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Abstract

As neuroimagery datasets continue to grow in size, the complexity of data analyses can require 

a detailed understanding and implementation of systems computer science for storage, access, 

processing, and sharing. Currently, several general data standards (e.g., Zarr, HDF5, precomputed) 

and purpose-built ecosystems (e.g., BossDB, CloudVolume, DVID, and Knossos) exist. Each of 

these systems has advantages and limitations and is most appropriate for different use cases. 

Using datasets that don’t fit into RAM in this heterogeneous environment is challenging, and 

significant barriers exist to leverage underlying research investments. In this manuscript, we 

outline our perspective for how to approach this challenge through the use of community provided, 

standardized interfaces that unify various computational backends and abstract computer science 

challenges from the scientist. We introduce desirable design patterns and share our reference 

implementation called intern.

I. INTRODUCTION

In response to the growing number and size of large-scale volumetric neuroscience datasets, 

the community has developed a diverse set of tools and storage frameworks that balance 

ease of data manipulation and storage with efficiency and cost. These tools are often 

purpose-built, and feature team- or task-specific features that make them particularly well-

suited for their host projects, such as version control, cloud-native implementations, efficient 

caching, multi-tier storage, targeted annotation or proofreading tasks and more [1], [2], [3], 

[4]. Historically, this has been advantageous, as it has enabled teams to develop tools quickly 

and effectively to address unique research challenges. This diverse ecosystem, however, 

has also led to community fragmentation and interoperability challenges because research 

organizations rely on standards for data storage and access that are often incompatible. As 

scientific questions continue to grow in ambition and scope, it is increasingly important that 

scientists are able to easily analyze, collaborate, and share their data using consistent formats 

and data-storage engines.
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Though it is tempting to develop prescriptive data formats and standards, the fast-moving 

pace of the big-data neuroscience field — as well as the need for backward-compatibility 

with ongoing and past projects — will complicate the process of standardization. Instead, it 

is more feasible to standardize in abstraction: Rather than developing common data formats, 

it is more effective to build common data access strategies which can be applied to a variety 

of underlying datastores, file formats, and interfaces.

In response to collaborations that span data sizes from megabytes to petabytes, and that span 

institutional, international, and interdisciplinary boundaries from neuroscience to computer 

science to graph theory, interfacing tools are critical to reducing barriers for new and 

experienced scientists and enabling existing algorithms to scale to big data challenges. 

Data access toolkits and analysis tools (e.g., neuPrint [5], CloudVolume [6]) provide well-

integrated solutions for their use cases.

We have developed intern, a Python client library for neuroscience data access. intern 
simplifies data transit between industry-standard data formats, and exposes a consistent and 

intuitive API for end-users so that code for an analysis performed on a dataset in a particular 

datastore format may be trivially ported to other datasets and datastores (i.e., ecosystems).

We explain our architecture and implementation details, and share several use cases common 

to scientific analysis which are simplified through the use of intern. We believe that this tool 

is helpful in providing seamless solutions when switching between cloud native, local, and 

file-based solutions, and offers an extensible software-design paradigm as new solutions are 

developed.

II. BACKGROUND

Most connectomics data management tools act as either a data-storage tool, which manages 

the (long-term) preservation of data, or a data-access tool – which enables an end user 

(whether human or automated) to access and interact with the data.

A. Data Storage Tools

Though many biological science disciplines rely on local, single-file data storage systems 

(e.g., HDF5, multipage TIFFs), the field of connectomics realized the need for reproducible, 

shareable, scalable datastores early in its evolution. These datastores are persistent, 

performant servers of volumetric data, and are often centralized into repositories holding 

information from multiple experiments and laboratories [2], [1], [3], [6], [4]. As the size 

of data increased, these datastores specialized in returning subvolumes of data based upon 

3D user queries, rather than trying to transmit full datasets. Almost all of the most widely-

used data storage tools now leverage chunked storage [7], an access-efficiency paradigm 

borrowed from domains such as astronomy and GIS [8]. This enabled databases to increase 

their bandwidth and serve more data-requests per second, because each subvolume could be 

accessed in parallel, reducing the file input/output and hard-drive read-speed bottlenecks.

