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Biological cells are often found to sense their chemical environment near the single-molecule detection
limit. Surprisingly, this precision is higher than simple estimates of the fundamental physical limit, hinting
towards active sensing strategies. In this work, we analyse the effect of cell memory, e.g. from slow
biochemical processes, on the precision of sensing by cell-surface receptors. We derive analytical formulas,
which show that memory significantly improves sensing in weakly fluctuating environments. However,
surprisingly when memory is adjusted dynamically, the precision is always improved, even in strongly
fluctuating environments. In support of this prediction we quantify the directional biases in chemotactic
Dictyostelium discoideum cells in a flow chamber with alternating chemical gradients. The strong
similarities between cell sensing and control engineering suggest universal problem-solving strategies of
living matter.

T
he survival and function of cells and organisms crucially depend on precise sensing of the environment1–3.
When searching for nutrients or avoiding toxins the bacterium Escherichia coli can detect differences in
concentration as low as 3 nM4, amounting to approximately 3 molecules per cell volume. T cells can detect

single copies of foreign antigen5 to quickly launch an immune response, while axonal growth cones accurately
detect very few molecules of guidance cues (e.g. netrins, slits and ephrins) to follow molecular gradients while
seeking their synaptic target6. Such high precision appears to be remarkable since sensing and signalling in a cell is
affected by many sources of noise2,7,8. However, what level of precision do we expect from theory?

Take, for instance, Dictyostelium discoideum, which is a well-studied organism both in its unicellular (amoeba)
and aggregate state (slug)9,10. Under starvation these amoebae are known to chemotax over a wide range of cyclic
adenosine monophosphate (cAMP) concentrations, ranging from 0.1 nM to 10 mM, with corresponding con-
centration differences of only 1–5% across the cell length11,12. Surprisingly, estimates of the receptor-occupancy
difference between cell front and back (signal) are dwarfed by occupancy fluctuations (noise)11. Consequently, the
chemotactic ability of these amoebae to aggregate during starvation is better than what should be possible
theoretically. This is particularly puzzling as cells use internal directional biases13, which increase persistence
and migration speed, but may distract cells from sensing the direction of a gradient. This raises the question if cells
employ some sort of memory14,15 as a form of active sensing strategy, in order to increase their sensing precision
(similar to active membrane transport, which improves transport, compared to passive transport). While mem-
ory is expected to improve precision in static environments, its benefit in changing natural environments is
unclear.

Cell sensing is performed through trans-membrane receptors which bind and unbind ligand molecules in the
environment. At low ligand concentration, the precision is ultimately limited by the random arrival of ligand
molecules on the cell surface by diffusion. An expression for this fundamental physical limit was first estimated by
Berg and Purcell16 and was subsequently revisited17–19, considering a cell that tries to estimate the average
occupancy of the receptor in a time interval Dt (determined by slower downstream processes such as cytoskeletal
remodelling or rotary motor switching). All these estimates include, in the single-receptor limit, the uncertainty
due to ligand-receptor unbinding, which does not convey information about the ligand concentration. Instead, if
a cell only registers binding events, it can further reduce the limit by a factor two20, e.g. as potentially implemented
by G-protein-coupled receptors with regulated signalling duration21, by endocytosis22 or receptor diffusion23. A
lower limit of the relative uncertainty (variance over mean) is estimated from the Cramér-Rao bound of estima-
tion theory
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where I(c) is the Fisher information. In the limit of large Dt the right
side of Eq. (1) is obtained, with c the concentration, D the diffusion
coefficient, a the receptor’s linear dimension, and n the number of
binding/unbinding events within Dt. The result was then extended to
time-dependent concentrations, i.e. ramp sensing for a static cell or
spatial gradient sensing for a moving cell24. While more sophisticated
than the above mentioned estimate of the signal-to-noise ratio in
Dictyostelium11, all these approaches neglect the receptor’s history
and hence memory.

Experimental evidence for memory at the molecular level is wide-
spread in biology, and goes way beyond receptor methylation in
bacterial chemotaxis25. During lactose uptake in E. coli the slow
changes in the number of permease LacY lead to hysteresis26, evid-
ence for a system’s dependence on its past environment. Other exam-
ples include receptors during cell adhesion27, as well as neuronal
plasticity and long-term potentiation, which can persist over days
or even months28. Common to all these mechanisms is that they
consume energy, e.g. in form of hydrolysis of adenosine triphosphate
(ATP) or S-adenosyl methionine (SAM)29.

