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A B S T R A C T   

Alternative and non-destructive analytical methods that predict analyte concentration accurately 
and immediately in a specific matrix are becoming vital in the analytical chemistry domain. Here, 
a new innovative and rapid method of predicting mass loss of cement samples based on a com-
bination of Machine Learning (ML) and the emerging technique called Hyperspectral Imaging 
(HSI) is presented. The method has proved its reliability and accuracy by providing a predictive 
ML model, with satisfactory best validation scores recorded using partial least squared regression, 
with a reported ratio of performance to inter-quartile distance and root mean squared error of 
12,89 and 0.337, respectively. Moreover, the possibility of optimizing and boosting the perfor-
mance of the method by optimizing the predictive model performance has been suggested. 
Therefore, a features selection approach was conducted to disqualify non-relevant wavelengths 
and stress only relevant ones in order to make them the only contributors to a final optimized 
model. The best selected features subset was composed of 28 wavelengths out of 121, found by 
applying genetic algorithm combined to partial least squares regression as a feature selection 
method, on spectra preprocessed consecutively by the first-order savitzky-golay derivative 
calculated with 7-point quadratic SG filter, and multiplicative scatter correction method. The 
overall results show the possibility of combining HSI and ML for fast monitoring of water content 
in cement samples.   

1. Introduction 

Cement is widely regarded as one of the most important building materials on the global scale and is one of the main components 
involved in the formulation of high-strength and high-performance concrete. Magnesium Oxychloride Cement (MOC) known as Sorel 
is one of the attractive cement types used in civil engineering, it is generally formulated by blending magnesium chloride solution 
(MgCl2–H2O) with magnesium oxide powder (MgO), and is famous for its high physical properties expressed by relatively high early 
strength and a low coefficient of thermal expansion. However, in the case of prolonged water contact, those famous properties degrade 
rapidly due to its notorious weak water resistance property [1–3]. Recently, significant contributions from research and development 
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scientists have been made to enhance the water resistance property by introducing new MOC formulations derived from the original 
one [2,3]. However, evaluating these formulations requires a reliable and feasible analytical method for water monitoring. Several 
rapid and non-invasive analytical methods that helps achieving this task, including the RGB imaging and the spectral imaging, have 
been introduced in the literature. However, most of which do not offer detailed information about the sample. 

HyperSpectral Imaging (HSI) is an innovative technique that has drawn the attention of chemists as it provides not only the spectral 
signature of the sample as spectral methods do, but also the spatial information that helps the analyst obtain a detailed overview of the 
sample state, composition, homogeneity, etc. HSI technique consists of a 2D image acquisition at each Wavelength (Wl) over a specific 
range of Wls. And therefore, provides three-dimensional data, often named datacube, whose first two dimensions correspond to the 
spatial information of the sample, and the third one reflects its spectral information [4]. Making profit from this technique requires 
having a relatively important background in Machine Learning (ML) and chemometric methods. These methods are a cluster of sta-
tistical and mathematical tools that are devoted to developing either predictive or descriptive models (multivariate calibration per-
forming) which performance would be the decider on whether the technique might be utilized for reliable prediction making or not. 
Multivariate calibration, here, could be defined as the art of manipulating high-dimensional data so as to estimate a statistical model or 
equation that could predict unknown continuous or discrete values or even make a decision, with a certain level of accuracy. This 
manipulation was a time-consuming and difficult decades ago, since the available hardware performance at that time was not suffi-
cient to implement hard and complex computations. This was the case until the dawn of hardware acceleration which facilitated the 
task and attracted scientists to head researches in the field in order to innovate new techniques based on the light-matter interactions 
such as spectral and HSI techniques that have been successfully used through the past few years to achieve different objectives 
including matter detection, identification, and quantification, chemical process monitoring, quality monitoring, cancer diagnosis and 
so on [4–8]. 

