
RESEARCH ARTICLE

gmxapi: A GROMACS-native Python interface

for molecular dynamics with ensemble and

plugin support

M. Eric IrrgangID
1, Caroline DavisID

1, Peter M. KassonID
1,2*

1 Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville,

Virginia, United States of America, 2 Science for Life Laboratory, Department of Cell and Molecular Biology,

Uppsala University, Uppsala, Sweden

* kasson@virginia.edu

Abstract

Gmxapi provides an integrated, native Python API for both standard and advanced molecu-

lar dynamics simulations in GROMACS. The Python interface permits multiple levels of inte-

gration with the core GROMACS libraries, and legacy support is provided via an interface

that mimics the command-line syntax, so that all GROMACS commands are fully available.

Gmxapi has been officially supported since the GROMACS 2019 release and is enabled by

default in current versions of the software. Here we describe gmxapi 0.3 and later. Beyond

simply wrapping GROMACS library operations, the API permits several advanced opera-

tions that are not feasible using the prior command-line interface. First, the API allows cus-

tom user plugin code within the molecular dynamics force calculations, so users can

execute custom algorithms without modifying the GROMACS source. Second, the Python

interface allows tasks to be dynamically defined, so high-level algorithms for molecular

dynamics simulation and analysis can be coordinated with loop and conditional operations.

Gmxapi makes GROMACS more accessible to custom Python scripting while also providing

support for high-level data-flow simulation algorithms that were previously feasible only in

external packages.

Author summary

The gmxapi software provides a Python interface for molecular dynamics simulations in

GROMACS. In addition to simply wrapping GROMACS commands, it supports custom

user plugin code, ensemble simulation, and data-flow chaining of commands. As such,

gmxapi enables the writing and execution of high-level simulation algorithms. The soft-

ware ships with GROMACS and is freely available under an LGPL2 license.

Introduction

As molecular dynamics simulations have become more complex and mature as scientific tools,

typical simulation use is shifting from manual invocation of a few simulations and analysis

tools to pre-defined simulation and analysis protocols, often involving many simulation

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Irrgang ME, Davis C, Kasson PM (2022)

gmxapi: A GROMACS-native Python interface for

molecular dynamics with ensemble and plugin

support. PLoS Comput Biol 18(2): e1009835.

https://doi.org/10.1371/journal.pcbi.1009835

Editor: Dina Schneidman-Duhovny, Hebrew

University of Jerusalem, ISRAEL

Received: July 23, 2021

Accepted: January 16, 2022

Published: February 14, 2022

Copyright: © 2022 Irrgang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The gmxapi Python

package is also maintained as part of the

GROMACS repository at https://gitlab.com/

gromacs/gromacs. It can be installed from the

GROMACS source (https://gitlab.com/gromacs/

gromacs/-/tree/master/python_packaging/src) or

from https://pypi.org/project/gmxapi/ with “pip”,

but the GROMACS installation must be specified.

The documentation at https://manual.gromacs.org/

current/gmxapi provides details. During

installation, the gmxapi Python package builds a

C++ extension module against the GROMACS

installation. Gmxapi tutorials are available from

https://orcid.org/0000-0002-1272-3551
https://orcid.org/0000-0003-1190-2045
https://orcid.org/0000-0002-3111-8103
https://doi.org/10.1371/journal.pcbi.1009835
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009835&domain=pdf&date_stamp=2022-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009835&domain=pdf&date_stamp=2022-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009835&domain=pdf&date_stamp=2022-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009835&domain=pdf&date_stamp=2022-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009835&domain=pdf&date_stamp=2022-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009835&domain=pdf&date_stamp=2022-02-25
https://doi.org/10.1371/journal.pcbi.1009835
http://creativecommons.org/licenses/by/4.0/
https://gitlab.com/gromacs/gromacs
https://gitlab.com/gromacs/gromacs
https://gitlab.com/gromacs/gromacs/-/tree/master/python_packaging/src
https://gitlab.com/gromacs/gromacs/-/tree/master/python_packaging/src
https://pypi.org/project/gmxapi/
https://manual.gromacs.org/current/gmxapi
https://manual.gromacs.org/current/gmxapi


trajectories. In addition, custom applications for advanced sampling[1–4] or molecular struc-

ture refinement[5–7] are becoming more common, where the molecular dynamics engine is

used as part of a more complex data integration protocol. In these more complex use scenarios,

toolchain and file-system management as well as execution of many simulations can become

limiting factors. As a result, many scientists either develop custom scripts, custom modifica-

tions of the simulation source code, or adapt general-purpose workflow engines[8–10] to

molecular simulation tasks. There also exist some molecular-simulation-specific workflow

engines, frequently coupled to the underlying molecular simulation code via command-line

interfaces[11–16]. All of the above can be brittle, particularly without robust APIs for simula-

tion interfaces to workflow engines. Integration of parallel analysis into unified jobs can also

be challenging whether this is performed via built-in tool parallelism or user-level coding, such

as Python multiprocessing packages or workflow/execution managers[9,10,12,13,17–19].