How does memory improve the precision of sensing? We start
from considering the simple case of two consecutive measurements.
The information from the first measurement is stored by the cell (e.g.
via slow kinetic processes triggered by ligand binding27) and is math-
ematically expressed by a prior distribution of the concentration
values. Such prior information leads to a lower uncertainty in con-
centration sensing in the next measurement. Using the Bayesian
Cramér-Rao bound, the uncertainty is

dcð Þ2§ 1
I cð ÞzI lð Þ , ð2Þ

where I(l) is the Fisher information of the prior contribution, with
l(c) a known prior distribution of the concentration c. Applying this
inequality to a static environment, we find that memory of previous
measurements allows an estimate with precision equivalent to a
memory-less process with a correspondingly longer single-measure-
ment time (see section S2C of Supplementary Information (SI)). The
resulting precision therefore exceeds the physical limit for the single-
measurement in Eq. (1). Similar results have been obtained by others
in static gradients30–32. However, cells in realistic environments may
encounter concentrations which vary strongly in time e.g. by dif-
fusion, flow, degradation by competing species, or variable chemical
sources33–35.

Does memory still help in fluctuating environments? As indefinite
storage of past information and its analysis is impossible in cells, we
anticipate an iterative sensing scheme at best. Our hypothesis is that
the correlations of the environment should be important when con-
sidering memory since long-range correlations resemble static envir-
onments. In Fig. 1 we consider a fluctuating environment, with a
changing concentration slope (ramp or gradient) at each time point,
characterised by either correlated or uncorrelated fluctuations
(depending on parameter a). We propose two alternative schemes
for sensing by a receptor using memory, known from control engin-
eering. In each scheme the receptor performs a measurement of both
concentration and slope in each time interval. This measurement is
stored and the likelihood of subsequent concentration values is itera-
tively updated based on each new measurement. In one scheme, the
receptor uses memory to predict the current environment, while in
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Figure 1 | Fluctuating environments of chemical concentration and single-receptor measurement. (top left) Exemplar concentration profiles

for two different values of the slope correlation, a 5 0.1 (green continuous lines) and a 5 0.9 (green dotted lines), corresponding to small and high

correlations, respectively. (Orange continuous and dotted lines) Corresponding sequences of measurements, performed by the cell in each interval of time

Dt, for the two concentration profiles. (top right, green equation box) Iterative dynamics generating the concentration profiles. At each time step the

concentration c0 and slope c1 are updated. Parameter a (0 , a , 1) represents the correlation strength of the slope fluctuations wt, a Gaussian variable with

zero mean and variance s2
w. For a 5 0 the profile is a fluctuating slope with totally uncorrelated fluctuations. For a 5 1 the fluctuations vanish and the

profile becomes a constant slope. (bottom left, orange box) Illustration of the single-measurement performed by a cell-surface receptor in the time

interval Dt. The receptor records ligand binding and unbinding events occurring with respectively rates k1c(t) and k2, and estimates the average

concentration from the time series of receptor occupancy (cloud in illustration represents memory). (bottom right, orange equation box) y0 and y1 are

estimates of concentration and slope in time interval Dt. j0 and j1 are stochastic Gaussian variables with zero mean and variances s2
j0 and s2

j1 given

respectively by (c0)2/n and 12(c0/Dt)2/n24, the limits for the precision of concentration and slope sensing in time interval Dt with n binding/unbinding

events (Eq. (S37) in SI).
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the other, the receptor carefully weighs past and current measure-
ments to come up with an optimal estimate. We finally provide
preliminary evidence for our predictions. Using chemotaxis experi-
ments on Dictyostelium amoeba in a microfluidic chamber and spa-
tio-temporal cell simulations, we find signatures of filtering in cell
behaviour.

Models and Results
Prediction and filtering schemes. For sensing strategies with
memory in fluctuating environments we use two iterative schemes:
(i) The prediction scheme (Fig. 2a), in which the concentration is
estimated a priori, without the current measurement and only based
on the history of previous measurements. This strategy might allow a
cell to avoid toxins before encountering high harmful levels. (ii) The
filtering scheme, in which the current concentration is optimally
estimated based on previous and current measurements (Fig. 3a).
This results in what is known as an a posteriori estimate. Such
schemes are successfully adopted in control theory and in
engineering applications (see36 for an overview). For instance, the
prediction scheme is used in weather and market forecast, as well as
missile guidance. The filtering scheme is applied in navigation
systems, where continuous update of the position based both on
measurements and the system dynamics is of primary importance
(known as Kalman Filter). Famously, the navigation system of the
landing lunar module of the Apollo 11 mission heavily relied on
filtering-based software in the flight control system37. We first
explain how the schemes work and derive analytical results, then
consider how they might be implemented biochemically in cells.
Finally, we discuss explicit biological examples, supporting our
proposed schemes.