The overall objective of this study is to show the result of coupling HSI, ML and chemometric methods to develop a new reliable 
analytical method devoted to predicting the Mass Loss (MaL) in cement samples. In the course of this study, raw spectra were extracted 
from samples HSI images, assessed to remove any kind of unwanted noise probably affecting them, then an exploratory data analysis 
was conducted by the mean of Principal Components Analysis (PCA) on these spectra to identify the number of factors able to explain 
the variability and also detect any outlier spectrum. Subsequently, multivariate calibration, and a features selection approach were 
performed where various regression methods and features selection methods available in the literature have been used to develop 
high-performance ML predictive models. 

2. Materials and methods 

2.1. Data collection and softwares 

The data used in this study consists of three magnesium oxychloride cement sample replicates, each of which was scaled at nine 
different time points for MaL determination and immediately imaged using a NIR-HSI camera that works in the range that extends from 
880 to 1720 nm. Data preprocessing, spectral preprocessing and features selection were performed with R language (v4.1.2), while full 
range ML models were developed with Python Language (v3.10.1). 

Fig. 1. HSI images processing steps: (A) image acquisition, (B) Background removal, (C) Spectra acquisition, (D) Mean spectrum extraction.  
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2.2. Chemometrics & machine learning 

After data collection, NIR-HSI images (Fig. 1A) were preprocessed to remove the irrelevant background (Fig. 1B), subsequently, a 
mean spectrum was extracted from each image and considered as the sample spectrum (Fig. 1C and D). All extracted mean spectra 
were then gathered together and smoothed using the moving average filter to remove the low signal fluctuations [9–11,18]. 

2.3. Spectral preprocessing 

Preprocessing of Near-InfraRed (NIR) spectra has been an integral part of our multivariate calibration or modeling process. It was 
performed to improve the quality of acquired spectra as it consists of biased spectra correction and irrelevant variation removal. 
Therefore, it helps to develop high-performance predictive models. For our raw spectra, the performed spectral preprocessing process 
consisted of using three signal preprocessing methods after bias identification and quantification, which are: Multiplicative Scatter 
Correction (MSC) and Standard Normal Variate (SNV) for Light scattering and particles size effects reduction [14–17], the first-order 
Savitzky-Golay (SG) derivative calculated with 7-point quadratic SG filter for smoothing and removing probable band overlapping and 
bands shift [12,13,18] and finally the combination of SG derivative and MSC. 

2.4. Exploratory data analysis 

Exploratory data analysis was conducted by means of Principal Components Analysis (PCA), the core of chemometrics. It is been 
used for overcoming the curse of high dimensionality, as it projects data from high-dimensional space onto a new subspace made of 
new independent synthetic variables named Principal Components (PCs). The PCs themselves are synthetic variables made of a linear 
combination of correlated variables that concentrate and compress the information contained in those correlated variables in the linear 
combination. The projection onto a simple subspace of two or three dimensions gives us an insight about outliers, the sufficient number 
of PCs able to compress and resume relevant information in the high-dimensional data, homogeneity, and the form of distribution of 
the data, as well as possible samples clusters [19]. 

2.5. Multivariate calibration 

Exploratory data analysis was then followed by the multivariate calibration, in other terms, ML models development that predicts a 
reference value Y (slow, time-consuming measurement and sometimes hard or impossible to obtain) from the corresponding recorded 
spectrum X (fast and easy measurement). To succeed in this stage, multiple regressors available in the literature including Partial Least 
Squares (PLSR) [20–23], Principal Components (PCR) [24], Support Vector Machine (SVMR) [20,25,26], Decision Tree (DTR) [27], 
K-Nearest Neighbors (KNNR) [28,29], eXtreme Gradient Boosting (XGBR) [30], Light Gradient Boosting Machine (LGBMR) [31], 
Categorical Boosting (CBR) [32], and MultiLayer Perceptron (MLPR) [33] with two hidden layers, were used for developing our 
predictive models. Due to the low number of samples, leave-triplicate-out Cross Validation (CV) [34] scores were adopted to assess the 
developed predictive models, overcome underfitting and overfitting problems as well as to drive models benchmarking study. 