We previously reported on gmxapi 0.0.4[20], which allows Python driven molecular

dynamics in GROMACS[21,22] to be extended at run time with custom researcher code.

Here, we describe features present in gmxapi 0.2 and beyond, which offers both more

advanced ensemble simulation logic and a feature-complete interface for GROMACS tools

and analysis. This framework allows ensemble methods to be implemented with less code, and

without patching an official GROMACS release. Data-flow-oriented programming logic and

general paradigm for integrating new software tools further enhance the utility of the package.

Both the libgmxapi C++ interface and the gmxapi Python package are now maintained and

distributed with GROMACS; gmxapi 0.2 is integrated with GROMACS 2021, and gmxapi 0.3

is integrated with GROMACS 2022.

Design and implementation

We outline distinguishing features and key user functionality of gmxapi, followed by a more

technical design discussion. Gmxapi offers a Python scripting interface maintained as part of

the GROMACS software, and thus one basic feature is the ability to reproduce all GROMACS

command-line calls. This is done through a combination of native gmxapi calls such as

gmxapi.mdrun() and a wrapper that permits any operation from the GROMACS command-

line client: gmxapi.commandline_operation(). These are illustrated in Fig 1A. We also high-

light three key additional features not possible with a simple wrapper script: built-in ensemble

parallelism, composability, and plugins.

Ensemble parallelism

Simulations are increasingly being performed not singly but as a collection of related tasks,

which we will term an ensemble. This collection could consist of a set of replicas sampling a

thermodynamic ensemble, but it could also represent a parameter sweep across experimental

conditions or a set of simulations with different starting conformations as part of an advanced

sampling strategy. Ensembles are treated as first-class objects in gmxapi, and the python inter-

face is designed to facilitate parallelism across such ensembles, which is in turn implemented

by the gmxapi backend. This is illustrated in Fig 1B. The ability to flexibly and simply articulate

high-level ensemble logic is thus a key feature of gmxapi.

Composability

Another key design and usability feature of gmxapi is the notion of composability. Similar to

Tinkertoys, different calls to GROMACS commands through the API are designed to be

plugged together. This is illustrated in Fig 1C and has two advantages: a natural way to concep-

tualize a sequence of GROMACS calls (or calls to external programs that can use the gmxapi

PLOS COMPUTATIONAL BIOLOGY gmxapi: A Python interface for GROMACS molecular dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 2 / 12

https://github.com/kassonlab/gmxapi-tutorials.

Custom molecular dynamics extension code is

illustrated in a “sample_restraint” package: https://

gitlab.com/gromacs/gromacs/-/tree/master/

python_packaging/sample_restraint. BRER

restraint potentials [28] are forked from this

sample code and can be found at https://github.

com/kassonlab/brer_plugin. Scripted BRER

workflows are available at https://github.com/

kassonlab/run_brer. Input data for the BRER

example shown have been deposited at doi: 10.

5281/zenodo.5122931 Gmxapi issues are tracked

with the label “gmxapi” at https://gitlab.com/

gromacs/gromacs/-/issues. Code contributions

follow the GROMACS contribution procedure

(https://manual.gromacs.org/current/dev-manual/

contribute.html). However, gmxapi is intended to

allow for maximal extensibility without requiring

modification to the sources. A discussion forum is

available at https://gromacs.bioexcel.eu/tag/

gmxapi.

Funding: This work was supported by National

Institutes of Health R01 GM115790 (https://www.

nigms.nih.gov/), National Science Foundation OAC-

1835780 (https://www.nsf.gov/div/index.jsp?div=

OAC) to P.M.K., and National Science Foundation

ACI-1547580 (https://www.nsf.gov/div/index.jsp?

div=OAC) to M.E.I. (subaward to P.M.K).

