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Abstract

Background

Human African trypanosomiasis (HAT) manifests as an acute form caused by Trypanosoma

brucei rhodesiense (Tbr) and a chronic form caused by Trypanosoma brucei gambiense

(Tbg). Previous studies have suggested a host genetic role in infection outcomes, particu-

larly for APOL1. We have undertaken candidate gene association studies (CGAS) in a

Ugandan Tbr and a Tbg HAT endemic area, to determine whether polymorphisms in IL10,

IL8, IL4, HLAG, TNFA, TNX4LB, IL6, IFNG, MIF, APOL1, HLAA, IL1B, IL4R, IL12B, IL12R,

HP, HPR, and CFH have a role in HAT.

Methodology and results

We included 238 and 202 participants from the Busoga Tbr and Northwest Uganda Tbg

endemic areas respectively. Single Nucleotide Polymorphism (SNP) genotype data were

analysed in the CGAS. The study was powered to find odds ratios > 2 but association testing

of the SNPs with HAT yielded no positive associations i.e. none significant after correction

for multiple testing. However there was strong evidence for no association with Tbr HAT and

APOL1 G2 of the size previously reported in the Kabermaido district of Uganda.

Conclusions/Significance

A recent study in the Soroti and Kaberamaido focus in Central Uganda found that the

APOL1 G2 allele was strongly associated with protection against Tbr HAT (odds ratio = 0.2,

95% CI: 0.07 to 0.48, p = 0.0001). However, in our study no effect of G2 on Tbr HAT was
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found, despite being well powered to find a similar sized effect (OR = 0.9281, 95% CI: 0.482

to 1.788, p = 0.8035). It is possible that the G2 allele is protective from Tbr in the Soroti/

Kabermaido focus but not in the Iganga district of Busoga, which differ in ethnicity and infec-

tion history. Mechanisms underlying HAT infection outcome and virulence are complex and

might differ between populations, and likely involve several host, parasite or even environ-

mental factors.

Author summary

Human African Trypanosomiasis (HAT) occurs in two distinct disease forms; the acute

form and the chronic form which are caused by microscopically indistinguishable hemo-

parasites, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense respec-

tively. Uganda is the only country where both forms of the disease are found, though in

geographically distinct areas. Recent studies have shown that host genetic factors play a

role in HAT resistance and/or susceptibility, particularly by genes involved in the immune

response. In this study, we identified single nucleotide polymorphisms in selected genes

involved in immune responses and carried out a case-control candidate gene association

study in Ugandan participants from the two endemic areas. We were unable to detect any

polymorphisms that were robustly associated with either Tbr or Tbg HAT. However, our

findings differ from recent studies carried out in the Tbr HAT another endemic area of

Uganda that showed the APOL1 (Apolipoprotein 1) G2 allele to be protective against the

disease which merits further investigation. Larger studies such as genome wide association

studies (GWAS) by the TrypanoGEN network that has>3000 cases and controls covering

seven countries (Cameroon, Cote d’Ivoire, DRC, Malawi, Uganda, Zambia) using the

H3Africa customized chip reflective of African genetic diversity will present novel associa-

tion targets (https://commonfund.nih.gov/globalhealth/h3aresources).

Introduction

The tsetse transmitted African trypanosomes are flagellated protozoa, a range of which cause

disease in animals (known as Nagana) and humans (Human African Trypanosomiasis, HAT,

also known as sleeping sickness). These diseases are responsible for significant morbidity and

mortality [1–3] and therefore directly impact on public health and animal productivity. Cur-

rent reports indicate that annual HAT incidence is on the decline, although under reporting is

typical, especially in areas where conflicts and civil unrest interrupt control efforts and regular

epidemiological surveys [4–6].

HAT is caused by two microscopically indistinguishable sub-species: Trypanosoma brucei
rhodesiense that causes an acute form of the diseases that develops within a few weeks or

months of infection, and Trypanosoma brucei gambiense that causes a chronic form of the dis-

ease that can take years to become patent. The acute form of the disease is prevalent in Eastern

and Southern Africa while the chronic form of the disease is prevalent in West and Central

Africa [4]. Uganda is the only country with active foci for both forms of the disease, though in

geographically distinct regions.