Adopting a vectorial notation and indicating with ct 5 (c0
t, c1

t)
the concentration and slope, the concentration update at each
time step can conveniently be expressed as (see Fig. 1 for further
details)

ct~Ft að Þct{Dtz 1{að Þwt ð3Þ

with

Ft~
1 Dt

0 a

� �

the matrix implementing the deterministic part of the evolution, a
the slope correlation and wt 5 (0, wt) the fluctuation term with wt a
random Gaussian variable with zero mean and variance s2

w. It is
important to note that the concentration ct

0 is unbounded. The
advantage of this implementation is that for a 5 1 the limit of a
constant gradient is regained (slope fluctuations are perfectly
correlated at all times), while for a 5 0 the slope fluctuations are
completely uncorrelated. In contrast, any imposed limit on the con-
centration would induce correlations.

In both schemes the iteration step coincides with the single-
measurement averaging time Dt. In this interval of time, measure-
ment yt 5 (y0

t, y1
t) with errors jt 5 (j0

t, j1
t) is performed of both

concentration and slope, which are therefore assumed stationary
in this interval. We follow the protocol of24 to connect the pre-
cision of the measurement to the number of binding events occur-
ring in that interval (for concentration measurements, this is
given by Eq. (1)). j0 and j1 are Gaussian random variables with
zero mean and variances s2

j0 and s2
j1 (see also Fig. 1 and section

S4B of SI).
A key parameter characterising the environment is a, which cor-

relates the slope values at two consecutive times, i.e. c1
t
:c1
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valid in the limit of long time t and large time separation (note also
that c0

t

� �
~c0

0, for details see Eqs. (S62–65) in SI). Equation (4) shows
that the environmental dynamics introduce a correlation in the
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Figure 2 | Iterative prediction scheme for receptor sensing with memory. (a) At each time step the concentration profile is measured and updated

(see also green and orange equation boxes in Fig. 1). Receptor sensing is based only on past measurements to make an a priori estimate (prediction) for

both concentration ~c0
t and slope ~c1

t with accuracy limited by the Cramér-Rao bound. (b) Simplest implementation of the scheme in a cell-signalling

network. Upon binding and unbinding of external ligand, the receptor activity u(t) induces production of molecule species y. For slow reaction rate, the

production of y mirrors the input with a delay, reproducing the condition of the prediction scheme in which the current time measurement is not

accessible. For details see sections S4A and S5A in SI.
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concentration values that increases with a. From Eq. (3) we can also
evaluate the concentration variance at any time

s2
c tð Þ~ c0

t {c0
t

� �2
D E

t?Dt
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2a2Dt

1{að Þ2 1zað Þ

 !
s2

w, ð5Þ

which increases with increasing a. Importantly, the concentration
variance is asymptotically independent of a, thus allowing us to
compare fluctuating environments with different correlation but
same variance.

Figure 2a summarises the steps leading to the iterative update of
the covariance matrix with memory in the prediction scheme. At any
given time one can define the a priori ~Pt and a posteriori P̂t covar-
iance matrices as follows:

~Pt~ d~ctd~cT
t

� �
ð6aÞ

P̂t~ dĉtdĉT
t

� �
, ð6bÞ

where ~ct and ĉt indicate the estimates of the concentration and slope
performed before (a priori) and after (a posteriori) making a mea-
surement, respectively, and d~ct and dĉt are the differences of these
estimates from the true values ct. From Eq. (3) it follows:

~ct~Ft að Þĉt{Dt ð7Þ

and therefore, by Eq. (3) and the definitions Eqs. (6a) and (6b)

~Pt~FtP̂t{DtF
T
t zQt , ð8Þ

where Qt is a diagonal matrix carrying the variance 1{að Þ2s2
w of the

slope fluctuations (see also Eq. (S61e) in SI). Due to the Cramér-Rao
bound,

P̂t{Dt§ ~P{1
t{DtzR{1

t{Dt

� �{1
, ð9Þ

where Rt is a diagonal matrix carrying the variances s2
j01 and s2

j11 of
the single-measurement errors on concentration and slope (see for
details section S4 and Eq. (S61b) in SI). Replacing Eq. (9) into Eq. (8)
leads to the following recursive relation for the a priori covariance
matrix:

~Pt~Ft ~P{1
t{DtzR{1

t{Dt

� �{1
FT

t zQ, ð10Þ

which can be solved analytically at steady state.
The filtering scheme is summarised in Fig. 3a. In this scheme an a

posteriori estimate of the concentration ĉt is obtained as a linear
combination of the a priori estimate ~ct and the direct measurement yt