Computational resources on Frontera were

provided under NSF LRAC MCB20006. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009835
https://github.com/kassonlab/gmxapi-tutorials
https://gitlab.com/gromacs/gromacs/-/tree/master/python_packaging/sample_restraint
https://gitlab.com/gromacs/gromacs/-/tree/master/python_packaging/sample_restraint
https://gitlab.com/gromacs/gromacs/-/tree/master/python_packaging/sample_restraint
https://github.com/kassonlab/brer_plugin
https://github.com/kassonlab/brer_plugin
https://github.com/kassonlab/run_brer
https://github.com/kassonlab/run_brer
https://doi.org/10.5281/zenodo.5122931
https://doi.org/10.5281/zenodo.5122931
https://gitlab.com/gromacs/gromacs/-/issues
https://gitlab.com/gromacs/gromacs/-/issues
https://manual.gromacs.org/current/dev-manual/contribute.html
https://manual.gromacs.org/current/dev-manual/contribute.html
https://gromacs.bioexcel.eu/tag/gmxapi
https://gromacs.bioexcel.eu/tag/gmxapi
https://www.nigms.nih.gov/
https://www.nigms.nih.gov/
https://www.nsf.gov/div/index.jsp?div=OAC
https://www.nsf.gov/div/index.jsp?div=OAC
https://www.nsf.gov/div/index.jsp?div=OAC
https://www.nsf.gov/div/index.jsp?div=OAC


wrapper facility) and a way to parallelize using the ensemble logic and data-flow management

by gmxapi.

Plugins

Gmxapi includes the ability to add user-defined plugins that can interact with GROMACS at

runtime without modifying the GROMACS source. Plugins are currently used to implement

custom force routines; these run using the native GROMACS parallel decomposition and thus

can benefit from parallelism as well as acceleration. More details are given in the technical

design section below.

Technical design

We used pybind11[23] to implement Python bindings to a C++ API for the GROMACS

[21,22] molecular simulation library. The design concept of gmxapi, as with many modern

high-level interfaces, is for the user to construct a computational graph where execution is

then managed by lower layers of the software stack. Similar to Keras[24], we recognize that

explicit data-flow programming is not natural for all users and thus provide an interface where

data-flow can be specified explicitly or implicitly. Fig 2 illustrates the gmxapi paradigm in

Fig 1. gmxapi usage examples. Panel (A) shows an example of the commandline_operation function by which gmxapi can reproduce any GROMACS functionality.

Panel (B) shows gmxapi molecular dynamics calls operating on ensemble input, providing straightforward high-level parallelism in addition to parallelization within each

command. Panel (C) demonstrates both a while loop and pluggability of gmxapi components. Together, the examples will execute an ensemble of small protein folding

simulations until at least one ensemble member samples the native state.

https://doi.org/10.1371/journal.pcbi.1009835.g001

PLOS COMPUTATIONAL BIOLOGY gmxapi: A Python interface for GROMACS molecular dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 3 / 12

https://doi.org/10.1371/journal.pcbi.1009835.g001
https://doi.org/10.1371/journal.pcbi.1009835


which control signals and data are treated in the same framework. Branching and other control

events require that some work is "dynamic", such that the complete workflow graph may not

be determined until runtime. However, the workflow can be fully specified in terms of work-

flow commands and data primitives (Fig 3).

Data flow formalism

Data-flow formalisms have become increasingly popular in contemporary workflow engines

due to their ability to separate work specification and task execution, permitting more straight-

forward resolution of dependencies and optimization of computation and data movement.

For the same reasons, execution in gmxapi is deferred as much as possible to when and where

it is required. The high-level gmxapi Python interface creates and executes a directed acyclic

graph (DAG) specifying the computational work to be done. Nodes of the work graph repre-

sent discrete operations that produce and consume well defined inputs and outputs. Operation

and data references in the work graph are proxy objects for the computational tasks and data

until the graph is run. Execution management may be optimized by running only as much of

the graph as necessary to satisfy explicit data dependencies. In addition, in order to minimize

unnecessary data movement, most gmxapi operations do not transfer data from the C++

library to the Python interpreter unless explicitly requested by the user. When a gmxapi com-

mand is used to add work to the work graph, it returns a reference to the graph node repre-

senting the operation. The operation’s output attributes may be used as inputs to further

Fig 2. Schematic of data flow and control flow for a segment of a complex simulation workflow. Ensembles of

simulations can be run (denoted by stacked rectangles) by gmxapi merely by passing an array of inputs instead of a

single input. Custom plugins can interact with running MD simulations. Finally, conditional and looping logic can

create high-level simulation algorithms.

https://doi.org/10.1371/journal.pcbi.1009835.g002

PLOS COMPUTATIONAL BIOLOGY gmxapi: A Python interface for GROMACS molecular dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 4 / 12

https://doi.org/10.1371/journal.pcbi.1009835.g002
https://doi.org/10.1371/journal.pcbi.1009835


commands, and may be used as “Future” results, as discussed below. Calling “result()” on a

Future forces dependency resolution and data localization.