Eventually, some datastores, including BossDB [1] and CloudVolume [6], moved to cloud 

storage systems such as Amazon AWS S3 [9] or Google Cloud Storage (GCS) [10]. These 
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systems abstracted file-access even further and enabled high-speed network read- and write-

operations, at the cost of renting — rather than owning — data storage space. While tools 

such as Knossos or DVID may be run on cloud resources as easily as on local compute 

infrastructure, other datastores such as BossDB are cloud-native, meaning that they fully 

leverage the scalability and parallelism of cloud-compute and serverless resources, and 

cannot be run on conventional compute hardware.

Data storage tools can be classified into two other large categories: Those with server-side 

compute resources, and those without. Tools like DVID, BossDB, and Knossos use devoted 

compute resources that perform functions such as mesh generation, cache management, and 

access-control authorization. Systems like CloudVolume or zarr-backed datastores require 

much simpler infrastructure to run, but cannot perform processes such as skeleton- or 

mesh-generation without client-side compute resources.

B. Data Access Tools

Some researchers may feel comfortable accessing data directly from one of the storage tools 

listed above (e.g., via RESTful services or object-level access), but most prefer to interact 

with the data through more familiar and intuitive interfaces, such as a Python library or a 

web interface. Almost every data storage tool mentioned above has its own devoted data 

access tool: DVID has Go and Python libraries; data stored in the precomputed format 

may be accessed with the cloud-volume Python library. BossDB may be accessed with 

either cloud-volume or intern Python libraries. A common frustration in the connectomics 

community is that with only a small handful of exceptions, though the underlying data 

may be the same in several data storage tools, most access tools are only capable of 

reading from their “partner” storage tool, and the interfaces vary in complexity and format. 

In order to integrate data and tools from our collaborators, we expanded our initial data 

access tool intern to support more data formats as well as more data storage systems, in a 

Resource-based system (Fig. 1). intern’s architecture was expanded to communicate with 

CloudVolume-accessible volumes, DVID-hosted datasets, and several other commonly-used 

data storage tools and formats.

Additionally, we believe that in order to enable cross-institutional collaboration in the 

community, it is important to bridge the gap between those data storage tools with server-

side compute and those without. For this reason, we also introduced a Service-based system 

into intern that enables a user to run surrogates for the server-side processing tools of one 

data-storage system using the data from another. For example, we want a user to be able 

to request mesh representations of data from BossDB — a tool that supports server-side 

mesh generation — as well as from CloudVolume — a tool that supports client-side mesh 

generation — as well as from a dataset residing in a zarr archive in AWS S3 — a storage 

technique that does not support mesh generation at all. That these three tools differ in how 

their meshes may be generated should not matter to an end-user: The user should be able to 

use the same syntax to request mesh data from all of them with only minimal code changes.

Finally, we wrote intern to be easily extended to additional use cases and features as 

scientific needs grow. We believe the underlying design principles are common to many 

research questions and have value beyond the specific implementation described here.
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C. The Connectomics Data-Access Ecosystem

When considering the data storage engine for a particular scientific question, several 

different factors should be considered, which we summarize as data size, versioning, 

authentication and user management, cloud services, performance, and accessibility/sharing. 

Each tool has a user community and powerful feature-sets: File-based solutions are simple 

and easily portable and understood, but are difficult to access and analyze by communities. 

CloudVolume excels in portability and simplicity, but does not provide user accounts, 

differential permissions, or data management services. DVID offers an excellent solution 

for terascale solutions and fast, efficient data-versioning, but does not leverage cloud-scale 

capabilities. BossDB is a managed cloud-native service with user permissions, access 

control, and a robust storage engine tested to hold and process petabytes of data, but cannot 

run locally and requires more infrastructural complexity than many research labs may have 

the expertise to maintain.

