressing a single fluorescent protein,
indicative of the initiation of infection with a single virus and its
local spread (Fig. 2b). Interestingly, we also detected epithelial
cells simultaneously expressing two or three fluorescent proteins,
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albeit at a low frequency, suggesting co-infection of these cells
(Fig. 2c). To quantitatively analyse the co-infection in the
bronchial epithelium, we utilized the inForm multispectral
imaging software for automated user-trained tissue and cell
segmentation, together with Nuance. We found that B20% of
epithelial cells were infected with multiple strains of Color-flu
viruses in bronchus isolated from mice on day 2 p.i.
(Supplementary Fig. 3). The ability to visualize cells co-infected
with different influenza viruses in vivo is a major advance in
technology and will allow us to provide novel insights into
influenza co-infection and reassortment processes.

The innate host response to Color-flu viruses. We next tested
the utility of Color-flu viruses for the analysis of host responses
to infection. As macrophages are involved in innate immunity
and acute inflammation in influenza virus-infected lungs, we
examined lung sections stained with an antibody to macro-
phages (PE-Mac3) by using confocal microscopy. Macrophages
infiltrated regions containing Venus-positive bronchial epithe-
lial cells at day 2 p.i. of mice with MA-Venus-PR8 (Fig. 3a); by
contrast, only a few Mac3-positive cells were detected in the
alveoli of lungs from mock-infected animals. On the basis of this
finding, we next employed live imaging to further study the
interaction between influenza virus-infected epithelial cells and
macrophages in mouse lungs. In the lung tissue of naive B6
mice, CD11bþ alveolar macrophages were detected by use of a
two-photon laser microscope. Most of these macrophages did
not migrate (that is, showed little movement) during the
observation period (49 min; Supplementary Movie 1). In mice
infected with MA-eGFP-PR8 virus, many CD11bþ macro-
phages appeared to be ‘attached’ to eGFP-positive epithelial cells
(Supplementary Movie 2); moreover, some of these eGFP-
positive epithelial cells exhibited blebbing similar to apoptotic
cells (Fig. 3b). Interestingly, a number of CD11bþ macro-
phages quickly moved around the eGFP-positive epithelial cells,
suggesting possible macrophage responses to inflammatory
signals such as IFNs or chemokines. We also analysed the
kinetics of the lung macrophages by tracking individual cells
(Fig. 3b) and found that there were no obvious differences
between the kinetics of macrophages in the naive lung and
those in the infected lung. Our system can thus be used to
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Figure 1 | Characteristics of mouse-adapted Venus-PR8 in mice. Four B6 mice per group were intranasally inoculated with WT-PR8, WT-Venus-PR8 or

MA-Venus-PR8. Body weight and survival of mice were monitored for 14 days.

Table 1 | Replication and virulence of Color-flu in mice*.

Virus Mean virus titer (log10 PFU/g±s.d.) in
the mouse lung on the indicated day p.i.

MLD50

(PFU)

Day 3 p.i. Day 5 p.i. Day 7 p.i.

MA-eCFP-PR8 8.1±0.2w 8.0±0.1 6.3±0.1 103.0

MA-eGFP-PR8 8.6±0.1 8.3±0.1 6.3±0.1 103.5

MA-Venus-PR8 8.6±0.2 8.4±0.1 6.5±0.3 103.3

MA-mCherry-PR8 7.7±0.3w 7.5±0.7 6.1±0.4 102.7

WT-Venus-PR8 5.6±0.3w 5.3±0.3w 5.2±0.2w 4104.3

WT-PR8 8.8±0.1 8.2±0.5 6.9±0.2 102.5

MA-PR8 8.9±0.1 9.0±0.0 7.9±0.2w 102.3

*B6 mice were inoculated intranasally with 104 PFU of each virus in a 50ml volume. Three mice
from each group were killed on days 3, 5 and 7 p.i., and virus titres in the lungs were determined
in MDCK cells.
wStatistical significance was calculated by using the Student’s t-test; the P value was o0.01
compared with the titres in the lungs of mice infected with WT-PR8 virus.
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monitor the in vivo interactions between virus-infected and
immune cells.