Python interface

The gmxapi Python interface consists of five categories of operations: 1) typing and logical

operations, 2) bound GROMACS API calls, 3) legacy GROMACS command-line operations,

4) utilities for user creation of new gmxapi operations, and 5) looping and conditional opera-

tions. These are described in sequence below.

The simplest gmxapi operations manipulate signals, data topology, or typing. “join_arrays”,

“logical_not”, and “make_constant” have strict definitions for inputs and outputs (Fig 3A).

These operations are also composable: “concatenate_lists” is a helper function that reduces a

number of inputs in terms of “join_arrays” (Fig 3B).

The preferred mechanism for interfacing to GROMACS is via bound API calls. Commands

like “read_tpr”, “modify_input”, and “mdrun” use a binary Python extension module written

in C++ using pybind11 to interact with GROMACS operations and data through libgmxapi,

which is a C++ library installed by default with recent versions of GROMACS.

In order to provide legacy support for the full range of GROMACS command-line opera-

tions, “gmxapi.commandline.cli()” is a simple pure-Python gmxapi operation that wraps com-

mand-line tools. It is a thin wrapper of the Python “subprocess” module, so command inputs

and outputs are embedded in the argument list parameter. Instances of “gmxapi.command-

line.cli” are not by themselves conducive to DAG representations of data flow, so a helper

function creates additional gmxapi primitives to provide a consistent set of named inputs and

outputs. “gmxapi.commandline_operation()” generates a graph of gmxapi primitives around

“cli” to translate input and output arguments into operation inputs and outputs, as specified

by the user (Fig 3B).

Fig 3. Schematics for gmxapi operations. As shown in panel (A), gmxapi operations have well defined inputs and outputs. These can operate on arrays of inputs and

also include support for legacy GROMACS operations by wrapping the command-line toolset, as shown in panel (B). As shown in panel (C), the decorator

@function_wrapper allows arbitrary user code to be transformed into a gmxapi operation.

https://doi.org/10.1371/journal.pcbi.1009835.g003

PLOS COMPUTATIONAL BIOLOGY gmxapi: A Python interface for GROMACS molecular dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 5 / 12

https://doi.org/10.1371/journal.pcbi.1009835.g003
https://doi.org/10.1371/journal.pcbi.1009835


In order to provide extensibility, arbitrary user code can be transformed into a gmxapi

operation by decorating a Python function definition with “@function_wrapper” (Fig 3C). As

an example, “commandline_operation” is written in this manner.

Looping and conditional commands are critical to adaptive ensemble simulation[25] and

thus form a key part of the gmxapi repertoire. Conditional iteration takes the form of conven-

tional gmxapi command syntax but relies on some metaprogramming under the hood. The

“while_loop” command allows a graph to be dynamically extended as a chain of repeated oper-

ations, including fused operations constructed with the “subgraph” tool. A subgraph allows

inputs and outputs to be expressed in terms of other gmxapi operations. When used with “whi-

le_loop”, internal subgraph state can be propagated from one iteration to the next to provide a

consistent environment similar to a standard loop.

The work graph

The work graph permits data flow topology to be represented independently from execution

strategies or run time resource assignment details. An array of input sources provided to a

command generates a corresponding set of tasks, such as for trajectory ensemble simulations.

Because such ensembles may be coupled (and gmxapi currently does not have a mechanism to

specify that an ensemble is uncoupled), arrays of simulations must currently be co-executed

through the gmxapi mpi4py executor. Operations defined with “@function_wrapper”, includ-

ing the other built-in operations, are assumed to be uncoupled, and are launched in a sequence

determined by the DAG topology during recursive resolution of data dependencies, executed

sequentially by the simple built-in gmxapi 0.1 executor.

The work graph enables straightforward dependency resolution: commands are specified to

operate on abstracted “handles” or references to work inputs rather than requiring the fully

instantiated objects, so chains of simulations can be expressed where one command depends

on the outputs of a prior command. Each individual command is then ready to execute once

its inputs have been fully resolved. Because operations and data flow are represented as a

DAG, arbitrarily complex topologies can be expressed unambiguously without unexpected

side-effects. Trajectories can be forked or extended without re-executing simulation segments

or overwriting previous results.