ĉt~~ctzMt yt{~ct
� �

, ð11Þ

in which the weight Mt is chosen so as to minimise the covariance a
posteriori matrix (see Eq. (S93) in SI). With such choice for Mt from
Eq. (11) it follows

P̂t~ I{Mtð Þ~Pt : ð12Þ

Inserting Eq. (8) into (12) leads to the following recursive relation for
the a posteriori covariance matrix in the filtering scheme

P̂t~ I{Mtð Þ FtP̂t{DtF
T
t zQt

� �
: ð13Þ

We obtained analytical expressions for the stationary solution of the
covariance matrices by imposing convergence of the iterative rela-
tions. From these solutions we extracted the uncertainties for the
concentration and slope in both schemes (see also sections S4C and
S4E of SI). Importantly, while the dynamics of c0 is diffusive and
therefore non-stationary (see Eqs. (4) and (5)), the dynamics of the
increments c1 is stationary with correlations decaying as at with t the
time difference. This stationarity in the concentration increments
ultimately allows the convergence of the iterative schemes.
Figures 2b and 3b demonstrate simple biochemical implementations
of the two schemes to be discussed later.

Figure 4 shows plots of the total uncertaintiesDP
T for the prediction

(a) andDF
T for the filtering scheme (b), both defined as the trace of the

respective steady-state covariance matrices (for individual uncer-
tainties of concentration and slope sensing see Fig. S3 in SI). Both
uncertainties are expressed in units of the total single-measurement
error defined as:

DS
T~s2

j01zs2
j11Dt2 ð14Þ

with sj01 and sj11 the errors on concentration and slope, respect-
ively, for a single measurement performed in time Dt.
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is corrected by including the current time

measurement yt with a weight Mt that minimises the a posteriori covariance matrix P̂t . (b) Simplest implementation of the scheme in a cell-signalling

network. In the incoherent feedforward loop species y is inhibited by x. The combined monitoring by the two species allows accurate tracking of c

while filtering measurement error in u. For details see sections S4D and S5B in SI.
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Both the effects of correlation a and the magnitude of envir-
onment-to-noise ratio (ENR) g~sw

	
sj0 are shown. The latter is

defined as the ratio between the to-be-measured amplitude of the
slope fluctuations and the single-measurement error without mem-
ory. The main noticeable difference between the two schemes is that
in the filtering scheme the total uncertainty is always lower than the
single-measurement error, while in the prediction scheme the total
uncertainty exceeds the corresponding single-measurement error for
large ENR, i.e. when the environment fluctuates strongly compared
to the single-measurement error. Hence, while predicting an unpre-
dictable environment is impossible, when filtering strongly fluctuat-
ing environments one can always rely on single-measurements.

Note that while we set the times of the slope fluctuations and the
measurement equal in our derivation, our results can be generalised.
In fact, slower fluctuations would allow more measurements to be
conducted between changes in the slope, which due to Eq. (2) can be
mapped onto a single-measurement with a longer rescaled measure-

ment time. Since the solutions for the uncertainties scale with the
single-measurement error (see also Eq. (15) below), this leads to an
overall reduction, proportional to the ratio of fluctuations to mea-
surement time. However, when normalised to the total single-mea-
surement error, the plots in Fig. 4 remain unchanged.

Analytical results for uncertainties. A simple illustrative expression
of the uncertainties in Figs. 4a and 4b is given by the solution for the
uncorrelated case (a 5 0) for which the covariance matrix is diagonal
in both schemes (for general case see section S4 and Fig. S3 in SI). For
the filtering scheme we find that the total uncertainty is

DF
T~

k2

2 1z k2

g2


 � 1z
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while for the prediction scheme we obtain DP
T~DF

Tzs2
w. Without

the current measurement, the uncertainty due to the random slope
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Figure 4 | Performance of prediction and filtering schemes. (a) Prediction scheme. Total uncertainty DP
T (defined in the text) as obtained from the trace

of the stationary solution for the a priori covariance matrix plotted as a function of the ENR g~sw
	

sj0 , i.e. the ratio between slope fluctuations with width

sw and concentration single-measurement error sj0 , for three values of the environment correlation a 5 0.1, 0.5 and 0.9 (grey curves are introduced for

comparison with the filtering scheme, see (b)). Without a current estimate for the slope, a prediction cannot be more precise than sw and with increasing g

the uncertainty necessarily crosses over from a regime which it is smaller than the single-measurement error (green arrow) to a regime in which it is larger

(red arrow). (b) Filtering scheme. Analogous plots of DF
T given by the trace of the a posteriori covariance matrix. While the uncertainties increase with

ENR, they remain always lower than the respective single-measurement errors (green arrow) due to access to the current measurement of the slope (see

text and section S4 in SI for details). Parameters: following24 we take sj1 ~ksj0 with k~
ffiffiffiffiffi
12
p