A number of studies have assessed the transcriptomics and
proteomics profiles of influenza virus-infected mice19,20. As these
studies used whole lung samples, the results are the sum of virus-
infected and uninfected cells, leading to the dilution of host
responses and not allowing one to distinguish the profiles of
infected cells from those of uninfected, bystander cells. As a first
step to overcome this shortcoming, we sorted macrophages
(known to be infected by influenza viruses (Fig. 3c)) from the
lungs of mice infected with MA-Venus-PR8 on the basis of
their fluorescent protein expression and performed microarray
analysis. Macrophages isolated from the lungs of mice
inoculated with PBS (naive macrophages) served as controls.
In fluorescent-positive macrophages, 6,199 transcripts were
differently expressed relative to naive macrophages. By contrast,
in fluorescent-negative macrophages obtained from infected mice,
only 4,252 transcripts were differentially expressed relative to the

naive macrophages. This difference likely reflects differences in
gene transcription induced by active influenza virus infection.
However, it should be noted that the fluorescent-negative cell
populations obtained from infected animals may have included
infected cells in which the fluorescent signal had not yet been
detected as would be expected at an early stage of virus infection.
In fact, confocal microscopy revealed that it took 9 h to detect
fluorescent protein expression in the majority of MDCK cells
(Supplementary Fig. 4). Hierarchical clustering of differentially
expressed transcripts, followed by functional enrichment analysis
of each cluster, indicated that both fluorescent-positive and
fluorescent-negative macrophages obtained from infected animals
exhibit activation of pathways associated with the immune
response, cytokine production and inflammation (Fig. 3d, green
cluster). The upregulation of these pathways in the fluorescent-
negative cells may have resulted from cell activation by IFN and
cytokines released from infected cells, and/or from cells that were
at an early stage of virus infection (as discussed earlier). Yet, a
subset of enriched annotations, for example, type I IFN-mediated
signalling (Fig. 3d, light blue cluster), included transcripts that
were more highly expressed in fluorescent-positive macrophages.
In addition, we observed that type I IFN genes were among
the most upregulated transcripts in the fluorescent-positive
macrophages (Fig. 3e). Taken together, this enhanced type I
IFN activity is consistent with the suggestion that the fluorescent-
positive cells had been infected, whereas the fluorescent-negative
cells included both uninfected (but potentially ‘stimulated’) cells
and cells at early stages of influenza virus infection. Indeed, it
took at least 5 h to detect fluorescent protein expression after
infection with Color-flu viruses, although all of the fluorescent
proteins (that is, eCFP, eGFP, Venus, and mCherry) were
detectable in the majority of cells by 9 h p.i. (Supplementary
Fig. 4). These findings open new avenues in infectious disease
research to compare gene expression (or other types of
expression) patterns of reporter protein-positive cells with those
of reporter protein-negative cells (but potentially stimulated by
released cytokines and/or are at an early stage of infection).

Avian influenza A (H5N1) virus expressing Venus protein.
Finally, we tested whether the concept of mouse-adapted fluor-
escent influenza viruses could be applied to other influenza virus
strains, such as highly pathogenic avian influenza A (H5N1)
(HPAI) viruses, which are a research priority due to the threat
they pose to humans. We generated an MA-Venus-HPAI virus
based on A/Vietnam/1203/2004 (VN1203; H5N1), employing the
same strategy used to create MA-Venus-PR8; we used the PR8 NS
gene to express NS1-Venus chimeric protein because the NS gene
did not contribute to the pathogenicity of VN1203 strain in
mice21. The pathogenicity of MA-Venus-HPAI virus for B6 mice
was comparable to that of VN1203, with MLD50 values for both
viruses being less than 5 PFU (Fig. 4a and ref. 22). MA-Venus-
HPAI virus also shared with other HPAI viruses the ability to
spread systemically and replicate in various organs including the
spleen, kidney and brain (Fig. 4b and ref. 22). Moreover, taking
advantage of the strong fluorescent signal emitted by MA-Venus-
HPAI virus- and MA-Venus-PR8-infected cells, we successfully
constructed a three-dimensional image of an HPAI virus and
PR8-infected bronchus as well as alveolar areas inside the lung
tissues by using two-photon laser microscopy (Fig. 4c,
Supplementary Movies 3–6)). This type of three-dimensional
imaging analysis improves our understanding of the spatial
distribution of influenza virus-infected bronchi. When we
compared the distribution of virus-infected cells between HPAI
virus- and PR8-infected lungs, we found that HPAI virus spreads
from the bronchial epithelium to alveolar sites more quickly than
did PR8 (Fig. 4c,d). We also found, by using flow cytometric
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Figure 2 | Distribution of Color-flu viruses in lungs. (a) Lung tissues were