Execution and control flow

The gmxapi interface enables several levels of control logic, described below. Native Python logic

(if/else statements, for loops, etc.) can be used with gmxapi operations. However, since gmxapi

operations construct a work graph that is then executed, expressing conditionals within this work

graph requires special constructs rather than standard Python operators. Gmxapi therefore provides

logic such as “while_loop” as an efficient way to express adaptivity within a sequence of gmxapi

operations. Python-level logic can be utilized by forcing work graph execution using the result()

method, which causes explicit execution of all code required to produce the requested result. In con-

trast, gmxapi-level logic operates on Futures and is thus deferred until graph execution.

Gmxapi also provides low-level logic for simulation control and ensemble operators that

can be used by third party code. For instance, gmxapi registers with the GROMACS “Stop-

Signal” facility, enabling plugin code to stop a simulation based on external criteria, such as

when a statistical estimator has converged. Additional examples of low-level operations

include a “ReduceAll” to collect data across an in-flight ensemble. This operation can be used

for adaptive updates across an ensemble of simulations, such as modifying biasing forces in

restrained-ensemble simulations[26,27] or to update estimators and determine when a simula-

tion ensemble should be terminated.

PLOS COMPUTATIONAL BIOLOGY gmxapi: A Python interface for GROMACS molecular dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 6 / 12

https://doi.org/10.1371/journal.pcbi.1009835


Gmxapi as a means to extend MD code without source modification

Gmxapi establishes a facility[28] for providing MD extension code to GROMACS during

launch. Binary objects are then loaded at runtime via the Python interpreter. This allows cus-

tom code to be executed during the MD integration loop with minimal overhead. Python facil-

itates plugin binding, but once the simulation launches, GROMACS and the extension code

communicate directly via C++ interfaces, so there is no overhead added by Python. This exten-

sion code executes within the existing GROMACS parallelism framework, so it can take

advantage of domain decomposition and MPI parallelism. Since this only requires a standard

GROMACS installation with gmxapi, it permits flexible extension of the molecular dynamics

code without modifying the main codebase or libraries.

Gmxapi does not prescribe a C/C++ bindings strategy. We used pybind11 for GROMACS

bindings, but Python interaction with compiled code relies only on the Python C API (PyCap-

sule) and the public libgmxapi C++ interface.

Results

Typical molecular dynamics workflows use a chain of tools to prepare simulation input, partic-

ularly command-line programs that take file locations as input and output arguments. Gmxapi

is designed to permit connecting the output of any tool to the input for another tool with con-

sistent Python syntax. Fig 4 illustrates a chain of GROMACS tools preparing simulation input,

culminating with a call to "gmxapi.mdrun" to execute an array of simulations.

To illustrate the application of gmxapi, we demonstrate refinement of an HIV gp41 confor-

mational ensemble based on DEER spectroscopy data. We use a starting crystal structure for

the BG505 SOSIP of HIV gp41[29] and previously reported DEER spectroscopy data of 5 dif-

ferent spin labels positions on this SOSIP[30]. The gp41 trimer was asymmetrically restrained

(each of the three monomer-monomer distances was sampled separately), and the previously

reported Bias-resampling ensemble refinement (BRER) algorithm for refining heterogeneous

conformational ensembles[28] was applied. This involves a custom force plugin for GRO-

MACS, and gmxapi was used to run an array of 250 refinement simulations, each randomly

sampling target distance values from the experimental distribution for each measured spin-

label pair. This array was executed in parallel on a supercomputing cluster, and accompanying

example scripts demonstrate such a large-scale deployment. Further details are given in S1

Methods. Full convergence of the refinement would require additional simulation sampling of

the 15-dimensional experimental distribution, but even after 24 wall-clock hours of simulation

a reasonable sampling of the experimental distributions was obtained (Fig 5). This application

illustrates the ease of simulation ensemble management and application of custom biasing

algorithms within GROMACS facilitated by gmxapi.

Discussion

Gmxapi provides a high-level Python interface for GROMACS with several key design fea-

tures. It permits easy chaining of commands (GROMACS or third-party analysis tools) to cre-

ate pipelines. Such pipelines can be parallel in nature, and gmxapi supports arrays or

ensembles of simulations as first-class objects. Finally, gmxapi has a plugin interface that

enables custom user code to be executed as part of molecular dynamics force calculations with-

out modifying the GROMACS source but still benefitting from GROMACS native parallel

decomposition. These features provide distinct advantages over shell-script-based workflows

or simple Python wrappers for the GROMACS command-line interface.