2.6. Models evaluation 

The evaluation of models performance is a critical step in the predictive ML development process. It enables a thorough under-
standing of how developed predictive models will perform in the future on unseen data. Different statistical metrics, such as the 
coefficient of determination (R2) (1), the Root Mean Squared Error (RMSE) (2), the Ratio of Prediction to Deviation (RPD) (3), and the 
Ratio of Performance to Inter-Quartile distance (RPIQ) (4), are commonly used to evaluate models. In our study, all the aforemen-
tioned metrics were used to evaluate the developed predictive models. The computational formula for each metric is provided below 
[30]. 

R2 = 1 −

∑N

i=1
(yi − ŷi)2

∑N

i=1
(yi − y)2

(1)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(ŷi − y)2

N

√
√
√
√
√

(2)  

RPD=
S

RMSE
(3)  

RPIQ=
IQ

RMSE
(4)  
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Where N and ŷ are the total number of samples and the predicted values, respectively. And yi, ȳ, S, IQ, are the measured values, the 
average, the standard deviation and the interquartile range of the observed values, respectively. 

The best model is typically characterized by having the highest R2, the lowest RMSE, and the highest RPD and RPIQ. 

2.7. Hyperparameter tuning 

Since all implicated regressors have at least two or three hyperparameter to be tuned, simulated annealing [35,36] has been 
embedded in each regression method to achieve this tuning. It is a Meta-heuristic algorithm that has been widely used for solving 
several optimization problems. The best tune was the one that minimizes the Root Mean Squared Error of Cross Validation (RMSECV) 
of the predictive model. 

2.8. Features subset selection 

Subsequently, a Features Subset Selection (FSS) approach has been conducted to identify and extract the influential regions of the 
spectra, remove probable interferences and noise. This approach generally helps enhancing the interpretation ability and the pre-
dictive quality of ML models. FSS approach in our case consisted of using four regression methods widely used for features selection 
purposes: Lasso (LR) [29,37], and ElasticNet (ENR) [37,38] regulizers, Backward Interval-Partial Least Squares (BI-PLSR) [30,39,40] 
which is used mostly for spectroscopic data, and lastly Genetic Algorithm-Partial Least Squares (GA-PLSR) that consists of embedding 
the evolutionary meta-heuristic algorithm named Genetic Algorithm (GA) [30,39] which is inspired by the process of biological 
natural selection theory, in PLSR algorithm. 

3. Results and discussion 

The evolution of the spatial distribution of one sample replicate at nine time points is shown in Fig. 2. The samples Mass Loss (MaL) 
vector is visualized in Fig. 3. It can be seen that the samples progressively lose their mass through the first 3 h due to water evaporation. 
Then, due to the effect of uncontrolled factors variation such as temperature range and moisture level in the air, all the three replicates 
start becoming heavier. This presumably can be explained by the increase in their moisture level. The corresponding reflectance 
spectra are visualized in Fig. 4. They were acquired by computing the mean spectrum of each of the 27 HSI images. Gathered mean 
spectra show a large band that extends from about 1350 to 1450 nm that is found to be the first overtone of the water molecule 
[41–43]. Irrelevant variability in the form of a difference in reflectance value between spectra through the entire Wl range is 
remarkable, which requires to be suppressed or reduced using spectral preprocessing methods. 

3.1. Exploratory data analysis 

Application of PCA algorithm on the spectra preprocessed differently has yielded the result shown in the Table 1. It shows, for each 
preprocessing method, that the first two PCs were able to explain over 96% of total variability with the first PC alone explaining over 

Fig. 2. HSI image of the first sample replicate at nine different time points at wavelength of 1223 nm indicating the evolution spatial distribution of 
the sample. 
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90% of the total variability in the data, this means that the information contained in the data in not complicated. The scores plot Fig. 5 
shows, for each preprocessing method, that with only the first two PCs, spectra clusters could be created based on their recording time. 
This means that these two PCs hold the largest part of the relevant information contained in the spectra. Notice that when applying 
PCA to spectra preprocessed using SG_MSC, the first PC, which explained approximately 94% of the total variability allowed to make 
this clustering which pushed us to make the hypothesis that the SG_MSC preprocessing method might separate relevant overlapped 
bands. 