. Ligand concentration c0 5 0.01, sj0 ~ c0
� �2

, and Dt 5 1

(arbitrary units). Uncertainties are in units of the total single-measurement error DS
T~s2

j0 zs2
j1Dt2~ 1zk2

� �
s2

j0 . (c–d) Implementation of the

prediction (c) and filtering (d) schemes with the two cell-signalling modules of Figs. 2b and 3b. Total measurement uncertaintyD
P=F
T , defined in section S5

in SI as a function of the difference between the signal transmitted through the modules including (ds) and excluding (ds9) noise, is plotted as a function

of the inverse correlation time (equivalent to the amplitude in the input activity du). The module parameters for ds and ds9 are such that input noise is

filtered out (slow rates) and the output follows exactly the input (fast rates), respectively. This difference (averaged over noise) measures the accuracy of

the two modules in transmitting the input signal, and reproduces the prediction and filtering schemes in (a) and (b), respectively. Uncertainties are in

units of DS
T , defined in section S5 in SI as a function of the difference between ds0 and ds, with ds0 equal to ds but evaluated with the same module

parameters (fast rates) used for ds9 (no noise filtering). In (c) ds 5 dy and in (d) ds 5 dx 1 dy with dx and dy deviations from steady-states values (see

section S5 in SI for details). The horizontal thin line in each plot indicates the total uncertainty of the single-measurement.
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cannot be eliminated and adds up to the uncertainty in the filtering
scheme. k is the ratio between the measurement errors on c1 and c0,
i.e. k~sj1

	
sj0 , in units of Dt.

Equation (15) is best understood in certain limits. For very accur-
ate measurements of the slope (k R 0), filtering returns a perfectly
accurate estimate for the concentration, i.e. with zero uncertainty due
to optimal predictions based on the exactly measured slope. The
opposite limit (k R ‘) corresponds to a larger uncertainty, as
expected, but always smaller than the single-measurement error.
The latter is achieved as an upper limit only in the further limit of
large environmental fluctuations, i.e. sw R ‘. This is because, for
very large fluctuations of the environment and very inaccurate slope
measurements, no more information is collected from past measure-
ments than is obtained in a single-measurement (see also Figs. 4a and
4b). The same behaviour is shown also for correlated environments
(a . 0), with the general feature that in this case the iterative filtering
scheme always leads to a decreasing total uncertainty for increasing
value of the correlation parameter a (Fig. 4b). Therefore, memory
always allows the receptor precision to go beyond the physical limit
of the single-measurement, with larger improvement for environ-
ments with more correlated fluctuations.

When is it better to predict based on memory and when is it better
to brute-force measure? For the prediction scheme, the cross-over
regime can be estimated from the value at which the slope uncer-
tainty equals the single-measurement error (see Fig. 4a and section
S4C in SI). This value is given by 1{að Þ2s2

w~k2s2
j0 , which is exact

for an uncorrelated environment (a 5 0 and k?1) and is approxi-
mately valid for correlated environments (Fig. S4). This cross-over
simply reflects the fact that without the current measurement any
prediction will retain the whole uncertainty due to slope fluctuations.
When this is of the same order of the single-measurement error in the
slope, the final estimate based on past measurements will be less
accurate than the total single-measurement. While inferior to the
filtering scheme, the prediction scheme could be beneficial when
trying to avoid certain environments.

Biochemical implementation in cellular networks. How can the
two schemes be implemented biochemically in cell-signalling
networks? We propose two simple pathways in the continuous
limit, which show qualitatively similar behaviour to the two
discrete schemes from above. In Fig. 2b simple production of a
species y upon activation of the receptor according to

_yt~ky ut{ytð Þ ð16Þ

allows the cell to monitor the input with a ‘‘delay’’. This produces the
prediction scheme, in which the current-time value of the
concentration is not accessible. For slowly varying inputs in c, y
can follow c while averaging out measurement noise of the activity
u. In Fig. 3b an incoherent feedforward loop implements the filtering
scheme. In this case, second species x, produced upon activation of
the receptor, inhibits y according to

_xt~kx ut{xtð Þ

_yt~ky
ut

xt
{yt

� �
:

ð17Þ

In addition to filtering out measurement noise the combined
monitoring of the two species allows the cell to follow the input,
even when it rapidly changes.