Gmxapi differs from many molecular dynamics scripting APIs in that it embraces a data-

flow programming paradigm while at the same time aiming for simplicity and ease of

PLOS COMPUTATIONAL BIOLOGY gmxapi: A Python interface for GROMACS molecular dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 7 / 12

https://doi.org/10.1371/journal.pcbi.1009835


Fig 4. Detailed diagram of inputs, outputs, and operations in a chain of gmxapi operations. Operations are shown

in green boxes, the corresponding nodes in the work graph in red boxes, inputs in orange boxes, and outputs in blue

boxes. The diagram depicts a chain of GROMACS tools preparing simulation input, feeding into "gmxapi.mdrun" to

run a batch of simulations.

https://doi.org/10.1371/journal.pcbi.1009835.g004

PLOS COMPUTATIONAL BIOLOGY gmxapi: A Python interface for GROMACS molecular dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 8 / 12

https://doi.org/10.1371/journal.pcbi.1009835.g004
https://doi.org/10.1371/journal.pcbi.1009835


programming. This is analogous to the Keras high-level deep learning library [24]. A data-flow

approach simplifies treatment of dependencies in complex parallel workflows and has been

adopted by a number of high-performance computational tools.

Fig 5. Residue-residue distance distributions in a simulated ensemble of HIV gp41. DEER spectroscopy was used to measure

distance distributions between two monomers of the gp41 trimer. Thus, each residue designates a monomer-monomer residue

pair. Panels A-E show plots for the 5 restrained residues in the HIV trimer: 106, 173, 202, 306, and 542 respectively. Discretized

DEER distance distributions are plotted in green, and simulation results are plotted in blue bars. The simulation ensemble

shows good convergence to the measured values.

https://doi.org/10.1371/journal.pcbi.1009835.g005

PLOS COMPUTATIONAL BIOLOGY gmxapi: A Python interface for GROMACS molecular dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 9 / 12

https://doi.org/10.1371/journal.pcbi.1009835.g005
https://doi.org/10.1371/journal.pcbi.1009835


Gmxapi scales well to high-performance clusters using MPI parallel interfaces. Current ver-

sions do not, however, provide advanced scheduler management along the lines of the prior

Copernicus software [11–12] or the Radical Cybertools toolkit [16]. Interfaces that permit inte-

gration of gmxapi with more advanced schedulers is planned for future work. In comparison

with Copernicus, gmxapi is a lighter-weight solution, integrating more closely with GRO-

MACS and designed to facilitate much greater extensibility and ease of use but not including

the advanced scheduler and client-server communication capabilities.

Availability and future directions

The libgmxapi C++ interface was released as part of GROMACS 2019 release and has been

part of a standard GROMACS installation since 2020. Gmxapi 0.2 shipped with GROMACS

2021; version 0.3, described here, is part of the GROMACS 2022 release and contains further

enhancements for ease of use and installation. Continued development of gmxapi will expand

the number of bound GROMACS API calls and reduce the need for legacy command-line sup-

port as well as generalize the plugin interface. At the programming level, one key future direc-

tion is exactly that—an increased use of the “Future” paradigm in Python. Python design

patterns using Futures are becoming more widespread and standardized [14,31] as a way to

refer to results that have not yet been calculated. Some additional refinement of the gmxapi

Future protocol is needed to be fully compatible with native and third-party frameworks for

concurrent or asynchronous program flow.

Supporting information

S1 Methods. Supplementary Methods.

(PDF)

S1 Software Archive.

(TGZ)

Acknowledgments

The authors thank Mark Abraham for many helpful discussions.

Author Contributions

Conceptualization: M. Eric Irrgang, Peter M. Kasson.

Investigation: Caroline Davis, Peter M. Kasson.

Methodology: M. Eric Irrgang.

Software: M. Eric Irrgang, Caroline Davis, Peter M. Kasson.

Writing – original draft: M. Eric Irrgang, Peter M. Kasson.

Writing – review & editing: M. Eric Irrgang, Caroline Davis, Peter M. Kasson.

References

1. Bonomi M, Camilloni C (2017) Integrative structural and dynamical biology with PLUMED-ISDB. Bioin-

formatics 33: 3999–4000. https://doi.org/10.1093/bioinformatics/btx529 PMID: 28961689

2. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) PLUMED 2: New feathers for an old

bird. Computer Physics Communications 185: 604–613.