3.2. Multivariate calibration 

Multivariate Calibration performing on data preprocessed differently has given the recorded scores presented in the Table 2. The 
scores of the best developed predictive models are presented in Table 3, they were selected based on validation scores, the number of 
hyperparameters and the complexity level. It can be seen that when trying to model the relationship between MaL and the NIR spectra. 
PLSR and PCR methods in conjunction with either MSC and SG_MSC spectral preprocessing methods allowed obtaining the most 
performant and efficient predictive models characterized with the lowest RMSE both in the calibration phase RMSEC (0.05 and 0.11, 
respectively) and the validation phase RMSECV (0.333 and 0.489, respectively), and highest R2CV(99 and 97, respectively). PLSR and 
PCR are two of the preferred linear regression algorithms used for spectral data modeling as they are efficient and possess only few 

Fig. 3. The evolution of mass loss in analyzed samples over time.  

Fig. 4. Near-infrared spectra of cement samples extracted from the HSI images.  

Table 1 
The percentage of explained variability by each PC for raw spectra and spectra preprocessed differently.  

Number of PCs Preprocessing 

Raw (1) MSC (2) SNV (3) SG_MSC (4) 

1 90.94 91.14 90.80 94.02 
2 7.80 5.99 6.11 3.41 
3 1.01 2.12 2.30 1.82 
4 0.18 0.50 0.51 0.50 
5 0.06 0.13 0.14 0.17 
6 0.01 0.07 0.08 0.04 
7 0.01 0.02 0.03 0.02  
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hyperparameters that need tuning. LGBM also allowed the development of high-performance and robust models, however, on the 
contrary to PLSR and PCR, it possesses numerous hyperparameters that need a performant computer to be tuned. 

NIR-HSI has been innovated to provide both the spatial and the spectral information of samples over the NIR range. The spectral 
information consists of a large number of contiguous Wls which present a source of informative information that is useful for 
developing high-performance calibration models, noise that lower the predictive performance of the calibration models, and redun-
dant information which contributes to the curse of dimensionality. ML regression algorithms do not always succeed in catching only 
informative information, a thing that results in complex and low-performance models [30]. Therefore, the identification of informative 
Wls by testing the significance of models parameters and conducting a feature selection approach to retain them were conducted. 

3.3. Significance testing of the retained prediction models’ coefficients using jack-knife based t-test 

The significance test for regression coefficients, as the name indicates, is a diagnostic tool that provides a general overview of the 
coefficient estimates, allowing for the identification of passive features and the stressing of active ones. It is a tool that helps spec-
troscopy researchers to determine which Wls carry the relevant spectral signature or information of the sample. Various methods, such 
as the Variable Importance in Projection (VIP) score and the Jack-knife-based t-test, have been proposed in the literature for testing the 
significance of the estimated regression coefficients. The former consists of determining the statistical contribution of each Wl to the 
overall fitted PLSR model, whereas the latter consists of assessing the coefficients’ uncertainty and stability using the jack-knifing 
method [44–48]. 

The jack-knife-based t-test was used in this study to identify useful Wls based on the inference on the regression coefficient. The 
selection probability for PLSR model coefficients at a 95% significance level was reported in Fig. 6. It clearly shows that only a few 
features are statistically stable and contribute significantly to model construction, indicating that not all the NIR range implicated in 
this study provides relevant information. This means that the three retained PLSR models carry uninformative and noisy Wls, and the 
corresponding coefficients add complexity and error to the models. These Wls could be suppressed using a different method or ap-
proaches, including simple filtering based on model coefficient selection probability and driving a feature subset selection approach. 

3.4. Features subset selection (FSS) 

Regardless of how satisfying the predictive quality of our best models is, high dimensionality, irrelevant information, and noise 
remain a curse that must be broken since they reduce predictive model performance and efficiency, reduce interpretability and 
comprehension levels, and frequently lead to over-fitting. 

The application of FSS methods on the data (121 Wls) allowed for the development of models with performance metrics sum-
marized in the Table 4. It shows that ENR and LR were effective at reducing the number of Wls (Nvar), but the developed models did 
not outperform the models developed without FSS, implying that both selection methods either eliminated some relevant information 

Fig. 5. PCA scores plot.  
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Table 2 
Scored metrics of the developed prediction models.  