Studies in the Democratic Republic of Congo (DRC), Cameroon, Cote D’Ivoire, Guinea

and Uganda have found evidence for polymorphisms in HP, IL6 and APOL1 associated with

outcome of infection [7–12]. In the present study, we investigated the possible association of

Gene polymorphisms associated with HAT in Uganda
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selected gene polymorphisms with HAT by undertaking a candidate gene association study

(CGAS) using case-control samples from the Tbr and Tbg HAT endemic areas of Uganda. The

IL10, IL8, IL4,HLAG, TNFA, TNX4LB, IL6, IFNG,MIF, APOL1,HLAA, IL1B, IL4R, IL12B,

IL12R,HP,HPR, and CFH genes that were selected have protein products that are involved in

the HAT immune response. The CGAS approach was used to compare the frequencies of

genetic polymorphisms between cases and controls in order to identify risk variants for HAT

in the two Ugandan populations.

Materials and methods

Ethics statement

This study was approved by the Uganda National Council of Science (UNCST; assigned code HS

1344) following review by the IRB of the Ministry of Health. Participants were identified through

community engagement and active field surveys; they gave written informed consent adminis-

tered in their local language by trained local health workers. In instances where participants were

below 18 years of age, consent was sought from a parent or primary guardian. Any individuals for

whom it was not possible to obtain consent or blood samples were excluded from the study.

Study population

The Tbr HAT endemic area samples were from the traditional Tbr HAT foci in the South East

of Uganda [13]. Samples were collected mainly from Iganga district and included individuals

from the predominantly Basoga ethnic group, with a few Baganda, Banyole, Balamogi, Basigi-

nyi, Itesot, and Japadhola ethnicities.

The Tbg HAT endemic area samples were from the traditional Tbg HAT foci in the North-

west of Uganda [13]. Samples were collected from Adjumani, Arua, Koboko, Maracha, and

Moyo districts and comprised of individuals from the Kakwa, Lubgbara and Madi ethnicities.

In both areas, only individuals who were born and lived in these traditional foci were selected,

as they were most likely exposed to HAT for most of their lives.

HAT cases were defined as individuals in whom trypanosomes have been detected by

microscopy in at least one of the body tissues including, blood, lymph node aspirates or cere-

bral spinal fluids. Controls were defined as individuals from the endemic area with no history

or any signs/symptoms suggestive of HAT. Controls from the Tbg HAT endemic area were

required to have no serological reaction to the CATT or Trypanolysis tests.

Blood was drawn by venipuncture and collected in EDTA/heparin vacutainer tubes (BD).

Buffy coats were prepared from the whole blood in field laboratories using centrifugation, ali-

quoted, and then stored in liquid nitrogen in preparation for DNA extraction that was carried

out at the Molecular Biology Laboratory, COVAB, Makerere University. The DNA was quanti-

fied using Qubit (Life Technologies).

Study design

This study was one of five studies of populations of HAT endemic areas in Cameroon, Cote

d’Ivoire, Guinea, Malawi and Uganda. The studies were designed to have 80% power to detect

odds ratios (OR) >2 for loci with disease allele frequencies of 0.15–0.65 and 100 cases and 100

controls with the 96 SNPs genotyped. The study design included an overall total of 462 sam-

ples, 239 samples from Tbr HAT endemic regions (120 cases, 119 controls) and 223 samples

from Tbg HAT endemic regions (110 cases and 113 controls).

Power calculations were undertaken using the pbsize routine in Genetics Analysis Package

gap version 1.1–16 in R [14].

Gene polymorphisms associated with HAT in Uganda
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Gene selection

The selection of the genes depended on prior knowledge of the genes and their association

with the HAT. The following genes IL10 [9], IL8 [7], IL4 [15], HLAG [16], TNFA [7], TNX4LB
[17], IL6 [7], IFNG [18], MIF [19], APOL1 [8], HLAA [20], IL1B [21], IL4R [21], IL12B [21],

IL12R [21], HP [22], HPR [22,23], and CFH [24] were selected.