PLOS COMPUTATIONAL BIOLOGY gmxapi: A Python interface for GROMACS molecular dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 10 / 12

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009835.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009835.s002
https://doi.org/10.1093/bioinformatics/btx529
http://www.ncbi.nlm.nih.gov/pubmed/28961689
https://doi.org/10.1371/journal.pcbi.1009835


3. Olsson S, Wu H, Paul F, Clementi C, Noe F (2017) Combining experimental and simulation data of

molecular processes via augmented Markov models. Proc Natl Acad Sci U S A 114: 8265–8270.

https://doi.org/10.1073/pnas.1704803114 PMID: 28716931

4. Chodera JD, Noé F (2014) Markov state models of biomolecular conformational dynamics. Current

opinion in structural biology 25: 135–144. https://doi.org/10.1016/j.sbi.2014.04.002 PMID: 24836551

5. Heo L, Feig M (2018) Experimental accuracy in protein structure refinement via molecular dynamics

simulations. Proceedings of the National Academy of Sciences 115: 13276–13281. https://doi.org/10.

1073/pnas.1811364115 PMID: 30530696

6. Perilla JR, Zhao G, Lu M, Ning J, Hou G, et al. (2017) CryoEM structure refinement by integrating NMR

chemical shifts with molecular dynamics simulations. The Journal of Physical Chemistry B 121: 3853–

3863. https://doi.org/10.1021/acs.jpcb.6b13105 PMID: 28181439

7. Igaev M, Kutzner C, Bock LV, Vaiana AC, Grubmuller H (2019) Automated cryo-EM structure refine-

ment using correlation-driven molecular dynamics. Elife 8. https://doi.org/10.7554/eLife.43542 PMID:

30829573

8. Goecks J, Nekrutenko A, Taylor J, Team G (2010) Galaxy: a comprehensive approach for supporting

accessible, reproducible, and transparent computational research in the life sciences. Genome Biology

11.

9. Deelman E, Singh G, Su M-H, Blythe J, Gil Y, et al. (2005) Pegasus: A framework for mapping complex

scientific workflows onto distributed systems. Scientific Programming 13: 219–237.

10. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, et al. (2013) The Taverna workflow suite:

designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids

Research 41: W557–W561. https://doi.org/10.1093/nar/gkt328 PMID: 23640334

11. Pronk S, Larsson P, Pouya I, Bowman GR, Haque IS, et al. (2011) Copernicus: A new paradigm for par-

allel adaptive molecular dynamics. Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis: 60.

12. Pronk S, Pouya I, Lundborg M, Rotskoff G, Wesén B, et al. (2015) Molecular Simulation Workflows as

Parallel Algorithms: The Execution Engine of Copernicus, a Distributed High-Performance Computing

Platform. Journal of Chemical Theory and Computation. https://doi.org/10.1021/acs.jctc.5b00234

PMID: 26575558

13. Jain A, Ong SP, Chen W, Medasani B, Qu XH, et al. (2015) FireWorks: a dynamic workflow system

designed for high-throughput applications. Concurrency and Computation-Practice & Experience 27:

5037–5059.

14. Babuji Y, Woodard A, Li Z, Katz DS, Clifford B, et al. Parsl: Pervasive parallel programming in python

2019. pp. 25–36.

15. Wilde M, Hategan M, Wozniak JM, Clifford B, Katz DS, et al. (2011) Swift: A language for distributed

parallel scripting. Parallel Computing 37: 633–652.

16. Balasubramanian V, Bethune I, Shkurti A, Breitmoser E, Hruska E, et al. Extasy: Scalable and flexible

coupling of md simulations and advanced sampling techniques; 2016. IEEE. pp. 361–370.

17. van der Aalst WMP, Jablonski S (2000) Dealing with workflow change: identification of issues and solu-

tions. Computer Systems Science and Engineering 15: 267–276.

18. Ludascher B, Altintas I, Berkley C, Higgins D, Jaeger E, et al. (2006) Scientific workflow management

and the Kepler system. Concurrency and Computation-Practice & Experience 18: 1039–1065.

19. Mattoso M, Dias J, Ocana KACS, Ogasawara E, Costa F, et al. (2015) Dynamic steering of HPC scien-

tific workflows: A survey. Future Generation Computer Systems-the International Journal of Escience

46: 100–113.

20. Irrgang ME, Hays JM, Kasson PM (2018) gmxapi: a high-level interface for advanced control and exten-

sion of molecular dynamics simulations. Bioinformatics 34: 3945–3947. https://doi.org/10.1093/

bioinformatics/bty484 PMID: 29912282

21. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, et al. (2013) GROMACS 4.5: a high-throughput and

highly parallel open source molecular simulation toolkit. Bioinformatics 29: 845–854. https://doi.org/10.

1093/bioinformatics/btt055 PMID: 23407358

22. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, et al. (2015) GROMACS: High performance molec-

ular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1: 19–25.