PCR MSC 0.111 97 0.489 5.25 8.88 SNV 0.191 99 0.338 7.59 12.85 SG_MSC 0.194 97 0.496 5.17 8.76 
PLSR 0.05 99 0.333 7.7 13.04 0.042 99 0.339 7.57 12.81 0.132 99 0.337 7.61 12.89 
DTR 0.516 81 1.338 1.92 3.25 0.592 86 1.158 2.22 3.75 0.0 88 1.048 2.45 4.14 
KNNR 0.0 94 0.726 3.53 5.98 0.0 94 0.746 3.44 5.82 0.0 96 0.633 4.05 6.86 
SVMR 0.937 88 1.064 2.41 4.08 0.927 88 1.056 2.43 4.11 0.595 94 0.765 3.35 5.68 
RFR 0.791 79 1.419 1.81 3.06 0.785 80 1.359 1.89 3.2 0.568 92 0.847 3.03 5.13 
LGBMR 0.0 93 0.813 3.16 5.34 0.146 88 1.041 2.46 4.17 0.0 99 0.35 7.33 12.41 
XGBR 0.0 92 0.854 3.0 5.09 0.0 92 0.876 2.93 4.96 0.0 96 0.647 3.96 6.71 
CTR 0.0 90 0.973 2.64 4.46 0.0 91 0.9 2.85 4.83 0.026 95 0.698 3.68 6.22 
MLPR 1.833 60 1.931 1.33 2.25 0.792 90 0.982 2.61 4.42 2.072 52 2.114 1.21 2.05 
Model RMSEC R2CV RMSECV RPD RPIQ RMSEC R2CV RMSECV RPD RPIQ RMSEC R2CV RMSECV RPD RPIQ  
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or retained noise. The GA-PLS and BI-PLS, on the other hand, have enabled the development of models that outperform models 
developed without FSS and that with fewer Wls, as expressed by lower RMSEC, RMSECV, Nvar, and higher R2CV. The findings 
demonstrated that FSS played an important role in improving the performance of predictive models by removing irrelevant and 
redundant information partially or completely from the data. 

Table 3 
The scores of the best predictive models.  

MODÈL PREPROCESSING R2CV RMSECV RPDCV RPIQCV 

PLSR MSC 99 0.333 7.7 13.04 
PCR SNV 99 0.338 7.59 12.85 
PLSR SNV 99 0.339 7.57 12.81 
PLSR SG_MSC 99 0.337 7.61 12.89 
LGBMR SG_MSC 99 0.35 7.33 12.41  

Fig. 6. Jack-knife based t-test results for PLSR models parameters significance indicating the selection probability of each wavelength.  

Table 4 
Summary of the Feature selection approach.  

Regression Preprocessing RMSEC R2CV RMSECV Nvar 

ENR MSC 0.112 97 0.564 58 
SNV 0.172 93 0.821 52 
SG_SNV 0.129 98 0.445 63 

LR MSC 0.239 97 0.561 30 
SNV 0.193 93 0.816 46 
SG_SNV 0.126 98 0.44 64 

GA_PLSR MSC 0,017 100 0,113 25 
SNV 0,011 100 0,113 27 
SG_SNV 0,01 100 0,112 28 

BI-PLSR MSC 0,0373 100 0,1118 39 
SNV 0,0428 100 0,1468 45 
SG_SNV 0,072 100 0,1284 40  
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4. Conclusion 

Hyperspectral imaging is a complex, multidisciplinary field that can be defined as the simultaneous acquisition of spatial images at 
multiple spectral wavelengths. It permits the gathering of detailed information about the sample analyzed. In this study, a novel 
method for estimating mass loss in magnesium oxychloride cement samples using the synergy of hyperspectral imaging, machine 
learning, and chemometrics was introduced. A variety of techniques were involved to achieve the goal, beginning with hyperspectral 
image acquisition and ending with the development and optimization of machine learning models. The overall findings demonstrated 
the method’s reliability by allowing for high-accuracy mass loss estimation. As a result, it could be concluded that machine learning 
algorithms and hyperspectral imaging will become indispensable tools for cement quality control in the future. 
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