SNP selection

96 SNPs were selected for genotyping using two strategies: 1) SNPs that had been previously

reported to be associated with HAT or 2) in the cases of IL4, IL8, IL6,HLAG and IFNG by

using sets of SNPs in LD (r2>0.5) with each other, such that all bases in the gene were in LD

with at least one SNP. The SNPs in this second group of genes were selected using a merged

SNP dataset obtained from 10X coverage whole genome sequence data generated from 230

residents living in regions (DRC, Guinea Conakry, Ivory Coast and Uganda) where trypanoso-

miasis is endemic (TrypanoGEN consortium, sequences at European Nucleotide Archive

Study: EGAS00001002602) and 1000 Genomes Project data from African populations. Linkage

(r2) between loci was estimated using the PLINK v1.9 package (https://www.cog-genomics.

org/plink/1.9/) [25] and sets of SNPs that covered the gene were identified. Some SNP loci

were excluded during assay development or failed to genotype and were not replaced.

Genotyping

Approximately 1μg of gDNA per sample were submitted to INRA (Plateforme Genome

Transcriptome de Bordeaux, France) for genotyping. A multiplex analysis (two sets of 80

SNPs each) was designed using Assay Design Suite v2.0 (Agena Biosciences). SNP genotyp-

ing was achieved with the iPLEX Gold genotyping kit (Agena Biosciences) for the MassArray

iPLEX genotyping assay, following the manufacturer’s instructions. Products were detected

on a MassArray mass spectrophotometer and the data acquired in real time with MassArray

RT software (Agena Biosciences). SNP clustering and validation was carried out with Typer

4.0 software (Agena Biosciences). SNPs that failed genotyping at INRA and some additional

SNPs were genotyped at LGC Genomics, Hoddesden, UK where SNPs were genotyped using

the PCR based KASP assay [26]. A summary of the candidate genes and SNPs is shown in

S1 Table.

Statistical analysis

The raw genotypic data were converted to PLINK format and quality control (QC) procedures

implemented using the PLINK v1.9 package [25]. PLINK was used to determine the level of

individual and genotype missingness, Hardy-Weinberg Equilibrium (HWE), estimate allele

frequencies, and linkage disequilibrium (LD). Testing for population stratification and admix-

ture was carried out using Admixture 1.3 [27] and the plot was visualized using StructurePlot2

[28].

Testing for the association of SNPs with HAT was done using a Fisher’s exact test [29]

implemented in PLINK and producing a 95% confidence interval for the odds ratios. Control-

ling for multiple testing was implemented using a Bonferroni correction (α� = α/n, where α is

the level of significance, n is the number of independent SNP association tests and α� is the

adjusted threshold of significance) [30]. The Bonferroni correction assumes that each of the

statistical tests are independent; however, this was not always true since there was some linkage

disequilibrium between the SNPs in IL4, IL8, IL6,HLAG and IFNGwhich were subject to com-

plete linkage scans. Where the assumption of independence is not true, the correction is too
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strict potentially leading to false negatives. Thus, an alternative correction for multiple testing

was also employed. The Benjamini-Hochberg false discovery rate (FDR) estimates the propor-

tion of significant results (p< 0.05) that are false positives [30,31].

Results

Our study population consisted of 239 individuals from Tbr and 223 from the Tbg HAT

endemic areas. The former comprised of 120 cases and 119 controls, who had a mean age of

43 ± 5 years, and a male to female ratio of 1:2. The Tbg HAT endemic area participants com-

prised of 110 cases and 113 controls, who had a mean age of 37 ± 5 years, and a male to female

ratio of 1:1.

Genotyping and data quality control

Uganda is the only country where both acute and chronic HAT are endemic [32]. The two

forms of the disease however occur in geographically isolated regions [32]. The two samples

represented two distinct forms of the disease and regions inhabited by distinct ethnic groups

(Nilo-Saharan language speakers in the Tbg region and Bantu language speakers in the Tbr

region). The cohorts were analyzed separately including initial quality control. Ninety-six (96)

SNPs in 15 genes were genotyped from each of the Tbr and Tbg HAT endemic area samples as

shown in S1 Table (the Plink MAP and PED files are available in S1 and S2 Data). Before asso-

ciation testing, histograms of the distribution of missing data both by individual and by locus

(Supplementary Figures S1 Fig–S4 Fig) were inspected in order to identify appropriate cut-offs

to apply in each population. Individuals with missing data or loci with missing data above the

cut-off threshold were removed as were loci that were not in HWE, or those that were poorly

genotyped [33,34].