harvested from B6 mice at days 3 and 5 p.i. with Color-flu viruses (105 PFU

of MA-eCFP, eGFP, Venus and mCherry-PR8). Whole-mount images of

transparent lung tissues were obtained by using a fluorescent

stereomicroscope. Scale bar, 5 mm. (b,c) B6 mice were intranasally

inoculated with a mixture of MA-eCFP, eGFP, Venus and mCherry-PR8

(2.5� 104 PFU per strain). (b) The sections of lungs at days 2 and 5 p.i.

were analysed by using an inverted fluorescence microscope with a Nuance

FX multispectral imaging system with inForm software. Scale bar, 100mm.

(c) Enlarged images of the indicated area in (b) were unmixed and

separated into autofluorescence (AF), eCFP, eGFP, Venus and mCherry

fluorescence. Arrows in the merged image indicate cells infected with

different colour variants of Color-flu viruses.
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analysis, that CD45-negative, non-hematopoietic cells and
F4/80-positive macrophages more frequently expressed Venus
in the lungs of mice infected with MA-Venus-HPAI virus
than in the lungs of animals inoculated with MA-Venus-PR8
(Fig. 4e,f), supporting findings that H5N1 HPAI viruses
induce more severe inflammatory responses in the lung than
does PR8. Taken together, these findings demonstrate the utility

of Color-flu viruses for comparative studies of influenza
pathogenesis.

Discussion
In this study, we established Color-flu viruses to study influenza
virus infections at the cellular level. Color-flu viruses combine
several improvements over existing systems, including robust
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viral replication, virulence, stable fluorescent protein expression
and a set of four different colours that can be visualized
simultaneously. We also demonstrated that Color-flu viruses are
applicable to a different influenza virus strain. These improve-
ments allowed global transcriptomics analyses of infected and
bystander cells and, for the first time, live-imaging of influenza
virus-infected cells in the mouse lung.

Previous versions of fluorescent influenza viruses12,13 including
our original construct (that is, WT-Venus-PR8) were appreciably
attenuated in mice. These attenuated fluorescent viruses may still
be useful for identifying initial target cells. However, the immune
responses elicited by these highly attenuated, non-lethal viruses
most likely differ considerably from those of the mouse-lethal
parent virus, making their use for pathogenesis studies
problematic. Here, we solved this problem by passaging viruses

in mice. This strategy proved to be successful for two different
influenza virus strains, suggesting its broad applicability. A
second drawback of previously tested fluorescent influenza
viruses is the genetic instability of the added reporter protein14.
We, however, found that 495% of virus plaques examined from
mouse lung samples on day 7 p.i. expressed the reporter protein.
We are currently studying the mechanism by which our mouse-
adapted viruses stably express fluorescent proteins.

At present, Color-flu viruses cannot be monitored in live
animals non-invasively because fluorescent reporter proteins
must be within a ‘biological optical window (650–900 nm)’ to be
detected for imaging of tissues in live animals using fluorescent
probes23,24, and none of the fluorescent reporter proteins
including mCherry, which has the longest emission among the
reporter proteins of Color-flu, is inside this biological optical
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Figure 4 | Characterization of MA-Venus-HPAI virus. (a) Four B6 mice per group were intranasally inoculated with MA-Venus-HPAI virus. Mouse body

weight and survival were monitored for 14 days. (b) Lungs, spleens, kidneys and brains were harvested from B6 mice at day 3 p.i. with 105 PFU of