Figures 4c and 4d show the results of the simple biochemical
prediction and filtering schemes from Figs. 2b and 3b, respectively.
Here, the input is the ligand concentration, whose dynamics are
described by a stochastic Poisson process with correlation time
l{1

s and amplitude 2ls (for details see section S5 in SI). Plots share
the same properties as the schemes from Figs. 4a and 4b with the

uncertainty decreasing with increasing correlation time/decreasing
amplitude. Specifically, Fig. 4c shows that molecule y can follow
slowly/weakly fluctuating inputs with a reduction in uncertainty
relative to the single-measurement noise due to time averaging by
the slow kinetics of y. For rapid/strongly fluctuating inputs y cannot
follow anymore, is out of phase and hence becomes worse than the
single-measurement error. In contrast, Fig. 4d shows that the inco-
herent feedforward loop of the two molecular species, x and y, always
leads to a reduction in uncertainty (depending on suitable parameter
choices, see section S5 in SI for details). If the input fluctuates slowly/
weakly, y adapts adiabatically and x tracks the input accurately, with
the measurement error in u effectively filtered out. If the input fluc-
tuates fast/strongly, x cannot follow the input anymore. However, y
with faster dynamics than x can follow the input now and filter out
noise. Hence, this network always leads to a reduction in the mea-
surement error.

Experimental support for filtering in Dictyostelium chemotaxis.
As filtering is the more advanced scheme of the two, is there any
evidence of cells using this strategy? In filtering the weight Mt of the
current measurement in the final estimate of the concentration and
slope is a key feature (cf. Eqs. (11–13)). In particular, the weight of the
current measurement for the slope, defined as the second diagonal

element of the matrix Mt at stationarity given by P̂11
.

ksj01
� �2

(see

Eq. (S115)), is close to one for large fluctuations in the environment
and close to zero for small fluctuations. In the latter case, more
accurate predictions can be made based on memory of previous
values of concentration and slope.

Figure 5a shows the weight of the current slope measurement in
the filtering scheme (for details see section S6 in SI). For small envir-
onmental fluctuations the weight of current measurement is small,
since in this regime the cell can rely on memory to improve the
concentration estimation, while for large environment fluctuations
the prediction based on memory of previous measurements becomes
unreliable and the weight shifts toward the current measurement.
The weight of the current measurement contributes therefore sig-
nificantly for large fluctuations with little correlation (large ENR and
small a, respectively).

Testing these predictions of filtering in cell sensing is difficult for
individual receptors, in particular since chemotaxis is an emergent
phenomenon arising from a large number of biophysical and bio-
chemical details38. Instead, we approached this problem by conduct-
ing chemotaxis experiments on starved Dictyostelium discoideum
cells in a microfluidic chamber as described in39. In this setting with
a left and right inflow, it is possible to study the turning behaviour of
the migrating cells when the gradient in cAMP concentration is
instantaneously switched in direction from left to right and vice
versa. Specifically, we use the recovery of the chemotactic index
(DCI), with CI a measure of the alignment of the cell movement with
the gradient, as an indicator for turning speed and a cell’s reliance on
its current measurement (see Materials and Methods for details).
Considering multiple cells in different concentration gradients,
Fig. 5b (solid line) shows that this recovery is directly correlated with
gradient steepness (i.e. amplitude of fluctuations or ENR). Exemplar
turning behaviours are shown in Figs. 5c for slow (left) and fast
(right) turning cells, respectively. In line with our prediction from
filtering, the fraction of fast turning cells indeed increases with ENR,
indicative of cells trusting their current measurement in strongly
fluctuating environments (Fig. 5e, left). While this observation is
not sole proof of filtering, numerous other observations point in
the same direction (see Discussion section).

Spatio-temporal simulations explain observed cell behaviour.
Although the filtering observed in the turning behaviour of
Dictyostelium cells cannot be attributed to a single pathway or a
small number of molecular species14,15,38, it is worth pointing out
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Figure 5 | Amoebae may use filtering in fluctuating environments. (a) The weight of the cell to favour the current slope measurement over their

prediction based on memory is plotted for a 5 0.1 (dashed line) and a 5 0.9 (solid line) with k~
ffiffiffiffiffi
12
p

. The weight equals to one, corresponding to relying

only on current single-measurement (no memory), is shown for reference (solid horizontal line). (b) Recovery of measured chemotactic index (DCI) for

live cells (solid grey circles and error bars) and simulations (black circles, dashed error bars) after a gradient-direction switch as a function of

environment-to-noise ratio (ENR), defined here as the gradient squared over the concentration. To obtain DCI, the CI of cells migrating in a stable cAMP

gradient is subtracted from the CI after the gradient direction is switched (see Materials). A decaying exponential is fitted to average live-cell (solid black

line) and simulated data (dashed black line). Error bars show the standard error. Arbitrary threshold separating slow and fast turns is shown by the

horizontal red line. (c) Representative movement of live cells in response to low- (left) and high-ENR (right) gradient-direction switches, classified as slow

and fast turns, respectively. Cell outlines in blue show the cell prior to the switch in gradient direction. Cell outlines in red show the cell after the switch.