23. Wenzel J, Rhinelander J, Moldovan D (2017) pybind11–Seamless operability between C++ 11 and

Python.

24. Chollet F (2015) Keras. https://keras.io.

25. Kasson PM, Jha S (2018) Adaptive ensemble simulations of biomolecules. Current opinion in structural

biology 52: 87–94. https://doi.org/10.1016/j.sbi.2018.09.005 PMID: 30265901

PLOS COMPUTATIONAL BIOLOGY gmxapi: A Python interface for GROMACS molecular dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 11 / 12

https://doi.org/10.1073/pnas.1704803114
http://www.ncbi.nlm.nih.gov/pubmed/28716931
https://doi.org/10.1016/j.sbi.2014.04.002
http://www.ncbi.nlm.nih.gov/pubmed/24836551
https://doi.org/10.1073/pnas.1811364115
https://doi.org/10.1073/pnas.1811364115
http://www.ncbi.nlm.nih.gov/pubmed/30530696
https://doi.org/10.1021/acs.jpcb.6b13105
http://www.ncbi.nlm.nih.gov/pubmed/28181439
https://doi.org/10.7554/eLife.43542
http://www.ncbi.nlm.nih.gov/pubmed/30829573
https://doi.org/10.1093/nar/gkt328
http://www.ncbi.nlm.nih.gov/pubmed/23640334
https://doi.org/10.1021/acs.jctc.5b00234
http://www.ncbi.nlm.nih.gov/pubmed/26575558
https://doi.org/10.1093/bioinformatics/bty484
https://doi.org/10.1093/bioinformatics/bty484
http://www.ncbi.nlm.nih.gov/pubmed/29912282
https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1093/bioinformatics/btt055
http://www.ncbi.nlm.nih.gov/pubmed/23407358
https://keras.io
https://doi.org/10.1016/j.sbi.2018.09.005
http://www.ncbi.nlm.nih.gov/pubmed/30265901
https://doi.org/10.1371/journal.pcbi.1009835


26. Roux B, Islam SM (2013) Restrained-ensemble molecular dynamics simulations based on distance his-

tograms from double electron-electron resonance spectroscopy. J Phys Chem B 117: 4733–4739.

https://doi.org/10.1021/jp3110369 PMID: 23510121

27. Hays JM, Kieber MK, Li JZ, Han JI, Moremen KW, et al. (2018) Refinement of highly flexible protein

structures using simulation-guided spectroscopy. Angew Chem Int Ed Engl 57: 17110–17114. https://

doi.org/10.1002/anie.201810462 PMID: 30395378

28. Hays JM, Cafiso DS, Kasson PM (2019) Hybrid Refinement of Heterogeneous Conformational Ensem-

bles Using Spectroscopic Data. J Phys Chem Lett: 3410–3414. https://doi.org/10.1021/acs.jpclett.

9b01407 PMID: 31181934

29. Do Kwon Y, Pancera M, Acharya P, Georgiev IS, Crooks ET, et al. (2015) Crystal structure, conforma-

tional fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nature Structural & Molec-

ular Biology 22: 522–531.

30. Stadtmueller BM, Bridges MD, Dam K-M, Lerch MT, Huey-Tubman KE, et al. (2018) DEER Spectros-

copy Measurements Reveal Multiple Conformations of HIV-1 SOSIP Envelopes that Show Similarities

with Envelopes on Native Virions. Immunity 49: 235–246.e234. https://doi.org/10.1016/j.immuni.2018.

06.017 PMID: 30076100

31. Hadjidoukas PE, Bartezzaghi A, Scheidegger F, Istrate R, Bekas C, et al. (2020) torcpy: Supporting

task parallelism in Python. SoftwareX 12: 100517.

PLOS COMPUTATIONAL BIOLOGY gmxapi: A Python interface for GROMACS molecular dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009835 February 14, 2022 12 / 12

https://doi.org/10.1021/jp3110369
http://www.ncbi.nlm.nih.gov/pubmed/23510121
https://doi.org/10.1002/anie.201810462
https://doi.org/10.1002/anie.201810462
http://www.ncbi.nlm.nih.gov/pubmed/30395378
https://doi.org/10.1021/acs.jpclett.9b01407
https://doi.org/10.1021/acs.jpclett.9b01407
http://www.ncbi.nlm.nih.gov/pubmed/31181934
https://doi.org/10.1016/j.immuni.2018.06.017
https://doi.org/10.1016/j.immuni.2018.06.017
http://www.ncbi.nlm.nih.gov/pubmed/30076100
https://doi.org/10.1371/journal.pcbi.1009835