MA-Venus-HPAI virus. Virus titres of tissue homogenates were determined by use of plaque assays in MDCK cells. Each data point represents the

mean±s.d. (n¼ 3). (c,d) Lung tissues were harvested from B6 mice at day 1 and 2 p.i. with 105 PFU of MA-Venus-HPAI and PR8. Images of transparent

lung tissues with Venus-positive cells in the bronchus (red) and alveolar area (green) were obtained by using a two-photon microscope. Each data point

represents the mean±s.d. (n¼ 3). Statistical significance was calculated by using the Student’s t-test. (d) The distribution of Venus-positive cells was

evaluated via volume analysis of the Venus-positive bronchus and alveolar area by using 3D images of the transparent lung tissues. (e,f) Cells were

collected from lungs of B6 mice at days 1, 2, 3 and 4 p.i. with 105 PFU of MA-Venus-PR8 or MA-Venus-HPAI virus, and stained for CD45, CD11b and F4/80.

Venus expression in CD45-negative cells, and the Venus versus F4/80 staining profile gated on CD45-positive cells were analysed by flow cytometry.

(e) A representative dot plot from day 2 p.i. is shown with the percentage of Venus-positive cells.
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window. Several groups generated a luciferase reporter-expressing
influenza virus that can be used to monitor virus replication
in live animals25–27; however, this system needs systemic
inoculation of substrate into the animals at every observation
point. In addition, the resolution of their imaging system (based
on the IVIS system) is not adequate for the analysis of cellular
immune mechanisms in vivo, which we are able to achieve with
our system.

Novel technologies for imaging analysis28 have enabled us to
develop a set of four different influenza colour variants that can
be distinguished from one another by using Nuance, hence
allowing their simultaneous detection. In fact, our pilot study
identified lung epithelial cells expressing two or three different
fluorescent proteins (Fig. 2c, Supplementary Fig. 3). To our
knowledge, this is the first visualization of mouse lung cells
infected with more than one influenza virus strain. In future
studies, these colour variants could be used to address long-
standing questions in influenza virus research, such as the
frequency of viral co-infections in vivo, which may be critical to
better understand influenza virus reassortment and, hence, the
generation of novel influenza viruses such as the pandemic
viruses of 1957 (refs 29,30), 1968 (refs 29,30) and 2009 (refs 31,32).

By employing our novel tool sets, we were able to detect
influenza virus-infected cells in whole-lung tissues of mice,
allowing us to observe the location and distribution of influenza
viruses in the lung. Moreover, we were able to observe
interactions of virus-infected epithelial cells with immune cells.
Such studies will allow us to directly monitor influenza disease
progression from acute bronchitis to severe viral pneumonia,
which causes considerable morbidity and mortality in highly
pathogenic influenza virus infections33,34.

In conclusion, Color-flu viruses in combination with advanced
imaging technologies are a powerful and versatile tool to elucidate
the mechanisms of influenza virus pathogenicity at the cellular
level in animals.

Methods
Generation of Color-flu. The NS segments of PR8 fused with different fluorescent
reporter genes including eCFP, eGFP, Venus and mCherry were constructed by
overlapping fusion PCR as described previously14. In brief, the open reading frame
(ORF) of the NS1 gene without the stop codon was fused with the N terminus of
fluorescent reporter genes via a sequence encoding the amino-acid linker GSGG.
The fluorescent reporter ORFs were followed by a sequence encoding the GSG
linker, a foot-and-mouth virus protease 2A autoproteolytic site with 57 nucleotides
from porcine teschovirus-1 (ref. 14), and by the ORF of nuclear export protein
(Supplementary Fig. 5). In addition, silent mutations were introduced into the
endogenous splice acceptor site of the NS1 gene to abrogate splicing35. The
constructed NS segments (designated eCFP-NS, eGFP-NS, Venus-NS and
mCherry-NS) were subsequently cloned into a pPolI vector for reverse genetics as
described previously36. The plasmid encoding the Venus reporter protein was a
kind gift from Dr A. Miyawaki (Laboratory for Cell Function Dynamics, RIKEN
Brain Science Institute, Wako, Japan)16. WT-Venus-PR8 was generated by using
the reverse genetics system as described previously36. As WT-Venus-PR8
pathogenicity and Venus expression levels were appreciably attenuated in mice, we
serially passaged WT-Venus-PR8 in mice. After six passages, we obtained a variant
(MA-Venus-PR8) with increased pathogenicity and strong Venus expression.
A stock of MA-Venus-PR8 was generated in MDCK cells. As serial passage in
animals typically results in virus populations composed of genetic variants, we
recreated MA-Venus-PR8 by using reverse genetics. Likewise, MA-eCFP-PR8,
-eGFP-PR8 and -mCherry-PR8 were generated with the same genetic backbone as
MA-Venus-PR8. To generate a Venus-HPAI virus by reverse genetics, the NS
segment of A/Vietnam/1203/2004 (H5N1; VN1203) was replaced with Venus-NS
of PR8, and the virus was adapted to mice as described for MA-Venus-PR8.
A stock of MA-Venus-HPAI virus was made in MDCK cells. The set of these
influenza viruses carrying various fluorescent proteins was collectively termed
‘Color-flu’.