Although for the uninitiated these storage solutions may seem to introduce unnecessary 

complexity, managing and manipulating such large datasets and corresponding analysis 

derivatives (e.g., metadata) requires advanced technology. The intent of the paradigm 

introduced in this paper is to abstract from the user all of the challenges introduced by the 

scale of the data in order to allow methods to be easily run on these data while minimizing 

impedance mismatches.

III. METHODS

Our intern library implements the philosophy of abstracting computer science requirements 

by offering consistent data access trait interfaces, which are categorized into Services, 

Resources, and Remotes. This system of abstraction acts as a shock absorber to differing 

data formats, data processing, and tool functionality, and serves to enable reproducible 

and extensible connectomics analysis. We describe our intern reference implementation, 

and explore how other tool-developers may choose to expand intern or develop their own 

community-ready software using the same paradigm.

A. Architecture

As the field of connectomics evolves rapidly, a library must strike a balance between 

accessibility and adaptability. We designed our toolkit such that even minimal coding skills 

and copy-pasting of simple design patterns can be leveraged to reduce user burden. As 

the community continues to formalize use cases and data storage paradigms, programmatic 

workflows like SABER [11], LONI [12], Luigi [13], or other workflow managers [14], [15], 

[16] may allow for additional simplification and can directly leverage these functions. Point 

and click graphical interfaces may also follow.

In order to facilitate extension of the intern Python library by the community, we have 

published extensive online documentation for both software engineering beginners as well 

as professionals. The library is split into three types of trait-based interfaces; Remotes, 

Resources, and Services.
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1) Remotes: Remotes represent data storage tools, such as databases, on-disk chunked 

or non-chunked files, and other providers of volumetric-data access APIs. A Remote must 

at least allow the retrieval of volumetric data, and may allow upload, manipulation, user 

permissions, or project management as well.

2) Resources: Resources are pointers to atomic units or groupings of data from 

a Remote. For example, in the hierarchical BossDB data paradigm, the BossResource 
implementation interfaces with a CollectionResource, an ExperimentResource and a 

ChannelResource [1]. In the DVIDRemote implementation, a DataInstanceResource points 

to a specific dataset at a specific version in its history.

3) Services: Services are features or manipulations that act upon data retrieved from a 

Remote. Services either call upon the server-side compute of a Remote, or instead a Service 
may implement a standalone local algorithm that can act as a surrogate for a Remote that 

does not have a service available. For example, a CloudVolumeRemote has an associated 

CloudVolumeMeshService that invokes the built-in cloud-volume meshing functionality, but 

a ZarrRemote may use a locally-executed MeshService with the same API.

Provided the underlying data are the same, the output from different Services will be 

consistent (give-or-take obvious differences in performance/timing or scalability, as well as 

differences in parameters). In this way, raw image data from any database (i.e. Remote) can 

be treated the same; segmentation from any database can be treated the same; and annotation 

byproducts can be treated the same.

B. Performance and Design Considerations

Due to the chunked-storage approach used by large-scale volumetric datastores, intern was 

developed with an intention to maximize the performance of the underlying datastores 

by optimizing Remote-specific parameters such as chunk size, parallelism, and data 

compression. Chunk size, or the amount of data downloaded in a single request, has a 

significant effect on end-to-end performance for downloading and uploading data. Default 

chunk size for BossDB downloads were empirically derived to reduce latency for the 

user. Ideally, data chunk sizes should be optimized per-remote, and ideal cutout sizes 

may vary based upon client resources such as network throughput or compute (Fig. 2). 

Furthermore, intern utilizes parallel downloading in order to saturate client bandwidth 

without causing bottlenecks at the data decompression or reconstitution stage. Convenience 

features consolidates the extract, load, and transform data pipeline into a few straightforward 

functions.

C. Use Cases

1) Transferring data between Remotes: Since Remotes provide unique task-specific 

capabilities that are exclusive to a particular data store or data type, a common use-case of 

intern is to transfer data between remotes to leverage their unique capabilities.