Outlines in grey are outside the time windows used for determining CI. Outlines are evenly spaced in time. (d) Representative cell movement from

simulations in response to low- (left) and high- (right) ENR gradient-direction switches, classified as slow and fast turns, respectively. Outlines are colour-

coded as in (c) and are evenly spaced in time. (Insets) Incoherent feedforward loop processes external signals before passing them to the activator of the

Meinhardt model (left), characterised by the competition between local, self-promoting activator patches via long-range inhibition (right, see Methods

for details). (e) Percentage of turns that are fast for live-cell data (left) and simulations (right) for low and high ENRs. Distributions of turning speeds were

significantly different for data (Mann-Whitney U, p 5 0.0067) and for simulations (Mann-Whitney U, p 5 0.000096).
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that the activity of RasG downstream of the cAR1 G-protein-coupled
receptor follows an incoherent feedforward loop and helps mediate
adaptation to persistent cAMP stimulation41. Hence, to understand if
a spatially extended incoherent feedforward loop can reproduce our
data, we implemented a minimal biophysical-biochemical model of
pseudopod-guided chemotaxis.

Following38,40 we coupled a 2-dimensional membrane with a
Meinhardt-like reaction-diffusion system that exerts driving forces
on the membrane biased by external cues. This was combined with
an incoherent feedforward loop to process sensory inputs42. In analogy
with the experiments on Dictyostelium, we then observed the turning
behaviour of these simulations in response to a reversal in gradient
direction with different ENRs. Similarly to our live-cell experiments,
simulated cells quickly reoriented themselves in response to high-ENR
switches, with reorientation time increasing as environmental fluctua-
tions became smaller (Fig. 5b, dotted line). Cell turning circles in
response to small-ENR switches (Fig. 5d, left) were considerably larger
than in response to large-ENR switches (Fig. 5d, right), mirroring the
behaviour of live cells (Fig. 5c). Similarly, the fraction of fast-turning
cells (Fig. 5e, right) matches the data (Fig. 5e, left).

Discussion
We presented an analytical calculation for two active sensing strat-
egies with memory in fluctuating environments, termed prediction
and filtering. Importantly, in correlated environments both strategies
would allow cells to sense far more precisely than predicted by cur-
rent estimates of the fundamental physical limit, thus providing
potential explanations for the observed single-molecule precision
in chemo-sensing E. coli, neurons, and T cells. Filtering, the more
elaborate of the two schemes, can improve the precision of sensing
even in uncorrelated, difficult-to-predict environments. Through
direct observation of the turning behaviour of chemotacting
Dictyostelium cells in response to fluctuating cAMP gradients in
microfluidic chamber (and through previous evidence provided
below), we found support for the adoption of filtering by these cells.
Hence, cells do not simply extend a pseudopod in the estimated
gradient direction based on their current measurements (traditional
compass model). Instead, cells weigh past and current measurements
in chemotaxis, resulting in an adjustment of the turning radius. This
matches our intuition that a smaller change in the environment
requires a longer time for the cell to notice. Biochemically, filtering
can be implemented by the incoherent feedforward loop, both at the
single-receptor (Figs. 3b and 4c) and whole-cell (Fig. 5d) level.
Indeed, recent experiments demonstrate that such a feedback loop
is implemented by the small GTPase Ras, which may be responsible
for adaptation in Dictyostelium cells41.

While our prediction and filtering schemes have a long history in
control engineering36,37,47, their application to fluctuating gradient
sensing constitutes a new direction. Recently, prediction was inves-
tigated in anticipating oscillations, e.g. as part of the circadian clock,
requiring energy dissipation48 in line with our active sensing strat-
egies. Note ‘‘active sensing’’ refers to the need for energy consump-
tion (similar to active transport in cells) and must not be confused
with ‘‘active learning’’ in artificial intelligence and machine learning.
Such active processes can also be used to time-average noisy signals
to enhance the accuracy in sensing49. The Kalman filter was prev-
iously applied to adaptation in bacterial chemotaxis50, demonstrating
close connection to integral feedback control. This filter was however
not considered in the context of the physical limits of sensing. The
Kalman filter can be considered the most simple dynamic Bayesian
network51. Note the cell’s parameters, e.g. rate constants for optimal
weighting of past and current measurements, would most likely need
to be adjusted by evolution to match typically encountered stimuli.