Mouse experiments. Female, 6-week-old C57BL/6 (‘B6’) mice, which were pur-
chased from Japan SLC, Inc. (Shizuoka, Japan), were intranasally inoculated with
Color-flu viruses, at the dosages indicated in the figure panels, in 50 ml of PBS
under sevoflurane anaesthesia, and body weights and survival were monitored for
14 days. Lungs were harvested from PBS-inoculated or Color-flu virus-infected

mice for virus titration, flow cytometric analysis and histological experiments at the
times indicated in the figure panels. All animal experiments were performed in
accordance with the regulations of the University of Tokyo Committee for Animal
Care and Use and were approved by the Animal Experiment Committee of the
Institute of Medical Science of the University of Tokyo.

Histology and cytology. Lungs were fixed in 4% paraformaldehyde (PFA)
phosphate buffer solution. Fixed tissues were embedded in OCT compound
(Sakura Finetek, Tokyo, Japan), frozen by liquid N2 and stored at � 80 �C. Cryostat
6-mm sections were treated for 30 min with PBS containing 1% BSA (PBS-BSA)
to block nonspecific binding, and then incubated with phycoerythrin (PE)-Mac3
(M3/84, BD Biosciences, San Jose, CA). To examine the cytology of the MDCK
cells, we infected them with Color-flu virus and then fixed them in 4% PFA
phosphate buffer solution. Nuclei were stained with Hoechst33342 (Invitrogen,
Carlsbad, CA). Sections and cells were visualized by using a confocal microscope
(Nikon A1Rsi, Nikon, Tokyo, Japan), controlled by NIS-Elements software. For
quantitative multi-colour imaging analysis, the slides were visualized by use of
an inverted fluorescence microscope (Nikon Eclipse TS100) with a Nuance FX
multispectral imaging system with inForm software (PerkinElmer, Waltham, MA).

Whole-mount imaging of lung tissue. Mice were killed and intracardially per-
fused with PBS to remove blood cells from the lung. The lungs were isolated after
intratracheal perfusion with 4% PFA phosphate buffer solution. The lung tissues
were cleared with SCALEVIEW-A2 solution (Olympus, Tokyo, Japan) according to
the manufacturer’s instructions. Images were acquired by using a stereo fluores-
cence microscope (M205FA, Leica Microsystems, Wetzlar, Germany) equipped
with a digital camera (DFC365FX, Leica Microsystems).

Two-photon laser microscopy. A total of 105 PFU of MA-eGFP-PR8 was
intranasally inoculated into B6 mice. To label lung macrophages, 50 ml of PE-
CD11b (M1/70, BioLegend, San Diego, CA) was injected intravenously to the mice
at day 3 p.i. Thirty minutes after the antibody injection, the lungs of the mice were
harvested. The kinetics of eGFP- and PE-positive cells in the lungs was imaged with
a two-photon laser microscope (LSM 710 NLO, Carl Zeiss, Oberkochen, Germany).
During the analysis, the lungs were maintained in complete medium (RPMI 1640
with 10% fetal calf serum) in a humid chamber (37 �C, 5% CO2). The data were
processed with LSM software Zen 2009 (Carl Zeiss). For three-dimensional
imaging of HPAI virus-infected lung tissues, B6 mice were intranasally inoculated
with 105 PFU of MA-Venus-HPAI virus and MA-Venus-PR8. The lung tissues
were collected from the mice at day 1 and 2 p.i., and treated with SCALEVIEW-A2
solution (Olympus) to make tissues transparent as described above. Three-
dimensional images of lung tissues were obtained from a two-photon laser
microscope (LSM 710 NLO).