For example, DVID provides best-in-class data-versioning of large scale image 

segmentation, and it may be preferable to use DVID for this sort of data-versioning rather 
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than try to replicate this feature in other datastores. Volumetric data that is stored in, e.g., 

BossDB can be downloaded from the cloud for local processing and uploaded into a DVID 

repository using intern. Once the proofreading is completed, the final annotated data can 

be re-uploaded to BossDB in order to be cached internationally and served publicly. We 

note that certain data storage tools, such as BossDB, have high-throughput ingest systems 

available [1], which may be faster than an intern-based data transfer, but which are not 

available in all remotes. Additionally, users may wish to only work with a portion of a 

dataset, in which case ingestion services may be overly complex.

2) Shock-Absorption: Though such software abstractions place an additional 

engineering burden on developers, we assert that developing flexible, ecosystem-agnostic 

tools is a fundamental need of the dynamic connectomics community in lieu of more 

formal data-standards. To meet this requirement, we developed intern with such flexibility 

in mind: intern acts as a “shock-absorber” for common connectomics use-cases by 

implementing database-agnostic Services (e.g. mesh generation, skeleton generation, 

segmentation proofreading), which can run regardless of data source. An intern Service 
definition includes a list of its required Resources, and any Remote or other data-source that 

meets this interface can run the Service.

As a concrete example, a local marching-cubes MeshService converts 3D segmentation 

to OBJ- or precomputed-formatted meshes. This Service requires only a VolumeResource 
provider, and so it can run on, for example, a BossRemote, a CloudVolumeRemote, or even, 

e.g., on a raw ZarrVolumeResource.

This approach enables the end-user to reproducibly run the same analysis code, changing 

only one line to specify from where the data should be pulled. In other words, a user may 

confidently change a line of code from

BossRemote#mesh(id)

to

DVIDRemote#mesh(id)

, regardless of whether the data-sources themselves support the meshing operation. The 

provenance of these operations may be stored alongside the data products, in order to aid in 

future reproducibility.

3) Local Data Caching: Like many projects in the big-data neuroscience community, 

one of the most painful bottlenecks in much of our work is the speed with which data can be 

uploaded and downloaded from user-facing machines for visualization and analysis. In order 

to mitigate this challenge, we developed Bossphorus, a data relay that uses intern to fetch 

data from “upstream” data storage tools in their respective dialects and which serves data 

“forward” in the BossDB-flavored REST API dialect [1]. As a result, Bossphorus instances 

can be daisy-chained as a multi-tier cache. This enables an end-user to quickly browse data 

from a variety of sources with low latency, even if the datastore in question does not support 
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caching. With a Bossphorus instance running locally using our publicly available Docker 

image, or a Bossphorus instance running on on-premise hardware at an academic institute 

(or indeed with both running in series), a user can interactively browse large volumes of data 

from multiple data sources with sub-second latency. This enables realtime data manipulation 

and visualization. intern’s interfaces are designed to be highly compatible with common 

data-science tools like numpy[17] and pandas[18]; popular data standards like DataJoint 

[16]; as well as visualization tools such as neuroglancer[19], substrate[20], matplotlib[21], 

and plotly[22].

4) Processing: Tool and algorithm developers commonly target specific data storage 

ecosystems in order to reduce the burden of supporting several disparate ecosystems 

and data-standards [23], [11]. By leveraging shock-absorber tools like intern, algorithm 

developers can write code once and deploy it to a variety of datastores. As a proof of 

concept, we adopted a synapse-detection algorithm based upon the U-net architecture [11], 

[24]. This algorithm Service targets data downloaded from an intern VolumeResource, 

which means that it is trivially portable to data downloaded from any supported volumetric 

data storage service. One advantage of tightly coupling volumetric data access with such 

machine learning algorithms is addressing the challenge of stitching subvolumes of data 

together. Using intern for data management helps address this problem by storing data 

products in the cloud, rather than in task-specific cache files or on users’ drives.

Just as tool designers can use intern to develop and test their software, the intern Python 

library is production-ready, and is verified to work at petabyte scale. We believe that 

reproducible and repeatable algorithm design extends past tool-design, and continues to be a 

fundamental aspect of responsible computational science in public-facing research. Flexible 

tools like intern equip peer institutes and collaborating researchers with the ability to quickly 

and accurately reproduce, verify, and build upon scientific claims.