Our results may provide new insight into previously observed
internal directional biases in immobilised latrunculin-treated cells,
dynamically stimulated by uncaging cAMP using a circular UV

beam13. The precision of directional cell sensing was found to be
determined by a combination of external cAMP sensing and internal
bias of unidentified origin. Since internal biases not aligned with the
external gradient are expected to reduce the sensing precision, as
confirmed by theoretical modelling31, the purpose of internal biases
remained unclear. While a beneficial increase in cell heterogeneity is
a possibility (at the expense of precision)13, our work suggests that in
a dynamic environment the internal bias represents memory for
filtering, leading to an actual increase in sensing precision.

Observations of memory and filtering go back at least four dec-
ades43–45. In44 neutrophils filtered out temporally-changing concen-
trations of N-formyl-methionyl-L-leucyl-phenylalanine (fMLP) over
a 10 s time scale. Although no connection with sensing precision was
made, two cell fractions of turning behaviour were observed – a
slowly U-turning and a fast 180u-repolarising fraction. Most
recently45 Dictyostelium cells responded to ramps (their Fig. 4e), as
expected from the incoherent feedforward loop and closely related
networks24. Consistently, pulses of high frequency (14 mHz) were
filtered out but not pulses of low frequency (7 mHz) (their Fig. 4a).
Even E. coli bacteria were observed to filter in response to alternating
gradients, producing coherent waves at the population level when
stimulated at 0.01 Hz46. Hence, our results integrate a number of
apparently distinct observations across different cell types.

Wolpert’s ‘‘no free lunch theorem’’, used as a metaphor here, states
that to optimally estimate, search, etc., prior assumptions are neces-
sary52. In effect, there is no ‘‘short cut’’ for a solution and to do better
on average a ‘‘cost’’ needs to be paid. Indeed, our two active sensing
strategies are based on such priors (memory) updated dynamically,
and the presence of structure in the environment (correlations)
allows one to outperform a simple direct counting algorithm (i.e.
single measurement). Active sensing strategies are widespread in
biology, including integral feedback control in bacterial chemo-
taxis53, olfactory- and photo-transduction54, as well as kinetic proof-
reading55. The latter is a form of ‘‘error correction’’ mechanism for
enhancing the specificity in DNA replication, protein synthesis,
homologous recombination56 and T-cell signalling57. The striking
similarity between our proposed strategies, macroscopic engineering
solutions37, and learning by Bayesian inference in humans58 hint
toward universal problem solving strategies in nature.

Methods
Chemotaxis experiments and image analysis. The migration of 93 starved AX2 strain
Dictyostelium discoideum cells was recorded as described in38,39. Imaging was performed
by differential interference contrast (DIC) in a m-slide 3-in-1 microfluidic chamber
(Ibidi) with three 0.4 3 1.0 mm2 inlets that converge at an angle of 32u to the main
channel (dimension 0.4 3 3.0 3 23.7 mm3). Two micrometer valves (Upchurch
Scientific) reduced the flow velocities from the side inlets. The central inlet was
connected to an infusion syringe pump (TSE Systems), which generated a stable flow of
1 ml/h. Inlets contained a mixture of the chemoattractant cyclic adenosine
monophosphate (cAMP) and an Alexa Fluor red dye of similar molecular weight
(Invitrogen), to allow the characterisation of gradients (for details, see39). Microscopy
was performed using an Axiovert 135 TV microscope (Zeiss), with LD Plan-Neofluar
objectives 20x/0.50 NA and 40x/0.75 NA (Zeiss) in combination with a DV2 DualView
system (Photometrics). Images were taken at a frame rate of 1/3 sec. Cells were given
time to adjust to stable chemical gradients for about 20 min before the direction of the
gradient was switched. Typical trajectory lengths were 37 min. Cell outlines and centres
of mass were extracted using a custom-written plug-in for ImageJ. Chemotactic indices
of cells are given by CI 5 cos(qm 2 qg), where qm is the angle of migration and qg is the
angle of the gradient. CIs were measured over a period of 2 min on either side of each
switch, with the change in CI being defined as DCI 5 CIafter 2 CIbefore.

Cell simulations. Sensory information is processed by an incoherent feedforward
loop41, consisting of a response component and its inhibitor, both driven by the
outside stimulus. The response component is passed to a Meinhardt model simulated
on a 2-dimensional deformable membrane38,40. The Meinhardt model consists of a
self-promoting local activator that inhibits activation elsewhere on the membrane via
a global inhibitor. Patches of activator also self-limit by driving the production of a
local inhibitor, allowing new patches to form nearby. The membrane moves through
the combination of an outward normal force proportional to the local activator
concentration, global membrane tension, local bending tension and a normal, area
conserving force representing cytosolic pressure. See section S7 in SI for details
including differential equations and parameter values.
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