Individuals with more than 20% or 15% missing data were excluded from the Tbr and the

Tbg HAT endemic datasets, respectively, resulting in a final dataset of 238 (119 cases and 119

controls, 1:2 male to female sex ratio) individuals from the Tbr HAT endemic sample and 202

(99 cases and 103 controls, 1:1 male to female sex ratio) individuals from the Tbg HAT

endemic sample (Supplementary Figures S1 Fig and S2 Fig). Similarly, loci that were missing

more than 30% or 40% data were excluded from the Tbr and the Tbg HAT endemic area sam-

ples (Supplementary Figures S3 Fig and S4 Fig). We used a HWE p-value cut-off of 1 x 10−8

and further selection of loci below the HWE cut off was done basing on their genotype scatter

plots to see which loci were to be excluded. In order to get a high LD between marker and

causal SNPs, loci that were in a five SNP window after a single step with a variance inflation

factor (VIF) [VIF = 1/(1-R2)] beyond 0.2 were excluded from both sample datasets. This was

done because a high LD between marker SNPs increases redundancy and reduces power. After

quality pruning, 79 loci from Tbr and 85 loci from the Tbg HAT endemic samples were

included in the association testing.

Admixture for population structure

Admixture was used to test for population structure that might confound the association

study. Eight values of K ancestral populations from 1–8 were tested to identify which had the

lowest coefficient of variations (CV) error. CV error was at a minimum for K = 4, but the CV

error was very similar for all values of K (0.42–0.46) providing no persuasive evidence for any

particular number of ancestral populations. The Admixture plot showed no clear evidence for

any gross population structure and therefore no correction for population structure was

applied in the analysis.
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Association testing yielded no robust associations

Six SNPs in the Tbr HAT endemic area and four in the Tbg endemic had raw p< 0.05 but

none of these remained significant after Bonferroni correction (Table 1). Surprisingly, there

was no evidence for association with any SNP in APOL1.

Discussion

In this case-control CGAS, we found no evidence for variants associated with Tbr or Tbg HAT

in two Ugandan populations. We tested for association between candidate genes and the dis-

ease caused by Tbg and Tbr separately as they present two distinct forms of the disease. Tbr

and Tbg parasite resistance to human serum is mediated by different mechanisms which place

distinct selective pressures on the host genes [35]. Furthermore, the two populations were

from different broad ethnolinguistic groups, and were geographically isolated from each other

[13]. Admixture analysis found no evidence of population structure with these SNP which

might have reduced the power of the study (S5 Fig).

We found no SNP associated with HAT after multiple testing corrections. Our power calcu-

lations indicated that we had power to detect odds ratios> 2, however 7 of the 10 SNPs with

P<0.05 had odds ratios < 2.0, which the study was not powered to detect. Larger populations

would be required to confirm these findings and the data presented could be used to estimate

the necessary sample size.

The most striking feature of the data was the absence of any association at APOL1. The

APOL1G2 (deleted allele for indel rs71785313) allele has been shown to be lytic to T. b. rhode-
siense in vitro [36] and a recent study in the Soroti and Kaberamaido focus in Eastern Uganda

found an association with APOL1G2 and protection from Tbr HAT with an odds ratio of 0.2

[8]. The present study in the Busoga focus was well powered to discover such a strong effect,

Table 1. SNPs that showed the lowest p values after association testing with Tbr and Tbg HAT.

Tbr HAT endemic sample (N = 238; 119 cases, 119 controls)

CHR SNP GENE BP Allele 1 Cases Controls Allele 2 P OR 95% lower CI 95% upper CI BONF FDR_BH

6 rs9380142 HLA-G 29798794 G 0.369 0.242 A 0.003 1.834 1.231 2.731 0.1805 0.181

6 rs1233330 HLA-G 29799103 A 0.076 0.136 G 0.03 0.522 0.284 0.958 1 0.541

5 rs2243283 IL4 132016593 G 0.275 0.188 C 0.04 1.644 1.031 2.621 1 0.434

22 rs34383331 MIF 24238079 A 0.24 0.16 T 0.03 1.657 1.049 2.621 1 0.434

22 rs9282783 MIF 24236359 G 0.089 0.042 C 0.033 2.227 1.025 2.621 1 0.434

6 rs1800630 TNFA 31542476 A 0.156 0.092 C 0.038 1.807 1.031 3.169 1 0.434

22 rs73885319 APOL1 36661906 G 0.076 0.101 A 0.339 0.730 0.385 1.383 1 0.875

22 rs71785313 APOL1 36662046 T 0.081 0.086 A 0.803 0.928 0.482 1.788 1 0.9281

Tbg HAT endemic sample (N = 202; 99 cases, 103 controls)