Flow cytometric analysis and cell sorting. To obtain single-cell suspensions,
lungs were dissociated with Collagenase D (Roche Diagnostics, Mannheim,
Germany; final concentration: 2 mg ml� 1) and DNase I (Worthington Biochemical,
Lakewood, NJ; final concentration: 40 U ml� 1) for 30 min at 37 �C by grinding the
tissue through nylon filters (BD Biosciences). Red blood cells (RBCs) were lysed
by treatment with RBC lysing buffer (Sigma Aldrich, St Louis, MO). To block
nonspecific binding of antibodies, cells were incubated with purified anti-mouse
CD16/32 (Fc Block, BD Biosciences, San Diego, CA). Cells were stained with
appropriate combinations of fluorescent antibodies to analyse the population of
each immune cell subset. The following antibodies were used: anti-CD45 (30-F11:
eBioscience, San Diego, CA), anti-CD11b (M1/70: BioLegend), anti-F4/80 (BM8:
eBioscience) and anti-CD11c (HL3: BD Biosciences). All samples were also
incubated with 7-aminoactinomycin D (Via-Probe, BD Biosciences) for dead
cell exclusion. Data from labelled cells were acquired on a FACSAria II (BD
Biosciences) and analysed with FlowJo software version 9.3.1 (Tree Star, San
Carlos, CA). To isolate Venus-positive and -negative macrophages from lungs,
stained cells were sorted using a FACSAria II (BD Biosciences).

Microarray analysis. Total RNA of sorted macrophages was extracted using
TRIzol reagent (Life Technologies, Carlsbad, CA) and precipitated with iso-
propanol. RNA amplification was performed using the Arcturus Riboamp Plus
RNA Amplification Kit (Life technologies) in accordance with the manufacturer’s
instructions. RNA was labelled by using the Agilent Low Input Quick Amp
Labelling kit, one colour (Agilent Technologies, Santa Clara, CA) and hybridized to
the SurePrint G3 Mouse GE 8X60K microarray (Agilent Technologies). Arrays
were scanned with a DNA Microarray Scanner with SureScan High-Resolution
Technology, (G2565CA; Agilent Technologies), and data were acquired using
Agilent Feature Extraction software ver. 10.7.3.1. (Agilent Technologies). Probe
annotations were provided by Agilent Technologies (AMADID 028005). Probe
intensities were background-corrected and normalized using the normal-
exponential and quantile methods, respectively. The log2 of the intensities were
then fit to a linear model that compared the groups of interest37. All reported
P values were adjusted for multiple hypothesis comparisons using the Benjamini–
Hochberg method. Transcripts were considered differentially expressed if there was
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at least a twofold change in the mean probe intensity between contrasts with an
adjusted Po0.01. Hierarchical clustering was performed in R. The resultant gene
clusters were then analysed with ToppCluster38 to identify gene annotations that
were enriched in each cluster. The reported scores are the � log10 of the
Benjamini–Hochberg adjusted P value.

Western blot analysis. Whole-cell lysates of MDCK cells were electrophoresed
through sodium dodecylsulfate polyacrylamide gels (Bio-Rad Laboratories,
Hercules, CA) and transferred to a PVDF membrane (Millipore, Billerica, MA).
The membrane was then blocked with Blocking One (Nacalai Tesque, Kyoto,
Japan) and incubated with polyclonal rabbit anti-GFP (MBL, Nagoya, Japan),
mouse anti-NS1 (188/5, a gift from Prof. H. Kida, Hokkaido Univ., Sapporo,
Japan), rabbit anti-WSN (R309, prepared in our laboratory) or mouse anti-b-actin
(A2228; Sigma-Aldrich), followed by HRP-conjugated anti-mouse or anti-rabbit
IgG antibody (GE Healthcare, Waukesha, WI), respectively. After the membrane
was washed with PBS-Tween, specific proteins were detected by using the ECL Plus
Western Blotting Detection System (GE Healthcare). The specific protein bands
were visualized by use of the VersaDoc Imaging System (Bio-Rad Laboratories).
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