5) Visualization and Meshing: The Remote, Resource and Service based architecture 

allows all Remote data-stores to benefit from all implementations of Services. An 

example of this is intern’s MeshService, which allows users to generate meshes using 

local compute resources. Any Remote that implements volumetric data retrieval as a 

VolumeResource (namely, all currently implemented Remotes) will automatically have this 

meshing capability. Due to this trait-based architecture, any future Remote implementation 

for new databases or data standards will likewise have this meshing capability without any 

further development required.

Any Service can also be used independent of the rest of the intern library. The MeshService 
described above, for example, will produce a Mesh object when passed a volume of 3D 

data either as an ndarray or as a VolumeResource (Fig. 3). This mesh object can then be 

converted into the common obj format or into the Neuroglancer precompute format [19].

While we have provided a simple, Python-native, CPU-based marching-cubes 

implementation, the user community is encouraged to package other specialized or 

distributed meshing or post-processing algorithms in the same Service-based class interface. 
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Tools written to meet this specification will likewise be applicable to data from any data 

storage tool supported by the tool.

IV. DISCUSSION

In this work we highlight data accessibility, a common challenge in contemporary 

computational neuroscience, which has become particularly acute as data volumes grow 

in size and data ecosystems proliferate. New and experienced users will benefit greatly 

by adopting the concept of a computer science shock-absorber, which we illustrate in our 

solution (intern). Such tools are particularly valuable in domains such as connectomics, 

where cross-institutional collaborations and data reuse are not only common but increasingly 

necessary. Other complementary APIs and software libraries also exist to support 

approaches in the field and are well-suited for particular ecosystems and workflows. 

Many of these tools offer solutions that abstract many of the most challenging and 

repetitive aspects of large scale neuroscience discovery and also avoid common errors of 

interpretation. This is especially important to broaden accessibility of large, publicly-funded 

datasets for secondary analysis, including by new members of the community or those with 

complementary expertise (e.g., machine learning, statistical modeling). This work directly 

addresses the retrieval of volumetric data products but not object-level metadata such as 

synapse or neuron attributes, or the algorithms used to create derivative data products; 

these aspects are also important to consider when building standardized analysis workflows. 

Furthermore, as the user demand for such tools increases, we will continue to mature 

implementations of intern in other commonly used data science languages, such as Julia, R, 

and Node.

By developing user-facing tools such as intern that are flexible and provide an integrated 

interface to key community data storage systems, the connectomics community will be 

able to greatly benefit from shared, collaborative science, as well as large-scale, public, 

easily-accessible data.
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Fig. 1. 
The intern Python library acts as a shock absorber to provide a consistent API to researchers, 

tool developers, and other users. A community-facing data-access tool should operate on 

all major data-storage systems (including CloudVolume, DVID, and BossDB), and remain 

flexible enough to enable common use cases (such as visualization, data upload/download, 

and data proofreading) without sacrificing performance.
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Fig. 2. 
Many factors impact data download rate. As an illustration, we tuned the chunk-size 

parameters for parallel- and non-parallel downloads from the BossDB remote. A. 
Performance was impacted by client-side compute speed (for data decompression) as well as 

network throughput, illustrating possible avenues for further abstraction of other remotes. B. 
Chunked data stores benefit from data requests that are aligned to the cuboid subdivisions 

in the server backend. This effect is more pronounced in filesystem-based data-stores such 

as CloudVolume or Zarr, as the cuboid periphery must be downloaded and cropped on 

local compute resources. In contrast, data stores with cloud-side compute (such as DVID or 
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BossDB) can perform this cropping operation prior to data download, and so the additional 

egress burden is not incurred.
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Fig. 3. 
Using the intern library, we downloaded nanometer-resolution 3D imagery and pixel 

segmentation from the public Witvliet 2020 et al. dataset on BossDB [25]. We then used 

the meshing service to produce 3D mesh files for visualization in 3D software such as 

Blender or Neuroglancer. Pictured here is Dataset 2, a C. elegans nematode brain imaged 

during the L1 larval stage.
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