CHR SNP GENE BP Allele 1 Cases Controls Allele 2 P OR 95% lower CI 95% upper CI BONF FDR_BH

1 rs1061170 CFH 196659237 C 0.409 0.525 T 0.019 0.627 0.4221 0.9313 1 0.611

6 rs1233330 HLA-G 29799103 A 0.076 0.136 G 0.045 0.521 0.5211 0.2693 1 0.611

12 rs78554979 IFNG 68554636 C 0.051 0.015 T 0.035 3.638 0.9861 13.42 1 0.611

7 rs2069843 IL6 22769994 A 0.147 0.078 G 0.033 2.038 1.07 3.882 1 0.611

22 rs73885319 APOL1 36661906 G 0.015 0.015 A 0.843 1.041 0.208 5.220 1 0.898

22 rs71785313 APOL1 36662046 T 0.056 0.070 A 0.612 0.782 0.346 1.766 1 0.8653

Abbreviations: CHR = Chromosome, SNP = SNP ID, BP = Physical position (base-pair) (Human genome build GRCh37), Allele 1 = Minor allele (based on whole

sample), Cases = Frequency of allele 1 in cases, Controls = Frequency of allele 1 in controls, Allele 2 = Major allele, P = p-value for this test, OR = Estimated odds ratio

(for Allele 1, i.e. Allele 2 is reference), BONF = Bonferroni single-step adjusted p-values, FDR_BH = Benjamini & Hochberg (1995) step-up FDR control.

https://doi.org/10.1371/journal.pntd.0006300.t001
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but the frequencies of APOL1G2 in cases and controls were almost equal (8.1% and 8.6%, 95%

odds ratio confidence interval: 0.37–2.34) which indicates that an odds ratio as large as seen in

Kaberamaido (OR = 0.2, 95% odds ratio confidence interval: 0.07–0.48) is very unlikely to be

seen in Busoga (Supplementary data S2 Table). The frequency of the G2 allele in the control

population in Kabermaido (14.4%)[8] was higher than in Busoga (8.6%). Although this differ-

ence in G2 allele frequency is not significant with the sample sizes that were used (Chisq Test

p = 0.12), it may be indicative of real differences between these populations in selection pressure

on this allele. Despite their geographical proximity (240km) these populations have divergent

ethnic backgrounds; with the Kaberamaido population being Luo speakers which is a Nilotic

family language originating in Sudan and Ethiopia and the Busoga population being Niger-

Congo-B (Bantu) language speakers with origins in West Africa. These linguistic groups are

believed to have diverged over 5,000 years ago giving plenty of time for allele frequencies to

diverge. Therefore, despite the well-established function of APOL1 in response to trypanosome

infection and the evidence for protection associated with G2 in Kaberamaido [8], the role of

APOL1G2 in response to T. b. rhodesiense infection more generally remains to be clarified.

Despite the suggestively significant associations found at nine SNP loci, none of them

passed Bonferroni correction for multiple testing [30]. The FDR_BH shows the rate of type 1

errors or false positives, eg for rs9380142 in HLA-G there is an 18% chance that this is a false

positive and conversely a 82% chance that it is a true positive. There was a greater than 38%

probability for each of these nine SNPs being associated with HAT [30,31]. The finding of sug-

gestive associations in multiple populations would increase the probability that these are genu-

ine associations with disease [37]. For example, our findings suggest that HLA-G variants may

be important in both forms of the disease. These observations should be followed up in future

studies.
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S3 Fig. Histogram of missing data rate in all SNPs from the Tbr HAT endemic area pass-

ing.

(TIF)

S4 Fig. Histogram of missing data rate in all SNPs from the Tbg HAT endemic area pass-

ing.

(TIF)

S5 Fig. Bar plot showing the admixture analysis performed for K = 4.

(TIF)
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